1
|
Loria F, Breenfeldt Andersen A, Bejder J, Bonne T, Grabherr S, Kuuranne T, Leuenberger N, Baastrup Nordsborg N. mRNA biomarkers sensitive and specific to micro-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2024; 16:1392-1401. [PMID: 38382494 DOI: 10.1002/dta.3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Recombinant human erythropoietin (rhEPO) is prohibited by the World Anti-Doping Agency. rhEPO abuse can be indirectly detected via the athlete biological passport (ABP). However, altitude exposure challenges interpretation of the ABP. This study investigated whether 5'-aminolevulinate synthase 2 (ALAS2) and carbonic anhydrase 1 (CA1) in capillary dried blood spots (DBSs) are sensitive and specific markers of rhEPO treatment at altitude. ALAS2 and CA1 expression was monitored in DBS collected weekly before, during, and after a 3-week period at sea level or altitude. Participants were randomly assigned to receive 20 IU kg bw-1 epoetin alpha (rhEPO) or placebo injections every second day for 3 weeks while staying at sea level (rhEPO, n = 25; placebo, n = 9) or altitude (rhEPO, n = 12; placebo, n = 27). ALAS2 and CA1 expression increased up to 300% and 200%, respectively, upon rhEPO treatment at sea-level and altitude (P-values <0.05). When a blinded investigator interpreted the results, ALAS2 and CA1 expression had a sensitivity of 92%. Altitude did not confound the interpretation. Altitude affected ALAS2 and CA1 expression less than actual ABP markers when compared between sea level and altitude results. An individual athlete passport-like approach simulation confirmed the biomarker potential of ALAS2 and CA1. ALAS2 and CA1 were sensitive and specific biomarkers of micro-dose rhEPO treatment at sea level and altitude. Altitude seemed less a confounding factor for these biomarkers, especially when they are combined. Thus, micro-dose rhEPO injections can be detected in a longitudinal blinded setting using mRNA biomarkers in DBS.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Andreas Breenfeldt Andersen
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Silke Grabherr
- University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
2
|
Richard V, Mitsa G, Eshghi A, Chaplygina D, Mohammed Y, Goodlett DR, Zahedi RP, Thevis M, Borchers CH. Establishing Personalized Blood Protein Reference Ranges Using Noninvasive Microsampling and Targeted Proteomics: Implications for Antidoping Strategies. J Proteome Res 2024; 23:1779-1787. [PMID: 38655860 PMCID: PMC11077581 DOI: 10.1021/acs.jproteome.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
To prevent doping practices in sports, the World Anti-Doping Agency implemented the Athlete Biological Passport (ABP) program, monitoring biological variables over time to indirectly reveal the effects of doping rather than detect the doping substance or the method itself. In the context of this program, a highly multiplexed mass spectrometry-based proteomics assay for 319 peptides corresponding to 250 proteins was developed, including proteins associated with blood-doping practices. "Baseline" expression profiles of these potential biomarkers in capillary blood (dried blood spots (DBS)) were established using multiple reaction monitoring (MRM). Combining DBS microsampling with highly multiplexed MRM assays is the best-suited technology to enhance the effectiveness of the ABP program, as it represents a cost-effective and robust alternative analytical method with high specificity and selectivity of targets in the attomole range. DBS data were collected from 10 healthy athlete volunteers over a period of 140 days (28 time points per participant). These comprehensive findings provide a personalized targeted blood proteome "fingerprint" showcasing that the targeted proteome is unique to an individual and likely comparable to a DNA fingerprint. The results can serve as a baseline for future studies investigating doping-related perturbations.
Collapse
Affiliation(s)
- Vincent
R. Richard
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Georgia Mitsa
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
| | - Azad Eshghi
- University
of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Daria Chaplygina
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZC, The Netherlands
| | - David R. Goodlett
- University
of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Rene P. Zahedi
- Manitoba
Centre for Proteomics and Systems Biology, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- CancerCare
Manitoba Research Institute, Winnipeg, Manitoba R3E 0V9, Canada
| | - Mario Thevis
- Institute
of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne 50933, Germany
- European
Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn 50933, Germany
| | - Christoph H. Borchers
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montréal, Quebec H4A 3T2, Canada
- Department
of Pathology, McGill University, Montréal, Quebec H4A 3J1, Canada
| |
Collapse
|
3
|
Reubsaet L, Halvorsen TG. Advancements in clinical approaches, analytical methods, and smart sampling for LC-MS-based protein determination from dried matrix spots. J Sep Sci 2024; 47:e2400061. [PMID: 38726749 DOI: 10.1002/jssc.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture.
