1
|
Nalakath J, Rasik RP, Kadry A, Babu A, Waseem I, Ok P, Hebel C, Selvapalam N, Nagarajan ER. Characterizing Lomerizine metabolites in camel urine: High-resolution mass spectrometry method development and validation for enhanced doping control. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9846. [PMID: 38923663 DOI: 10.1002/rcm.9846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Lomerizine (LMZ) is an antimigraine drug that works as a calcium channel blocker and has selective effects on the central nervous system. It is metabolized into trimetazidine (TMZ), which is a prohibited substance owing to its performance-enhancing effects in both human and animal sports. Effective doping control measures are imperative to distinguish the source of TMZ in samples to ensure integrity and fairness of the sport, therefore a comprehensive analysis of LMZ metabolites is essential to identify potential biomarkers in camel urine for effective doping control. METHODS Camel urine samples were collected from four healthy animals following a single oral administration of LMZ at a dosage of 1 mg/kg body weight. In vitro studies were conducted using homogenized camel liver samples. Lomerizine and its metabolites were extracted using solid-phase extraction and analyzed with a Thermo Fisher Orbitrap Exploris liquid chromatography mass spectrometry system. The acquired data was processed with the Compound Discoverer software. RESULTS The study conducted a comprehensive analysis of LMZ metabolites in camels and identified 10 phase I and one phase II metabolites. The primary pathway for the formation of phase I metabolites was de-alkylation, while phase II metabolite was formed through alkylation of the parent drug. The study provided valuable insights into the unique metabolic pathways of LMZ in camels under specific experimental conditions. CONCLUSION The developed method enables the detection and characterization of LMZ and its metabolites in camels. The identified metabolites has the potential to act as marker metabolites for the distinctive detection of LMZ in camel urine to ensure efficient analytical strategies for routine doping control applications.
Collapse
Affiliation(s)
- Jahfar Nalakath
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnan Kovil, Tamil Nadu, India
| | | | - Ahmed Kadry
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Ansar Babu
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Ibrahim Waseem
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Praseen Ok
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Christiana Hebel
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Narayanan Selvapalam
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnan Kovil, Tamil Nadu, India
| | | |
Collapse
|
2
|
Zhao D, Zhuang W, Wang Y, Xu X, Qiao L. In-depth mass spectrometry analysis of rhGH administration altered energy metabolism and steroidogenesis. Talanta 2024; 266:125069. [PMID: 37574608 DOI: 10.1016/j.talanta.2023.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Growth hormone, as a proteohormone, is primarily known of its dramatic effect on longitudinal growth. Recombinant DNA technology has provided a safe, abundant and comparatively cheap supply of human GH for growth hormone-deficient individuals. However, many healthy subjects, especially athletics, administrate GH for enhanced athletic performance or strength. A better and more comprehensive understanding of rhGH effect in healthy individuals is urgent and essential. In this study, we recruited 14 healthy young male and injected rhGH once. Untargeted LC-MS metabolomics profiling of serum and urine was performed before and after the rhGH injection. The GH-induced dysregulation of energy related pathways, such as amino acid metabolism, nucleotide metabolism, glycolysis and TCA cycle, was revealed. Moreover, individuals supplemented with micro-doses of rhGH exhibited significantly changed urinary steroidal profiles, suggesting a role of rhGH in both energy metabolism and steroidogenesis. We expect that our results will be helpful to provide new evidence on the effects of rhGH injection and provide potential biomarkers for rhGH administration.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Wenqian Zhuang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China
| | - Yang Wang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China
| | - Xin Xu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
3
|
Cloteau C, Dervilly G, Loup B, Delcourt V, Kaabia Z, Bagilet F, Groseille G, Dauriac K, Fisher S, Popot MA, Garcia P, Le Bizec B, Bailly-Chouriberry L. Performance assessment of an equine metabolomics model for screening a range of anabolic agents. Metabolomics 2023; 19:38. [PMID: 37027080 DOI: 10.1007/s11306-023-01985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/04/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Despite their ban, Anabolic Androgenic Steroids (AAS) are considered as the most important threat for equine doping purposes. In the context of controlling such practices in horse racing, metabolomics has emerged as a promising alternative strategy to study the effect of a substance on metabolism and to discover new relevant biomarkers of effect. Based on the monitoring of 4 metabolomics derived candidate biomarkers in urine, a prediction model to screen for testosterone esters abuse was previously developed. The present work focuses on assessing the robustness of the associated method and define its scope of application. MATERIALS AND METHODS Several hundred urine samples were selected from 14 different horses of ethically approved administration studies involving various doping agents' (AAS, SARMS, β-agonists, SAID, NSAID) (328 urine samples). In addition, 553 urine samples from untreated horses of doping control population were included in the study. Samples were characterized with the previously described LC-HRMS/MS method, with the objective of assessing both its biological and analytical robustness. RESULTS The study concluded that the measurement of the 4 biomarkers involved in the model was fit for purpose. Further, the classification model confirmed its effectiveness in screening for testosterone esters use; and it demonstrated its ability to screen for the misuse of other anabolic agents, allowing the development of a global screening tool dedicated to this class of substances. Finally, the results were compared to a direct screening method targeting anabolic agents demonstrating complementary performances of traditional and omics approaches in the screening of anabolic agents in horses.
