1
|
Warrier AA, Azua EN, Kasson LB, Allahabadi S, Khan ZA, Mameri ES, Swindell HW, Tokish JM, Chahla J. Performance-Enhancing Drugs in Healthy Athletes: An Umbrella Review of Systematic Reviews and Meta-analyses. Sports Health 2024; 16:695-705. [PMID: 37688400 PMCID: PMC11346223 DOI: 10.1177/19417381231197389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
CONTEXT Many clinicians, trainers, and athletes do not have a true understanding of the effects of commonly used performance-enhancing drugs (PEDs) on performance and health. OBJECTIVE To provide an evidence-based review of 7 commonly used pharmacological interventions for performance enhancement in athletes. DATA SOURCES PubMed and Scopus databases were searched on April 8, 2022. STUDY SELECTION Systematic reviews (SRs) and meta-analyses (MAs) assessing the performance-enhancing effects of the following interventions were included: androgenic anabolic steroids (AAS), growth hormone (GH), selective androgen receptor modulators (SARMs), creatine, angiotensin-converting enzyme (ACE)-inhibitors, recombinant human erythropoietin (rHuEPO), and cannabis. STUDY DESIGN Umbrella review of SRs and MAs. LEVEL OF EVIDENCE Level 4. DATA EXTRACTION Primary outcomes collected were (1) body mass, (2) muscle strength, (3) performance, and (4) recovery. Adverse effects were also noted. RESULTS A total of 27 papers evaluating 5 pharmacological interventions met inclusion criteria. No studies evaluating SARMs or ACE-inhibitors were included. AAS lead to a 5% to 52% increase in strength and a 0.62 standard mean difference in lean body mass with subsequent lipid derangements. GH alters body composition, without providing a strength or performance benefit, but potential risks include soft tissue edema, fatigue, arthralgias, and carpel tunnel syndrome. Creatine use during resistance training can safely increase total and lean body mass, strength, and performance in high-intensity, short-duration, repetitive tasks. Limited evidence supports rHuEPO benefit on performance despite increases in both VO2max and maximal power output, and severe cardiovascular risks are documented. Cannabis provides no performance benefit and may even impair athletic performance. CONCLUSION In young healthy persons and athletes, creatine can safely provide a performance-enhancing benefit when taken in controlled doses. AAS, GH, and rHuEPO are associated with severe adverse events and do not support a performance benefit, despite showing the ability to change bodily composition, strength, and/or physiologic measures. Cannabis may have an ergolytic, instead of ergogenic, effect.
Collapse
Affiliation(s)
- Alec A. Warrier
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Eric N. Azua
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Luke B. Kasson
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sachin Allahabadi
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Zeeshan A. Khan
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Enzo S. Mameri
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Hasani W. Swindell
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| | | | - Jorge Chahla
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
2
|
Heiland CE, Martin L, Zhou X, Zhang L, Ericsson M, Marchand A. Dried blood spots for erythropoietin analysis: Detection of micro-doses, EPO c.577del variant and comparison with in-competition matching urine samples. Drug Test Anal 2024; 16:650-654. [PMID: 37942506 DOI: 10.1002/dta.3596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
The abuse of recombinant erythropoietin (rEPO) and other erythropoietin (EPO) receptor agonists (ERAs) in sports prompted the need for sensitive detection methods of these substances. Dried blood spot (DBS) samples offer an easy solution for simultaneous collection of blood and urine during a doping control, but sensitivity issues are often presented as a challenge for routine EPO analysis from DBS. Its potential use for detecting rEPO micro-doses and the EPO gene c.577del variant thus needed further demonstration. Here, capillary blood collected from the arm skin of 111 athletes with Tasso-M20 (17.5 μL/spot), collected during professional triathlon competitions, were analysed. Also, venous blood samples from healthy volunteers were used to prepare several spots of 20 μL on Mitra VAMS (from an rEPO micro-dose study) and Whatman filter paper (from an EPO gene variant study). Immunopurification of 2 spots with MAIIA EPO Purification Gel Kit and analysis with sodium N-lauroylsarcosinate polyacrylamide gel electrophoresis (SAR-PAGE)/Western blot resulted in sensitive detection of (1) micro-doses of rEPO from Mitra VAMS, (2) endogenous EPO from Tasso-M20 in all in-competition subjects, and (3) the EPO c.577del variant from Whatman filter paper. Additionally, in-competition endogenous EPO was detected in DBS even when matching urine samples had undetectable EPO. In conclusion, this work demonstrated that DBS can be a useful complementary matrix to urine samples for EPO detection.