Collapse
Affiliation(s)
- Léon Reubsaet
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Loria F, Grabherr S, Kuuranne T, Leuenberger N. Use of RNA biomarkers in the antidoping field. Bioanalysis 2024; 16:475-484. [PMID: 38497758 PMCID: PMC11216508 DOI: 10.4155/bio-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
There is growing evidence that various RNA molecules can serve as biomarkers for clinical diagnoses. Over the last decade, the high specificities and sensitivities of RNA biomarkers have led to proposals that they could be used to detect prohibited substances and practices in sports. mRNAs and circulating miRNAs have the potential to improve the detection of doping and expand the performance of the Athlete Biological Passport. This review provides a summary of the use of RNA biomarkers to detect human and equine doping practices, including a discussion of the use of dried blood spots as a stable matrix that supports and improves the general process of RNA biomarker detection. The advantages of RNA biomarkers over protein biomarkers are also discussed.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| | - Silke Grabherr
- University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| |
Collapse
|
5
|
Krumm B, Saugy JJ, Botrè F, Donati F, Faiss R. Indirect biomarkers of blood doping: A systematic review. Drug Test Anal 2024; 16:49-64. [PMID: 37160638 DOI: 10.1002/dta.3514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The detection of blood doping represents a current major issue in sports and an ongoing challenge for antidoping research. Initially focusing on direct detection methods to identify a banned substance or its metabolites, the antidoping effort has been progressively complemented by indirect approaches. The longitudinal and individual monitoring of specific biomarkers aims to identify nonphysiological variations that may be related to doping practices. From this perspective, the identification of markers sensitive to erythropoiesis alteration is key in the screening of blood doping. The current Athlete Biological Passport implemented since 2009 is composed of 14 variables (including two primary markers, i.e., hemoglobin concentration and OFF score) for the hematological module to be used for indirect detection of blood doping. Nevertheless, research has continually proposed and investigated new markers sensitive to an alteration of the erythropoietic cascade and specific to blood doping. If multiple early markers have been identified (at the transcriptomic level) or developed directly in a diagnostics' kit (at a proteomic level), other target variables at the end of the erythropoietic process (linked with the red blood cell functions) may strengthen the hematological module in the future. Therefore, this review aims to provide a global systematic overview of the biomarkers considered to date in the indirect investigation of blood doping.
Collapse
Affiliation(s)
- Bastien Krumm
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas J Saugy
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Raphael Faiss
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Hassanpour M, Salybekov AA. Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes. Int J Mol Sci 2023; 25:249. [PMID: 38203416 PMCID: PMC10779309 DOI: 10.3390/ijms25010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The prevalence of autologous blood transfusions (ABTs) presents a formidable challenge in maintaining fair competition in sports, as it significantly enhances hemoglobin mass and oxygen capacity. In recognizing ABT as a prohibited form of doping, the World Anti-Doping Agency (WADA) mandates stringent detection methodologies. While current methods effectively identify homologous erythrocyte transfusions, a critical gap persists in detecting autologous transfusions. The gold standard practice of longitudinally monitoring hematological markers exhibits promise but is encumbered by limitations. Despite its potential, instances of blood doping often go undetected due to the absence of definitive verification processes. Moreover, some cases remain unpenalized due to conservative athlete-sanctioning approaches. This gap underscores the imperative need for a more reliable and comprehensive detection method capable of unequivocally differentiating autologous transfusions, addressing the challenges faced in accurately identifying such prohibited practices. The development of an advanced detection methodology is crucial to uphold the integrity of anti-doping measures, effectively identifying and penalizing instances of autologous blood transfusion. This, in turn, safeguards the fairness and equality essential to competitive sports. Our review tackles this critical gap by harnessing the potential of microRNAs in ABT doping detection. We aim to summarize alterations in the total microRNA profiles of erythrocyte concentrates during storage and explore the viability of observing these changes post-transfusion. This innovative approach opens avenues for anti-doping technologies and commercialization, positioning it as a cornerstone in the ongoing fight against doping in sports and beyond. The significance of developing a robust detection method cannot be overstated, as it ensures the credibility of anti-doping efforts and promotes a level playing field for all athletes.
Collapse
|
8
|
Thevis M, Walpurgis K, Thomas A. DropWise: current role and future perspectives of dried blood spots (DBS), blood microsampling, and their analysis in sports drug testing. Crit Rev Clin Lab Sci 2023; 60:41-62. [PMID: 35938300 DOI: 10.1080/10408363.2022.2103085] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For decades, blood testing has been an integral part of routine doping controls. The breadth of information contained in blood samples has become considerably more accessible for anti-doping purposes over the last 10 years through technological advancements regarding analytical instrumentation as well as enhanced sample collection systems. Particularly, microsampling of whole blood and serum, for instance as dried blood spots (DBS), has opened new avenues in sports drug testing and substantially increased the availability and cost-effectiveness of doping control specimens. Thus, microvolume blood specimens possess the potential to improve monitoring of blood hormone and drug levels, support evaluation of circulating drug concentrations in competition, and enhance the stability of labile markers and target analytes in blood passport analyses as well as peptide hormone and steroid ester detection. Further, the availability of the fraction of lysed erythrocytes for anti-doping purposes warrants additional investigation, considering the sequestering capability of red blood cells (RBCs) for certain substances, as a complementary approach in support of the clean sport.