Collapse
Affiliation(s)
- C Cloteau
- LABERCA, ONIRIS, INRAE, 44300, Nantes, France.
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France.
| | - G Dervilly
- LABERCA, ONIRIS, INRAE, 44300, Nantes, France
| | - B Loup
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - V Delcourt
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - Z Kaabia
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - F Bagilet
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - G Groseille
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - K Dauriac
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - S Fisher
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - M A Popot
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - P Garcia
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| | - B Le Bizec
- LABERCA, ONIRIS, INRAE, 44300, Nantes, France
| | - L Bailly-Chouriberry
- Laboratoire des Courses Hippiques (GIE-LCH), 91370, Verrières Le Buisson, France
| |
Collapse
|
4
|
Tou K, Cawley A, Bowen C, Bishop DP, Fu S. Towards Non-Targeted Screening of Lipid Biomarkers for Improved Equine Anti-Doping. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010312. [PMID: 36615506 PMCID: PMC9822433 DOI: 10.3390/molecules28010312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
The current approach to equine anti-doping is focused on the targeted detection of prohibited substances. However, as new substances are rapidly being developed, the need for complimentary methods for monitoring is crucial to ensure the integrity of the racing industry is upheld. Lipidomics is a growing field involved in the characterisation of lipids, their function and metabolism in a biological system. Different lipids have various biological effects throughout the equine system including platelet aggregation and inflammation. A certain class of lipids that are being reviewed are the eicosanoids (inflammatory markers). The use of eicosanoids as a complementary method for monitoring has become increasingly popular with various studies completed to highlight their potential. Studies including various corticosteroids, non-steroidal anti-inflammatories and cannabidiol have been reviewed to highlight the progress lipidomics has had in contributing to the equine anti-doping industry. This review has explored the techniques used to prepare and analyse samples for lipidomic investigations in addition to the statistical analysis and potential for lipidomics to be used for a longitudinal assessment in the equine anti-doping industry.
Collapse
Affiliation(s)
- Kathy Tou
- Centre for Forensic Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Correspondence:
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW 2000, Australia
| | - Christopher Bowen
- Mass Spectrometry Business Unit, Shimadzu Scientific Instruments (Australasia), Sydney, NSW 2116, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMAS), University of Technology, Sydney, NSW 2007, Australia
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Dhurjad P, Jaiswal P, Gupta K, Wanjari P, Sonti R. Mass spectrometry: A key tool in anti‐doping. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Pooja Jaiswal
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Kajal Gupta
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Parita Wanjari
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| |
Collapse
|
6
|
Krumm B, Botrè F, Saugy JJ, Faiss R. Future opportunities for the Athlete Biological Passport. Front Sports Act Living 2022; 4:986875. [PMID: 36406774 PMCID: PMC9666424 DOI: 10.3389/fspor.2022.986875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
The Athlete Biological Passport (ABP) was introduced to complement the direct anti-doping approach by indirectly outlining the possible use of prohibited substances or methods in sports. The ABP proved its effectiveness, at least through a deterrent effect, even though the matrices used for longitudinal monitoring (urine and blood) are subject to many intrinsic (e.g., genetic) and extrinsic (e.g., environmental conditions) confounding factors. In that context, new and more specific biomarkers are currently under development to enhance both the sensitivity and the specificity of the ABP. Multiple strategies are presently being explored to improve this longitudinal monitoring, with the development of the current modules, the investigation of new strategies, or the screening of new types of doping. Nevertheless, due to the variability induced by indirect biomarkers, the consideration of confounding factors should continuously support this research. Beyond tremendous advances in analytical sensitivity, machine learning-based approaches seem inevitable to facilitate an expert interpretation of numerous biological profiles and promote anti-doping efforts. This perspective article highlights the current innovations of the Athlete Biological Passport that seem the most promising. Through different research axes, this short manuscript provides an opportunity to bring together approaches that are more widely exploited (e.g., omics strategies) and others in the early stages of investigation (e.g., artificial intelligence) seeking to develop the ABP.