Collapse
Affiliation(s)
- Carmel E Heiland
- Stockholm Doping Control Laboratory, Clinical Pharmacology Department, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Martin
- Laboratoire AntiDopage Français (LADF), Université Paris-Saclay, Orsay, France
| | - Xinmiao Zhou
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, China
| | - Lisi Zhang
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, China
| | - Magnus Ericsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratoire AntiDopage Français (LADF), Université Paris-Saclay, Orsay, France
| | - Alexandre Marchand
- Laboratoire AntiDopage Français (LADF), Université Paris-Saclay, Orsay, France
| |
Collapse
|
3
|
Biasini GM, Botrè F, de la Torre X, Donati F. Age-Markers on the Red Blood Cell Surface and Erythrocyte Microparticles may Constitute a Multi-parametric Strategy for Detection of Autologous Blood Transfusion. SPORTS MEDICINE - OPEN 2023; 9:113. [PMID: 38038869 PMCID: PMC10692063 DOI: 10.1186/s40798-023-00662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autologous blood transfusion is one of the illicit strategies, banned by the World Anti-Doping Agency, to increase the levels of hemoglobin, with a consequent improvement in the delivery of oxygen to tissues. At present, this practice is detectable exclusively by the individual, longitudinal monitoring of hematological biomarkers, as in the hematological module of the Athlete Biological Passport; but this indirect approach may suffer from different confounding factors. We are presenting a multi-parametric, analytical strategy to detect autologous blood transfusions by targeting the modification of the red blood cells during storage. We focused on the assessment of "storage lesions", targeting (i) membrane proteins: Glycophorin-A and Band 3 complex, (ii) biomarkers of oxidative stress: Peroxiredoxin-2, (iii) biomarkers of senescence: CD47 and Phosphatidylserine, (iv) erythrocytes microparticles. RESULTS All of the above markers were monitored, by immunological and flow cytofluorimetric methods, on samples of stored whole blood collected at different time intervals, and on fresh blood samples, collected for official doping control tests, mixed "ex vivo" to simulate an autotransfusion. Although anonymized before the delivery to the laboratory, it was possible to mix samples belonging to the same subject based on the "athlete biological passport" code. Our results showed that the irreversible alteration of RBCs morphology, the loss of membrane integrity, the occurrence of hemolysis phenomena, and, more in general, the "aging" of the erythrocytes during storage are closely related to: (i) the reduced concentration, on the erythrocyte membrane, of Band 3 protein (decrease of 19% and of 39% after 20 and 40 days of storage respectively) and of glycophorin A (- 47% and - 63% respectively); (ii) the externalization of phosphatidyl serine (with a five-fold increase after 20 days and a further 2× increase after 40 days); (iii) the reduced concentration of CD47; and (iv) increased levels of erythrocyte microparticles. CONCLUSIONS The most promising method to detect the presence of transfused blood in whole blood samples can be based on a multi-parametric strategy, considering jointly both protein expression on RBCs membranes and micro-vesiculation phenomena.
Collapse
Affiliation(s)
- Giorgia M Biasini
- Sapienza University of Rome, Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
- REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences University of Lausanne, Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
| |
Collapse
|
4
|
Breenfeldt Andersen A, Bejder J, Bonne TC, Graae J, Seier S, Nordsborg NB. Changes in Immature Reticulocytes Aid the Indirect Detection of Microdose Recombinant Erythropoietin Use in Men and Women. Med Sci Sports Exerc 2023; 55:1695-1705. [PMID: 37095637 DOI: 10.1249/mss.0000000000003197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE We investigated whether immature reticulocyte fraction (IRF) and the immature reticulocytes to red blood cells ratio (IR/RBC) are sensitive and specific biomarkers for microdose recombinant human erythropoietin (rHuEPO) and whether the inclusion of reticulocyte percentage (RET%) and the algorithm "abnormal blood profile score (ABPS)" increased the athlete biological passport (ABP) sensitivity compared with hemoglobin concentration ([Hb]) and the OFF-hr score ([Hb]-60 × √RET%). METHODS Forty-eight (♀ = 24, ♂ = 24) participants completed a 2-wk baseline period followed by a 4-wk intervention period with three weekly intravenous injections of 9 IU·kg -1 ·bw -1 epoetin β (♀ = 12, ♂ = 12) or saline (0.9% NaCl, ♀ = 12, ♂ = 12) and a 10-d follow-up. Blood samples were collected weekly during baseline and intervention as well as 3, 5, and 10 d after treatment. RESULTS The rHuEPO treatment increased [Hb] (time-treatment, P < 0.001), RET% (time-treatment, P < 0.001), IRF (time-treatment, P < 0.001) and IR/RBC (time-treatment, P < 0.001). IRF and IR/RBC were up to ~58% ( P < 0.001) and ~141% ( P < 0.001) higher compared with placebo, and calculated thresholds provided a peak sensitivity across timepoints of 58% and 54% with ~98% specificity, respectively. To achieve >99% specificity for IRF and IR/RBC, sensitivity was reduced to 46% and 50%, respectively. Across all timepoints, the addition of RET% and ABPS to the ABP increased sensitivity from 29% to 46%. Identification of true-positive outliers obtained via the ABP and IRF and IR/RBC increased sensitivity across all timepoints to 79%. CONCLUSIONS In summary, IRF, IR/RBC, RET% and ABPS are sensitive and specific biomarkers for microdose rHuEPO in both men and women and complement the ABP.