Collapse
Affiliation(s)
- M Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Bonn, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - A Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
9
|
Solheim SA, Levernaes MCS, Mørkeberg J, Juul A, Upners EN, Nordsborg NB, Dehnes Y. Stability and detectability of testosterone esters in dried blood spots after intramuscular injections. Drug Test Anal 2022; 14:1926-1937. [PMID: 33733610 DOI: 10.1002/dta.3030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
While misuse of testosterone esters is widespread in elite and recreational sports, direct detection of intact testosterone esters in doping control samples is hampered by the rapid hydrolysis by esterases present in the blood. With dried blood spot (DBS) as sample matrix, continued degradation of the esters is avoided due to inactivation of the hydrolase enzymes in dried blood. Here, we have developed the method further for detection of testosterone esters in DBS with focus on robustness and applicability in doping control. To demonstrate the method's feasibility, DBS samples from men receiving two intramuscular injections of Sustanon® 250 (n = 9) or placebo (n = 10) were collected, transported, and stored prior to analysis, to mimic a doping control scenario. The presented nanoLC-HRMS/MS method appeared reliable and suitable for direct detection of four testosterone esters (testosterone decanoate, isocaproate, phenylpropionate, and propionate) after extraction from DBS. Sustanon® was detected in all subjects for at least 5 days, with detection window up to 14 days for three of the esters. Evaluation of analyte stability showed that while storage at room temperature is tolerated well for a few days, testosterone esters are highly stable (>18 months) in DBS when stored in frozen conditions. Collectively, these findings demonstrate the applicability of DBS sampling in doping control for detection of steroid esters. The fast collection and reduced shipment costs of DBS compared with urine and standard blood samples, respectively, will allow more frequent and/or large-scale testing to increase detection and deterrence.
Collapse
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Science and Research, Anti-Doping Denmark, Brøndby, Denmark
| | | | | | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Emmie N Upners
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Mazzarino M, Di Costanzo L, Comunità F, Stacchini C, de la Torre X, Botrè F. UHPLC-HRMS Method for the Simultaneous Screening of 235 Drugs in Capillary Blood for Doping Control Purpose: Comparative Evaluation of Volumetric and Non-volumetric Dried Blood Spotting Devices. ACS OMEGA 2022; 7:31845-31868. [PMID: 36119994 PMCID: PMC9475635 DOI: 10.1021/acsomega.2c01417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
We present a quick and simple multi-targeted analytical workflow based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry for the screening in dried blood spots and dried plasma spots of a wide variety of drugs with different chemical properties. Seven different microsampling devices were evaluated in view of their application for the detection of the selected target analytes in the framework of doping control analysis. The extraction of the analytes was optimized by assessing the efficacy of protocols based on ultrasonication with aqueous buffers and/or organic solvents of different polarities. Optimal recoveries were obtained by using pure methanol or mixtures of methanol/acetonitrile and methanol/isopropanol, depending on both the device and the target analytes. The method was fully validated according to both ISO17025 and the requirements of the World Anti-Doping Agency: all the analytes were clearly distinguishable from the matrix, with limits of detection in the range of 0.1-3.0 ng mL-1. Stability studies simulating the storage of samples before the analysis and in view of a possible re-analysis showed that most of the analytes were stable for at least 24 h at 50 °C and for at least 3 weeks at 25 and at 4 °C. The real applicability of the method was assessed by analyzing the samples collected after the administration of two model drugs, acetazolamide and deflazacort. The performance of the method was confirmed to be fit for purpose, and data obtained in blood can also be used to complement those available in urine, allowing to refine the knowledge concerning the pharmacokinetic profiles.
Collapse
Affiliation(s)
- Monica Mazzarino
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Ludovica Di Costanzo
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Fabio Comunità
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Carlotta Stacchini
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
- Dipartimento
Chimica e Tecnologia del Farmaco, “Sapienza”
Università di Roma, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Xavier de la Torre
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Francesco Botrè
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
- REDs—Research
and Expertise in Anti-Doping Sciences, ISSUL—Institute of Sport
Sciences, University of Lausanne, Synathlon—Quartier Centre, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Monitoring of hemoglobin and erythropoiesis-related mRNA with dried blood spots in athletes and patients. Bioanalysis 2022; 14:241-251. [PMID: 35172618 DOI: 10.4155/bio-2021-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: We assessed the feasibility of using hematological parameters (such as hemoglobin and reticulocyte mRNA) in dried blood spot (DBS) samples to test athletes for doping and to improve patient care. Methods: Hemoglobin and erythropoiesis-related mRNAs were measured in venous blood and DBSs from both healthy athletes and hemodialysis patients. Results: We accurately measured hemoglobin changes over time in both venous blood and DBS samples. Combining hemoglobin and mRNA analyses, we detected erythropoietin injection in DBSs more sensitively and with higher efficiency by using the DBS OFF-score than by using the athlete biological passport OFF-score. Conclusion: DBS-based measurements are practical for calculating hemoglobin levels and athlete biological passport OFF-scores. This approach may help detect blood doping and help predict patient response to EPO.