Collapse
Affiliation(s)
- Bastien Krumm
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland,Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Jonas J. Saugy
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland,*Correspondence: Raphael Faiss
| |
Collapse
|
7
|
Gandhi S, Chinnadurai V, Bhadra K, Gupta I, Kanwar RS. Urinary metabolic modulation in human participants residing in Siachen: a 1H NMR metabolomics approach. Sci Rep 2022; 12:9070. [PMID: 35641596 PMCID: PMC9156790 DOI: 10.1038/s41598-022-13031-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
The main physiological challenge in high altitude environment is hypoxia which affects the aerobic metabolism reducing the energy supply. These changes may further progress toward extreme environment-related diseases. These are further reflected in changes in small molecular weight metabolites and metabolic pathways. In the present study, metabolic changes due to chronic environmental hypoxia were assessed using 1H NMR metabolomics by analysing the urinary metabolic profile of 70 people at sea level and 40 people at Siachen camp (3700 m) for 1 year. Multivariate statistical analysis was carried out, and PLSDA detected 15 metabolites based on VIP score > 1. ROC analysis detected cis-aconitate, Nicotinamide Mononucleotide, Tyrosine, Choline and Creatinine metabolites with a high range of sensitivity and specificity. Pathway analysis revealed 16 pathways impact > 0.05, and phenylalanine tyrosine and tryptophan biosynthesis was the most prominent altered pathway indicating metabolic remodelling to meet the energy requirements. TCA cycle, Glycine serine and Threonine metabolism, Glutathione metabolism and Cysteine alterations were other metabolic pathways affected during long-term high-altitude hypoxia exposure. Present findings will help unlock a new dimension for the potential application of NMR metabolomics to address extreme environment-related health problems, early detection and developing strategies to combat high altitude hypoxia.
Collapse
Affiliation(s)
- Sonia Gandhi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Vijayakumar Chinnadurai
- Cognitive Control and Machine Learning Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Kuntal Bhadra
- Department of Endocrinology and Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Isha Gupta
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ratnesh Singh Kanwar
- Department of Endocrinology and Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
8
|
Keen B, Cawley A, Reedy B, Fu S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test Anal 2022; 14:794-807. [PMID: 35194967 PMCID: PMC9544538 DOI: 10.1002/dta.3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Metabolomics is a multidisciplinary field providing workflows for complementary approaches to conventional analytical determinations. It allows for the study of metabolically related groups of compounds or even the study of novel pathways within the biological system. The procedural stages of metabolomics; experimental design, sample preparation, analytical determinations, data processing and statistical analysis, compound identification and validation strategies are explored in this review. The selected approach will depend on the type of study being conducted. Experimental design influences the whole metabolomics workflow and thus needs to be properly assessed to ensure sufficient sample size, minimal introduced and biological variation and appropriate statistical power. Sample preparation needs to be simple, yet potentially global in order to detect as many compounds as possible. Analytical determinations need to be optimised either for the list of targeted compounds or a universal approach. Data processing and statistical analysis approaches vary widely and need to be better harmonised for review and interpretation. This includes validation strategies that are currently deficient in many presented workflows. Common compound identification approaches have been explored in this review. Metabolomics applications are discussed for clinical and forensic toxicology, human and equine sports anti-doping and veterinary residues.