Collapse
Affiliation(s)
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, DENMARK
| | | | - Jonathan Graae
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, DENMARK
| | - Søren Seier
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, DENMARK
| | | |
Collapse
|
5
|
Tyree DJ, Brothers MC, Sim D, Flory L, Tomb M, Strayer K, Jung A, Lee J, Land C, Guess B, Chancellor C, Zelasko J, Alvarado RL, Pitsch RL, Harshman SW, Regn D, Medvedev IR, Kim SS. Detection of Asthma Inhaler Use via Terahertz Spectroscopy. ACS Sens 2023; 8:610-618. [PMID: 36657059 DOI: 10.1021/acssensors.2c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhaled medications are commonplace for administering bronchodilators, anticholinergics, and corticosteroids. While they have a defined legitimate use, they are also used in sporting events as performance-enhancing drugs. These performance enhancers can be acquired via both legal (i.e., at a pharmacy through over-the-counter medications or through a prescription) and illicit (i.e., black market and foreign pharmacies) means, thus making monitoring procurement impossible. While urine tests can detect these pharmacological agents hours after they have been inhaled, there is a significant lag time before they are observed in urine. Direct detection of these inhaled agents is complicated and requires a multiplexed approach due to the sheer number of inhaled pharmacological agents. Therefore, detection of propellants, which carry the drug into the lungs, provides a simpler path forward toward detection of broad pharmacological agents. In this paper, we demonstrate the first use of terahertz spectroscopy (THz) to detect inhaled medications in human subjects. Notably, we were able to detect and quantitate the propellant, HFA-134a, in breath up to 30 min after using an asthma inhaler, enabling the use of a point-of-care device to monitor exhaled breath for the presence of propellants. We also demonstrate via simulations that the same approach can be leveraged to detect and identify next-generation propellants, specifically HFA-152a. As a result, we provide evidence that a single point-of-care THz sensor can detect when individuals have used pressure-mediated dose inhalers (pMDIs) without further modification of the hardware.
Collapse
Affiliation(s)
- Daniel J Tyree
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,Department of Physics, Wright State University, Dayton, Ohio 45435, United States
| | - Michael C Brothers
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,UES Inc. Dayton, Ohio 45432, United States
| | - Daniel Sim
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,UES Inc. Dayton, Ohio 45432, United States
| | - Laura Flory
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,UES Inc. Dayton, Ohio 45432, United States
| | - Miranda Tomb
- United States Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Kraig Strayer
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,UES Inc. Dayton, Ohio 45432, United States
| | - Anne Jung
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,UES Inc. Dayton, Ohio 45432, United States
| | - Jaehwan Lee
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Christopher Land
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Barlow Guess
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Cody Chancellor
- United States Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Jeremy Zelasko
- United States Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Rosa Linda Alvarado
- United States Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Rhonda L Pitsch
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Sean W Harshman
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Dara Regn
- United States Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Ivan R Medvedev
- Department of Physics, Wright State University, Dayton, Ohio 45435, United States
| | - Steve S Kim
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| |
Collapse
|
6
|
Breenfeldt Andersen A, Graae J, Bejder J, Bonne TC, Seier S, Debertin M, Eibye K, Hostrup M, Nordsborg NB. Microdoses of Recombinant Human Erythropoietin Enhance Time Trial Performance in Trained Males and Females. Med Sci Sports Exerc 2023; 55:311-321. [PMID: 36317927 DOI: 10.1249/mss.0000000000003052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE We investigated the effects of recombinant human erythropoietin (rHuEPO) administration on exercise endurance, maximal aerobic performance, and total hemoglobin mass (tHb). We hypothesized that frequent, small intravenous injections of epoetin β would increase time trial performance, peak oxygen uptake (V̇O 2peak ), and tHb in both males and females. METHODS We included 48 healthy, recreational to trained males ( n = 24, mean ± SD V̇O 2peak = 55 ± 5 mL O 2 ·kg -1 ⋅min -1 ) and females ( n = 24; V̇O 2peak of 46 ± 4 mL O 2 ·kg -1 ⋅min -1 ) in a counterbalanced, double-blind, randomized, placebo-controlled study design stratified by sex. Time trial performance, V̇O 2peak , and tHb were determined before and after intravenous injections of either rHuEPO (9 IU·kg bw -1 epoetin β) or saline (0.9% NaCl) three times weekly for 4 wk. RESULTS A time-treatment effect ( P < 0.05) existed for time trial performance. Within the rHuEPO group, mean power output increased by 4.1% ± 4.2% ( P < 0.001). Likewise, a time-treatment effect ( P < 0.001) existed for V̇O 2peak , where the rHuEPO group improved V̇O 2peak and peak aerobic power by 4.2% ± 6.1% ( P < 0.001) and 2.9% ± 4.0% ( P < 0.01), respectively. A time-treatment effect ( P < 0.001) existed for tHb, where the rHuEPO group increased tHb by 6.7% ± 3.4% ( P < 0.001). A main effect of "sex" alone was also evident ( P < 0.001), but no sex-specific interactions were found. No changes were observed in the placebo group for mean power output, V̇O 2peak , peak aerobic power, or tHb. CONCLUSIONS Microdoses with intravenous rHuEPO provide a sufficient erythropoietic stimuli to augment tHb and enhance aerobic-dominated performance in both trained males and females.