Collapse
|
12
|
Jing J, Shan Y, Liu Z, Yan H, Xiang P, Chen P, Xu X. Automated online dried blood spot sample preparation and detection of anabolic steroid esters for sports drug testing. Drug Test Anal 2022; 14:1040-1052. [DOI: 10.1002/dta.3226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Jing
- Shanghai Anti‐doping Laboratory Shanghai University of Sport Shanghai China
| | - Yuanhong Shan
- Shanghai Anti‐doping Laboratory Shanghai University of Sport Shanghai China
| | - Zhao Liu
- Chromatography Mass Spectrometry Department, Thermo Fisher Scientific Shanghai China
| | - Hui Yan
- Department of Forensic Toxicology Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine Shanghai China
| | - Ping Xiang
- Department of Forensic Toxicology Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine Shanghai China
| | - Peijie Chen
- Shanghai Anti‐doping Laboratory Shanghai University of Sport Shanghai China
| | - Xin Xu
- Shanghai Anti‐doping Laboratory Shanghai University of Sport Shanghai China
| |
Collapse
|
13
|
Cox HD, Miller GD, Manandhar A, Husk JD, Crouch AK, Eichner D. Tracking immature reticulocyte proteins for improved detection of recombinant human erythropoietin (rhEPO) abuse. Am J Hematol 2021; 96:1621-1629. [PMID: 34626008 DOI: 10.1002/ajh.26368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022]
Abstract
Athletes abuse recombinant human erythropoietin (rhEPO) and erythropoiesis stimulating agents to increase hemoglobin mass and improve performance. To evade detection, athletes have developed sophisticated blood doping regimens, which often include rhEPO micro-dosing. Detection of these methods requires biomarkers with increased sensitivity and a sample matrix that is more amenable to frequent testing in the field. We have developed a method to measure two immature reticulocyte proteins, CD71 and ferrochelatase (FECH), and one total erythrocyte protein, Band 3, in dried blood spots (DBS). This method was tested in response to rhEPO administration after low doses, 40 IU/kg, micro-doses, 900 IU, or saline injection in 20 healthy subjects. During administration of low-dose rhEPO, the mean CD71/Band 3 and FECH/Band 3 ratio increased by 412 ± 197% and 250 ± 44%, respectively. The mean response for the current biomarker, RET%, increased by 195 ± 35%. During administration of rhEPO micro-doses, CD71/Band 3 increased to 127 ± 25% on day 35 and 139 ± 36% on day 39, while no increase was observed in RET%. After rhEPO administration, during the washout phase, mean values decreased to a minimum of 64 ± 4% and 64 ± 11% for CD71/Band 3 and RET%, respectively. However, CD71/Band 3 remained below 75% of baseline for at least 4 weeks after rhEPO injection, while RET% returned to baseline levels. The results demonstrate that immature reticulocyte proteins have a larger response to rhEPO administration than the current biomarker, RET%, and can be monitored in the DBS matrix.
Collapse
Affiliation(s)
- Holly D. Cox
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | | | | | - Jacob D. Husk
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | - Andre K. Crouch
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| |
Collapse
|
14
|
Salamin O, Nicoli R, Xu C, Boccard J, Rudaz S, Pitteloud N, Saugy M, Kuuranne T. Steroid profiling by UHPLC-MS/MS in dried blood spots collected from healthy women with and without testosterone gel administration. J Pharm Biomed Anal 2021; 204:114280. [PMID: 34340018 DOI: 10.1016/j.jpba.2021.114280] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
The quantification of a large panel of endogenous steroids in serum by LC-MS/MS represents a powerful clinical tool for the screening or diagnosis of diverse endocrine disorders. This approach has also demonstrated excellent sensitivity for the detection of testosterone misuse in the anti-doping field, especially in female athlete population. In both situations, the use of dried blood spots (DBS) could provide a viable alternative to invasive venous blood collection. Here, the evaluation of DBS sampling for the quantification of a panel of endogenous steroids using UHPLC-MS/MS is described. The UHPLC-MS/MS method was validated for quantitative analysis of eleven free and eight conjugated steroids and was then used for the analysis of DBS samples collected in 14 healthy women during a normal menstrual cycle (control phase) followed by a 28-days testosterone gel treatment (treatment phase). Results were compared with those obtained from serum matrix. Satisfactory performance was obtained for all compounds in terms of selectivity, linearity, accuracy, precision, combined uncertainty, stability as well as extraction recovery and matrix effects. In control phase, high correlation was observed between DBS and serum concentrations for most compounds. In treatment phase, higher testosterone concentrations were observed in capillary than in venous DBS, suggesting a possible interference resulting from testosterone contamination on finger(s) used for gel application. Steroid profiling in capillary DBS represents a simple and efficient strategy for monitoring endogenous steroid concentrations and their fluctuation in clinical context of steroid-related disorders, or for the detection of testosterone abuse in anti-doping.