Collapse
Affiliation(s)
- Bethany Keen
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Adam Cawley
- Australian Racing Forensic LaboratoryRacing NSWSydneyNew South WalesAustralia
| | - Brian Reedy
- School of Mathematical and Physical SciencesUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| |
Collapse
|
9
|
Klingberg J, Keen B, Cawley A, Pasin D, Fu S. Developments in high-resolution mass spectrometric analyses of new psychoactive substances. Arch Toxicol 2022; 96:949-967. [PMID: 35141767 PMCID: PMC8921034 DOI: 10.1007/s00204-022-03224-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The proliferation of new psychoactive substances (NPS) has necessitated the development and improvement of current practices for the detection and identification of known NPS and newly emerging derivatives. High-resolution mass spectrometry (HRMS) is quickly becoming the industry standard for these analyses due to its ability to be operated in data-independent acquisition (DIA) modes, allowing for the collection of large amounts of data and enabling retrospective data interrogation as new information becomes available. The increasing popularity of HRMS has also prompted the exploration of new ways to screen for NPS, including broad-spectrum wastewater analysis to identify usage trends in the community and metabolomic-based approaches to examine the effects of drugs of abuse on endogenous compounds. In this paper, the novel applications of HRMS techniques to the analysis of NPS is reviewed. In particular, the development of innovative data analysis and interpretation approaches is discussed, including the application of machine learning and molecular networking to toxicological analyses.
Collapse
Affiliation(s)
- Joshua Klingberg
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia.
| | - Bethany Keen
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia
| | - Daniel Pasin
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
10
|
Leogrande P, Jardines D, Martinez-Brito D, Domenici E, de la Torre X, Parr MK, Botrè F. Metabolomics workflow as a driven tool for rapid detection of metabolites in doping analysis. Development and validation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9217. [PMID: 34738273 DOI: 10.1002/rcm.9217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE This work demonstrates the high potential of combining high-resolution mass spectrometry with chemometric tools, using metabolomics as a guided tool for anti-doping analysis. The administration of 7-keto-DHEA was studied as a proof-of-concept of the effectiveness of the combination of knowledge-based and machine-learning approaches to differentiate the changes due to the athletic activities from those due to the recourse to doping substances and methods. METHODS Urine samples were collected from five healthy volunteers before and after an oral administration by identifying three time intervals. Raw data were acquired by injecting less than 1 μL of derivatized samples into a model 8890 gas chromatograph coupled to a model 7250 accurate-mass quadrupole time-of-flight analyzer (both from Agilent Technologies), by using a low-energy electron ionization source; the samples were then preprocessed to align peak retention times with the same accurate mass. The resulting data table was subjected to multivariate analysis. RESULTS Multivariate analysis showed a high similarity between the samples belonging to the same collection interval and a clear separation between the different excretion intervals. The discrimination between blank and long excretion groups may suggest the presence of long excretion markers, which are particularly significant in anti-doping analysis. Furthermore, matching the most significant features with some of the metabolites reported in the literature data demonstrated the rationality of the proposed metabolomics-based approach. CONCLUSIONS The application of metabolomics tools as an investigation strategy could reduce the time and resources required to identify and characterize intake markers maximizing the information that can be extracted from the data and extending the research field by avoiding a priori bias. Therefore, metabolic fingerprinting of prohibited substance intakes could be an appropriate analytical approach to reduce the risk of false-positive/negative results, aiding in the interpretation of "abnormal" profiles and discrimination of pseudo-endogenous steroid intake in the anti-doping field.