Collapse
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in Anti-Doping Sciences - REDs, Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland; Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, University Medical Centre, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Switzerland; Division of Biomedical and Metabolomic Analyses, Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, University Medical Centre, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Switzerland; Division of Biomedical and Metabolomic Analyses, Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Martial Saugy
- Center of Research and Expertise in Anti-Doping Sciences - REDs, Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| |
Collapse
|
15
|
Loria F, Cox HD, Voss SC, Rocca A, Miller GD, Townsend N, Georgakopoulos C, Eichner D, Kuuranne T, Leuenberger N. The use of RNA-based 5'-aminolevulinate synthase 2 biomarkers in dried blood spots to detect recombinant human erythropoietin microdoses. Drug Test Anal 2021; 14:826-832. [PMID: 34216436 PMCID: PMC9545850 DOI: 10.1002/dta.3123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
The hematological module of the Athlete Biological Passport (ABP) is used for indirect detection of blood manipulations; however, the use of this method to detect doping, such as with microdoses of recombinant human erythropoietin (rhEPO), is problematic. For this reason, the sensitivity of ABP must be enhanced by implementing novel biomarkers. Here, we show that 5'-aminolevulinate synthase 2 (ALAS2) mRNAs are useful transcriptomic biomarkers to improve the indirect detection of rhEPO microdosing. Moreover, the sensitivity was sufficient to distinguish rhEPO administration from exposure to hypoxic conditions. Levels of mRNAs encoding carbonate anhydrase 1 (CA1) and solute carrier family 4 member 1 (SLC4A1) RNA, as well as the linear (L) and linear + circular (LC) forms of ALAS2 mRNA, were monitored for 16 days after rhEPO microdosing and during exposure to hypoxic conditions. ALAS2 mRNAs increased by 300% compared with the baseline values after rhEPO microdosing. Moreover, ALAS2 mRNAs were not significantly increased under hypoxic conditions. By contrast, CA1 mRNA was increased after both rhEPO microdosing and hypoxia, whereas SLC4A1 mRNA did not significantly increase under either condition. Furthermore, the analyses described here were performed using dried blood spots (DBSs), which provide advantages in terms of the sample collection, transport, and storage logistics. This study demonstrates that ALAS2 mRNA levels are sensitive and specific transcriptomic biomarkers for the detection of rhEPO microdosing using the hematological module of the ABP, and this method is compatible with the use of DBSs for anti-doping analyses.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | | | - Angela Rocca
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Nathan Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Doha, Qatar
| | | | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Cox HD, Miller GD, Manandhar A, Husk JD, Jia X, Marvin J, Ward DM, Phillips J, Eichner D. Measurement of Immature Reticulocytes in Dried Blood Spots by Mass Spectrometry. Clin Chem 2021; 67:1071-1079. [PMID: 33993255 DOI: 10.1093/clinchem/hvab058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Immature reticulocytes (IRC) are the first cells to respond to changes in erythropoiesis. For antidoping applications, measurement of IRC may improve detection of blood doping practices. Unfortunately, this small cell population has limited stability in liquid blood samples and is difficult to measure with optimal precision. We developed a method to measure 3 IRC membrane proteins in dried blood spots (DBS) to monitor changes in erythropoiesis. METHODS DBS spots were washed with buffers to remove soluble proteins, membrane proteins remaining in the spot were digested with trypsin, and one peptide for each protein was measured by LC-MS/MS. IRC protein concentration was determined using a DBS single point calibrator. RESULTS Intraassay precision for IRC proteins was between 5%-15%. IRC proteins were stable in DBS for 29 days at room temperature. In a longitudinal study of 25 volunteers, the mean intraindividual variation for 3 IRC proteins was 17%, 20%, and 24% from capillary blood DBS. In comparison, the mean longitudinal variation for IRC counts measured on an automated hematology analyzer was 38%. IRC protein concentration from capillary blood DBS correlated well with venous blood DBS protein concentrations. CONCLUSIONS Measurement of IRC proteins in DBS samples provides a method to measure changes in erythropoiesis with improved analytical sensitivity, stability, and precision. When combined with the inherent advantages of capillary blood collection in the field, this method may substantially improve the detection of blood doping practices.