Collapse
Affiliation(s)
- Patrizia Leogrande
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Daniel Jardines
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Eleonora Domenici
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
- Center of Research and Expertise in Anti-Doping Sciences - REDs; ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, Lausanne, Switzerland
| |
Collapse
|
11
|
Cloteau C, Dervilly G, Kaabia Z, Bagilet F, Delcourt V, Loup B, Guitton Y, Royer AL, Monteau F, Garcia P, Ma P, Le Bizec B, Bailly-Chouriberry L. FROM A NON-TARGETED METABOLOMICS APPROACH TO A TARGETED BIOMARKERS STRATEGY TO HIGHLIGHT TESTOSTERONE ABUSE IN EQUINE. ILLUSTRATION OF A METHODOLOGICAL TRANSFER BETWEEN PLATFORMS AND LABORATORIES. Drug Test Anal 2022; 14:864-878. [PMID: 35001538 DOI: 10.1002/dta.3221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
In order to overcome the challenge associated with the screening of Anabolic-Androgenic Steroids (AAS) abuses in animal competitions, a non-targeted LC-HRMS based metabolomics approach was implemented on equine urine samples to highlight potential biomarkers associated with the administration of such compounds, using testosterone esters as model steroids. A statistical model relying on 4 potential biomarkers intensity could be defined to predict the status of the samples. With a routine application perspective, the monitoring of the highlighted potential biomarkers was first transferred into high-throughput LC-SRM. The model's performances and robustness of the approach were preserved and providing a first demonstration of metabolomics-based biomarkers integration within a targeted workflow using common benchtop MS instrumentation. In addition, with a view to the widespread implementation of such biomarker-based tools, we have transferred the method to a second laboratory with similar instrumentation. This proof of concept allows the development and application of biomarker-based strategies to meet current doping control needs.
Collapse
Affiliation(s)
- C Cloteau
- ONIRIS, INRAE, LABERCA, Nantes, France.,Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | | | - Z Kaabia
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - F Bagilet
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - V Delcourt
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - B Loup
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - Y Guitton
- ONIRIS, INRAE, LABERCA, Nantes, France
| | - A L Royer
- ONIRIS, INRAE, LABERCA, Nantes, France
| | - F Monteau
- ONIRIS, INRAE, LABERCA, Nantes, France
| | - P Garcia
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - Popot Ma
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | | | | |
Collapse
|
12
|
Rocha DG, Lana MAG, de Assis DCS, de Macedo AN, Corrêa JMM, Augusti R, Faria AF. A novel strategy for the detection of boldenone undecylenate misuse in cattle using ultra-high performance liquid chromatography coupled to high resolution orbitrap mass spectrometry: From non-targeted to targeted. Drug Test Anal 2021; 14:667-675. [PMID: 34850583 DOI: 10.1002/dta.3208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
In this work multivariate strategies were employed in order to highlight new potential biomarkers of interest to detect the exogenous treatment of steers intramuscularly treated with boldenone undecylenate. Serum samples collected from treated (n = 4) and control (n = 8) crossbred animals of varying ages and weights were extracted using a simple sample preparation procedure based on salt assisted liquid-liquid extraction. Data acquisition was performed using liquid chromatography and Q-Exactive™ Orbitrap mass spectrometry. Data processing and treatment were performed using two non-targeted workflows: (1) Compound Discoverer software and (2) XCMS package on the open-source R software combined with MetaboAnalyst. Three potential biomarkers were highlighted taking into account the chromatographic shapes, the feature location on the generated s-plots, the fold change, the adjusted p values, the coefficient of variation in the QC samples and the area under the ROC curves. Predicted formulas based on mass accuracy, structural composition and spectra similarity were proposed. A robust statistical model to predict the boldenone treatment was further developed based on the weighted abundances of the selected biomarkers. The requirements for screening methods were successfully fulfilled, together with a wider detection window in comparison with the monitoring of the deconjugated metabolite boldenone, although biomarker identification studies are still ongoing.