Collapse
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| | | | - Jacob D Husk
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James Marvin
- Flow Cytometry Core Facility, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Phillips
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| |
Collapse
|
17
|
Jeppesen JS, Breenfeldt Andersen A, Bonne TC, Thomassen M, Sørensen H, Nordsborg NB, Olsen NV, Huertas JR, Bejder J. Immature reticulocytes are sensitive and specific to low-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2021; 13:1331-1340. [PMID: 33739618 DOI: 10.1002/dta.3031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
We investigated whether immature reticulocyte fraction (IRF) and immature reticulocytes to red blood cells ratio (IR/RBC) are sensitive biomarkers for low-dose recombinant human erythropoietin (rhEpo) treatment at sea level (SL) and moderate altitude (AL) and whether multi (FACS) or single (Sysmex-XN) fluorescence flow cytometry is superior for IRF and IR/RBC determination. Thirty-nine participants completed two interventions, each containing a 4-week baseline, a 4-week SL or AL (2,230 m) exposure, and a 4-week follow-up. During exposure, rhEpo (20 IU kg-1 ) or placebo (PLA) was injected at SL (SLrhEpo , n = 25, SLPLA n = 9) and AL (ALrhEpo , n = 12, ALPLA n = 27) every second day for 3 weeks. Venous blood was collected weekly. Sysmex measurements revealed that IRF and IR/RBC were up to ~70% (P < 0.01) and ~190% (P < 0.001) higher in SLrhEpo than SLPLA during treatment and up to ~45% (P < 0.001) and ~55% (P < 0.01) lower post-treatment, respectively. Compared with ALPLA , IRF and IR/RBC were up to ~20% (P < 0.05) and ~45% (P < 0.001) lower post-treatment in SLrhEpo , respectively. In ALrhEpo , IRF and IR/RBC were up to ~40% (P < 0.05) and ~110% (P < 0.001) higher during treatment and up to ~25% (P < 0.05) and ~40% (P < 0.05) lower post-treatment, respectively, compared with ALPLA . Calculated thresholds provided ~90% sensitivity for both biomarkers at SL and 33% (IRF) and 66% (IR/RBC) at AL. Specificity was >99%. Single-fluorescence flow cytometry coefficient of variation was >twofold higher at baseline (P < 0.001) and provided larger or similar changes compared to multi-fluorescence, albeit with smaller precision. In conclusion, IRF and IR/RBC were sensitive and specific biomarkers for low-dose rhEpo misuse at SL and AL.
Collapse
Affiliation(s)
- Jan Sommer Jeppesen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesús Rodríguez Huertas
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Abstract
A series of dried blood spot (DBS) detection methods for doping agents have been developed in the last two decades. The DBS technique minimizes invasiveness and reduces storage and shipping costs. Recently, the World Anti-Doping Agency announced the use of DBS for the 2022 Beijing Winter Olympic Games and Paralympic Games owing to the advantages of the DBS application in routine doping control. Therefore the further development of detection methods for doping agents in DBS is important and urgent. This review summarizes five aspects of DBS application in doping analysis: sample collection, storage conditions, pretreatment, instrumentation and validation according to the Prohibited List issued by the World Anti-Doping Agency, and proposes some suggestions for future studies of DBS in doping analysis.
Collapse
|
19
|
Mussack V, Wittmann G, Pfaffl MW. On the trail of blood doping-microRNA fingerprints to monitor autologous blood transfusions in vivo. Am J Hematol 2021; 96:338-353. [PMID: 33326140 DOI: 10.1002/ajh.26078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Autologous blood doping refers to the illegal re-transfusion of any quantities of blood or blood components with blood donor and recipient being the same person. The re-transfusion of stored erythrocyte concentrates is particularly attractive to high-performance athletes as this practice improves their oxygen capacity excessively. However, there is still no reliable detection method available. Analyzing circulating microRNA profiles of human subjects that underwent monitored autologous blood transfusions seems to be a highly promising approach to develop novel biomarkers for autologous blood doping. In this exploratory study, we randomly divided 30 healthy males into two different treatment groups and one control group and sampled whole blood at several time points at baseline, after whole blood donation and after transfusion of erythrocyte concentrates. Hematological variables were recorded and analyzed following the adaptive model of the Athlete Biological Passport. microRNA profiles were examined by small RNA sequencing and comprehensive multivariate data analyses, revealing microRNA fingerprints that reflect the sampling time point and transfusion volume. Neither individual microRNAs nor a signature of transfusion-dependent microRNAs reached superior sensitivity at 100% specificity compared to the Athlete Biological Passport (≤11% 6 h after transfusion versus ≤44% 2 days after transfusion). However, the window of autologous blood doping detection was different. Due to the heterogenous nature of doping, with athletes frequently combining multiple medications in order to both gain a competitive advantage and interfere with known testing methods, the true applicability of the molecular signature remains to be validated in real anti-doping testings.
Collapse
Affiliation(s)
- Veronika Mussack
- Animal Physiology and Immunology School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - Georg Wittmann
- Department for Transfusion Medicine, Cell therapeutics and Haemostaseology University Hospital LMU Munich Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| |
Collapse
|
20
|
Thevis M, Kuuranne T, Thomas A, Geyer H. Do dried blood spots have the potential to support result management processes in routine sports drug testing?-Part 2: Proactive sampling for follow-up investigations concerning atypical or adverse analytical findings. Drug Test Anal 2021; 13:505-509. [PMID: 33538088 DOI: 10.1002/dta.3011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
Capillary blood sampled as dried blood spot (DBS) has shown substantial potential as test matrix in sports drug testing in various different settings, enabling the analysis of numerous different drugs and/or their respective metabolites. In addition to established beneficial aspects of DBS specimens in general (such as the minimally invasive and non-intrusive nature, and simplified sample transport), a yet unexplored advantage of DBS in the anti-doping context could be the opportunity of preserving a source of information complementary to routine doping controls performed in urine or venous blood. Whenever follow-up investigations are warranted or required, frequently collected and stored (but yet not analyzed) DBS samples could be target-tested for the compound(s) in question, in order to contribute to results management and decision-making processes.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|
21
|
Luginbühl M, Gaugler S. Dried blood spots for anti-doping: Why just going volumetric may not be sufficient. Drug Test Anal 2020; 13:69-73. [PMID: 33201591 DOI: 10.1002/dta.2977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The perspective discusses quantitative DBS analysis for anti-doping testing in an athletic population and why only using volumetric sampling for this subgroup might not be enough. It presents examples to highlight where HCT variations occur, followed by a whole blood to plasma ratio and an HCT extraction bias discussion. Finally, options to correct for the HCT bias are presented.
Collapse
|
22
|
Thevis M, Knoop A, Schaefer MS, Dufaux B, Schrader Y, Thomas A, Geyer H. Can dried blood spots (DBS) contribute to conducting comprehensive SARS-CoV-2 antibody tests? Drug Test Anal 2020; 12:994-997. [PMID: 32386354 PMCID: PMC7272963 DOI: 10.1002/dta.2816] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research ‐ Institute of BiochemistryGerman Sport University CologneCologneGermany
- European Monitoring Center for Emerging Doping AgentsCologneGermany
| | - Andre Knoop
- Center for Preventive Doping Research ‐ Institute of BiochemistryGerman Sport University CologneCologneGermany
| | - Maximilian S. Schaefer
- Department of Anesthesia, Critical Care & Pain MedicineBeth Israel Deaconess Medical Center & Harvard Medical SchoolBostonMAUSA
- Department of AnaesthesiologyUniversity Hospital DüsseldorfDüsseldorfGermany
| | | | - Yvonne Schrader
- Center for Preventive Doping Research ‐ Institute of BiochemistryGerman Sport University CologneCologneGermany
| | - Andreas Thomas
- Center for Preventive Doping Research ‐ Institute of BiochemistryGerman Sport University CologneCologneGermany
| | - Hans Geyer
- Center for Preventive Doping Research ‐ Institute of BiochemistryGerman Sport University CologneCologneGermany
- European Monitoring Center for Emerging Doping AgentsCologneGermany
| |
Collapse
|
23
|
Solheim SA, Jessen S, Mørkeberg J, Thevis M, Dehnes Y, Eibye K, Hostrup M, Nordsborg NB. Single‐dose administration of clenbuterol is detectable in dried blood spots. Drug Test Anal 2020; 12:1366-1372. [DOI: 10.1002/dta.2872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Department of Sport Anti Doping Denmark Brøndby Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research German Sport University Cologne Cologne Germany
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Department of Pharmacology Oslo University Hospital Oslo Norway
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | |
Collapse
|
24
|
|
25
|
Automation of RNA-based biomarker extraction from dried blood spots for the detection of blood doping. Bioanalysis 2020; 12:729-736. [DOI: 10.4155/bio-2020-0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Transcriptomic biomarkers originating from reticulocytes measured in dried blood spots (DBSs) may be reliable indicators of blood doping. Methods/results: Here, we examined changes in the expression levels of the erythropoiesis-related ALAS2, CA1 and SLC4A1 genes in DBS samples from elite athletes and volunteers of clinical study with recombinant erythropoietin dose. Conclusion: By comparing the mean intraday coefficients of variation for ALAS2L, ALASLC, CA1 and SLC4A1 between manual and automated RNA extractions, an average improvement was observed, whereas the assessment of interday variability provided comparable results for both manual and automated approaches. Our results confirmed that RNA biomarkers on DBS support are efficient to detect blood doping.