Collapse
Affiliation(s)
- Diego G Rocha
- Department of Chemistry-Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Federal Laboratory of Animal and Plant Health and Inspection-Ministry of Agriculture, Livestock and Food Supply, Pedro Leopoldo, Brazil
| | - Mary Ane G Lana
- Federal Laboratory of Animal and Plant Health and Inspection-Ministry of Agriculture, Livestock and Food Supply, Pedro Leopoldo, Brazil
| | - Débora C S de Assis
- Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Adriana N de Macedo
- Department of Chemistry-Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joane M M Corrêa
- Department of Chemistry-Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodinei Augusti
- Department of Chemistry-Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Adriana F Faria
- Department of Chemistry-Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Omics applications in the fight against abuse of anabolic substances in cattle: challenges, perspectives and opportunities. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Narduzzi L, Buisson C, Morvan ML, Marchand A, Audran M, Le Bouc Y, Varlet-Marie E, Ericsson M, Le Bizec B, Dervilly G. Coupling Complete Blood Count and Steroidomics to Track Low Doses Administration of Recombinant Growth Hormone: An Anti-Doping Perspective. Front Mol Biosci 2021; 8:683675. [PMID: 34179089 PMCID: PMC8222787 DOI: 10.3389/fmolb.2021.683675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Growth Hormone (GH) under its human recombinant homologue (rhGH), may be abused by athletes to take advantage of its well-known anabolic and lipolytic properties; hence it is prohibited in sports by the World Anti-Doping Agency. Due to the rapid turnover of rhGH, anti-doping screening tests have turned to monitor two endocrine biomarkers (IGF-I and P-III-NP), but unfortunately, they show population-wise variability, limiting the identification rate of rhGH users. Previous studies have evidenced the numerous effects of GH on human physiology, especially in hematopoiesis and steroidogenesis. In this work, aiming to discover novel physiological rhGH biomarkers, we analyzed the complete blood count and the steroidomics profile of healthy, physically active, young males treated either with EPO + rhGH or EPO + placebo. The time-trends of these two physiological routes have been analyzed through geometric trajectory analysis (GTA) and OPLS-DA. Individuals supplemented with micro-doses of rhGH exhibited different leukopoietic and steroidal profiles compared to the control population, suggesting a role of the rhGH in both pathways. In the article, hypotheses on the observed differences are discussed according to the most recent literature and compared to results in animal models. The use of leukopoietic and steroidal biomarkers together with endocrine biomarkers (IGF-1 and P-III-NP) allows to correctly classify over 98% of samples with no false positives, miss-classifying only one single sample (false negative) over a total of 56; a promising result, if compared to the current rhGH detection strategies.
Collapse
Affiliation(s)
- Luca Narduzzi
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Corinne Buisson
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Marie-Line Morvan
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Alexandre Marchand
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Michel Audran
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Yves Le Bouc
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine (CRSA), Paris, France
| | - Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM), Centre Hospitalier Universitaire de Montpellier, Montpellie, France
| | - Magnus Ericsson
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Bruno Le Bizec
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Gaud Dervilly
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| |
Collapse
|
15
|
Keen B, Cawley A, Fouracre C, Pyke J, Fu S. Towards an untargeted mass spectrometric approach for improved screening in equine antidoping. Drug Test Anal 2021; 13:1001-1007. [PMID: 33629815 DOI: 10.1002/dta.3021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
The emergence of novel doping agents is a continuous issue for analysts who aim to maintain the integrity of horseracing together with the well-being and safety of the animals and riders involved. Untargeted mass spectrometric analysis presents a potential improvement for antidoping as it enables the detection of compounds being indirectly affected by an administered drug. In this study, liquid chromatography-high-resolution mass spectrometry was used to investigate a 12-horse administration study of the synthetic opioid, butorphanol. A mass spectrometric workflow capable of detecting metabolic differences for an extended period of time was successfully developed. This proof-of-concept study demonstrates the potential of untargeted workflows to provide a list of biomarkers of exposure and effect that are indicative of drug administration which may be implemented into routine testing for improved doping control.
Collapse
Affiliation(s)
- Bethany Keen
- Centre for Forensic Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, New South Wales, Australia
| | | | - James Pyke
- Agilent Technologies, Santa Clara, California, USA
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2019/2020. Drug Test Anal 2020; 13:8-35. [PMID: 33185038 DOI: 10.1002/dta.2969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
Analytical chemistry-based research in sports drug testing has been a dynamic endeavor for several decades, with technology-driven innovations continuously contributing to significant improvements in various regards including analytical sensitivity, comprehensiveness of target analytes, differentiation of natural/endogenous substances from structurally identical but synthetically derived compounds, assessment of alternative matrices for doping control purposes, and so forth. The resulting breadth of tools being investigated and developed by anti-doping researchers has allowed to substantially improve anti-doping programs and data interpretation in general. Additionally, these outcomes have been an extremely valuable pledge for routine doping controls during the unprecedented global health crisis that severely affected established sports drug testing strategies. In this edition of the annual banned-substance review, literature on recent developments in anti-doping published between October 2019 and September 2020 is summarized and discussed, particularly focusing on human doping controls and potential applications of new testing strategies to substances and methods of doping specified the World Anti-Doping Agency's 2020 Prohibited List.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|
17
|
Maurer HH. Hyphenated high-resolution mass spectrometry-the "all-in-one" device in analytical toxicology? Anal Bioanal Chem 2020; 413:2303-2309. [PMID: 33247339 PMCID: PMC7987635 DOI: 10.1007/s00216-020-03064-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
This trend article reviews papers with hyphenated high-resolution mass spectrometry (HRMS) approaches applied in analytical toxicology, particularly in clinical and forensic toxicology published since 2016 and referenced in PubMed. The article focuses on the question of whether HRMS has or will become the all-in-one device in these fields as supposed by the increasing number of HRMS presentations at scientific meetings, corresponding original papers, and review articles. Typical examples for the different application fields are discussed such as targeted or untargeted drug screening, quantification, drug metabolism studies, and metabolomics approaches. Considering the reviewed papers, HRMS is currently the only technique that fulfills the criteria of an all-in-one device for the various applications needed in analytical toxicology. Graphical abstract![]()
Collapse
Affiliation(s)
- Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421, Homburg (Saar), Germany.
| |
Collapse
|
18
|
Bonilauri B, Dallagiovanna B. Linking long noncoding RNAs (lncRNAs) and doping detection. Drug Test Anal 2020; 13:1068-1071. [PMID: 33119947 DOI: 10.1002/dta.2952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
In the fight against doping, efficient methods for detecting substances or biomarkers are still being improved. Indirect methods are an interesting alternative for the detection of substances misuse longitudinally. Here we shed lights the long non-coding RNAs (lncRNAs) as a possible biomarkers due to their characteristics such as tissue-specific expression and strict regulation.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-FIOCRUZ-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Minhas RS, Rudd DA, Al Hmoud HZ, Guinan TM, Kirkbride KP, Voelcker NH. Rapid Detection of Anabolic and Narcotic Doping Agents in Saliva and Urine By Means of Nanostructured Silicon SALDI Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31195-31204. [PMID: 32551485 DOI: 10.1021/acsami.0c07849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel doping agents and doping strategies are continually entering the market, placing a burden on analytical methods to detect, adapt, and respond to subtle changes in the composition of biological samples. Therefore, there is a growing interest in rapid, adaptable, and ideally confirmatory analytical methods for the fight against doping. Nanostructured silicon (nano-Si)-based surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) can effectively address this need, allowing fast and sensitive detection of prohibited compounds used in sport doping. Here, we demonstrate the detection of growth hormone peptides, anabolic-androgenic steroids, and narcotics at low concentrations directly from biological matrices. Molecular confirmation was performed using the fragmentation data of the structures, obtained with the tandem mass spectrometry capabilities of the SALDI instrument. The obtained data were in excellent agreement with those obtained using leading triple quadrupole liquid chromatography-mass spectrometry instruments. Furthermore, nano-Si SALDI-MS has the capacity for high-throughput analysis of hundreds of biological samples, providing opportunities for real-time MS analysis at sporting events.
Collapse
Affiliation(s)
- Rajpreet Singh Minhas
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - David A Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hashim Z Al Hmoud
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Taryn M Guinan
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Leica Microsystems, Mount Waverly, Victoria 3149, Australia
| | - K Paul Kirkbride
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia 5001, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
|
21
|
Narduzzi L, Dervilly G, Marchand A, Audran M, Le Bizec B, Buisson C. Applying metabolomics to detect growth hormone administration in athletes: Proof of concept. Drug Test Anal 2020; 12:887-899. [DOI: 10.1002/dta.2798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Luca Narduzzi
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris INRAE Nantes F‐44307 France
| | - Gaud Dervilly
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris INRAE Nantes F‐44307 France
| | - Alexandre Marchand
- Département des analyses Agence Française de Lutte contre le Dopage (AFLD) Châtenay‐Malabry France
| | - Michel Audran
- Département des analyses Agence Française de Lutte contre le Dopage (AFLD) Châtenay‐Malabry France
| | - Bruno Le Bizec
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris INRAE Nantes F‐44307 France
| | - Corinne Buisson
- Département des analyses Agence Française de Lutte contre le Dopage (AFLD) Châtenay‐Malabry France
| |
Collapse
|