Collapse
|
26
|
Cox HD. Dried Blood Spots May Improve Detection of Blood Doping. Clin Chem 2019; 65:1481-1483. [DOI: 10.1373/clinchem.2019.311902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT
| |
Collapse
|
27
|
Salamin O, Gottardo E, Schobinger C, Reverter-Branchat G, Segura J, Saugy M, Kuuranne T, Tissot JD, Favrat B, Leuenberger N. Detection of Stimulated Erythropoiesis by the RNA-Based 5'-Aminolevulinate Synthase 2 Biomarker in Dried Blood Spot Samples. Clin Chem 2019; 65:1563-1571. [DOI: 10.1373/clinchem.2019.306829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023]
Abstract
Abstract
BACKGROUND
Despite implementation of the Athlete Biological Passport 10 years ago, blood doping remains difficult to detect. Thus, there is a need for new biomarkers to increase the sensitivity of the adaptive model. Transcriptomic biomarkers originating from immature reticulocytes may be reliable indicators of blood manipulations. Furthermore, the use of dried blood spots (DBSs) for antidoping purposes constitutes a complementary approach to venous blood collection. Here, we developed a method of quantifying the RNA-based 5′-aminolevulinate synthase 2 (ALAS2) biomarker in DBS.
MATERIALS
The technical, interindividual, and intraindividual variabilities of the method, and the effects of storage conditions on the production levels of ALAS2 RNA were assessed. The method was used to monitor erythropoiesis stimulated endogenously (blood withdrawal) or exogenously (injection of recombinant human erythropoietin).
RESULTS
When measured over a 7-week period, the intra- and interindividual variabilities of ALAS2 expression in DBS were 12.5%–42.4% and 49%, respectively. Following withdrawal of 1 unit of blood, the ALAS2 RNA in DBS increased significantly for up to 15 days. Variations in the expression level of this biomarker in DBS samples were more marked than those of the conventional hematological parameters, reticulocyte percentage and immature reticulocyte fraction. After exogenous stimulation of erythropoiesis via recombinant human erythropoietin injection, ALAS2 expression in DBS increased by a mean 8-fold.
CONCLUSIONS
Monitoring of transcriptomic biomarkers in DBS could complement the measurement of hematological parameters in the Athlete Biological Passport and aid the detection of blood manipulations.
Collapse
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in Anti-Doping Sciences – REDs, University of Lausanne, Lausanne, Switzerland
| | - Emeric Gottardo
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Schobinger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gemma Reverter-Branchat
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jordi Segura
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
- Catalonian Antidoping Laboratory, Doping Control Research Group, Neurosciences Research Program, IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Martial Saugy
- Center of Research and Expertise in Anti-Doping Sciences – REDs, University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Development of two complementary LC–HRMS methods for analyzing sotatercept in dried blood spots for doping controls. Bioanalysis 2019; 11:923-940. [DOI: 10.4155/bio-2018-0313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: sotatercept is a therapeutic Fc-fusion protein with erythropoiesis-stimulating activity. Due to a potential abuse of the drug by athletes in professional sports, a sensitive detection method is required. In sports drug testing, alternative matrices such as dried blood spots (DBS) are gaining increasing attention as they can provide several advantages over conventional matrices. Materials & methods: Herein, two complementary LC–high-resolution mass spectrometry (HRMS) detection methods for sotatercept from DBS, an initial testing procedure (ITP) and a confirmation procedure (CP) were developed and validated for the first time. Both methods comprise an ultrasonication-assisted extraction, affinity enrichment, proteolytic digestion and HRMS detection. Results & conclusion: For the multianalyte ITP, artificial samples fortified with sotatercept, luspatercept and bimagrumab, and authentic specimens containing bimagrumab were successfully analyzed as proof-of-concept. The validated detection methods for sotatercept are fit for purpose and the ITP was shown to be suitable for the detection of novel IgG-based pharmaceuticals in doping control DBS samples.
Collapse
|
29
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2019; 11:8-26. [DOI: 10.1002/dta.2549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|
30
|
Thomas A, Thevis M. Analysis of insulin and insulin analogs from dried blood spots by means of liquid chromatography–high resolution mass spectrometry. Drug Test Anal 2018; 10:1761-1768. [DOI: 10.1002/dta.2518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University Cologne Cologne Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University Cologne Cologne Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA) Cologne/Bonn Germany
| |
Collapse
|
31
|
Cox HD, Miller GD, Lai A, Cushman D, Ganz T, Eichner D. Evaluation of serum markers for improved detection of autologous blood transfusions. Haematologica 2018; 103:e443-e445. [PMID: 29674501 DOI: 10.3324/haematol.2018.190918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA.,University of Utah School of Medicine - Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| | - Auriella Lai
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA
| | - Dan Cushman
- University of Utah School of Medicine - Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA.,University of Utah School of Medicine - Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| |
Collapse
|