Collapse
Affiliation(s)
| | - Jonathan Graae
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Thomas C Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Søren Seier
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Maren Debertin
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
7
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
8
|
Saugy JJ, Schmoutz T, Botrè F. Altitude and Erythropoietin: Comparative Evaluation of Their Impact on Key Parameters of the Athlete Biological Passport: A Review. Front Sports Act Living 2022; 4:864532. [PMID: 35847455 PMCID: PMC9282833 DOI: 10.3389/fspor.2022.864532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The hematological module of the Athlete's Biological Passport (ABP) identifies doping methods and/or substances used to increase the blood's capacity to transport or deliver oxygen to the tissues. Recombinant human erythropoietin (rhEPOs) are doping substances known to boost the production of red blood cells and might have an effect on the blood biomarkers of the ABP. However, hypoxic exposure influences these biomarkers similarly to rhEPOs. This analogous impact complicates the ABP profiles' interpretation by antidoping experts. The present study aimed to collect and identify, through a literature search, the physiological effects on ABP blood biomarkers induced by these external factors. A total of 43 studies were selected for this review. A positive correlation (R2 = 0.605, r = 0.778, p < 0.001) was identified between the hypoxic dose and the increase in hemoglobin concentration (HGB) percentage. In addition, the change in the reticulocyte percentage (RET%) has been identified as one of the most sensitive parameters to rhEPO use. The mean effects of rhEPO on blood parameters were greater than those induced by hypoxic exposure (1.7 times higher for HGB and RET% and 4 times higher for hemoglobin mass). However, rhEPO micro-doses have shown effects that are hardly distinguishable from those identified after hypoxic exposure. The results of the literature search allowed to identify temporal and quantitative evolution of blood parameters in connection with different hypoxic exposure doses, as well as different rhEPOs doses. This might be considered to provide justified and well-documented interpretations of physiological changes in blood parameters of the Athlete Biological Passport.
Collapse
Affiliation(s)
- Jonas J. Saugy
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jonas J. Saugy
| | - Tania Schmoutz
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Francesco Botrè
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Cox HD, Miller GD, Manandhar A, Husk JD, Crouch AK, Eichner D. Tracking immature reticulocyte proteins for improved detection of recombinant human erythropoietin (rhEPO) abuse. Am J Hematol 2021; 96:1621-1629. [PMID: 34626008 DOI: 10.1002/ajh.26368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022]
Abstract
Athletes abuse recombinant human erythropoietin (rhEPO) and erythropoiesis stimulating agents to increase hemoglobin mass and improve performance. To evade detection, athletes have developed sophisticated blood doping regimens, which often include rhEPO micro-dosing. Detection of these methods requires biomarkers with increased sensitivity and a sample matrix that is more amenable to frequent testing in the field. We have developed a method to measure two immature reticulocyte proteins, CD71 and ferrochelatase (FECH), and one total erythrocyte protein, Band 3, in dried blood spots (DBS). This method was tested in response to rhEPO administration after low doses, 40 IU/kg, micro-doses, 900 IU, or saline injection in 20 healthy subjects. During administration of low-dose rhEPO, the mean CD71/Band 3 and FECH/Band 3 ratio increased by 412 ± 197% and 250 ± 44%, respectively. The mean response for the current biomarker, RET%, increased by 195 ± 35%. During administration of rhEPO micro-doses, CD71/Band 3 increased to 127 ± 25% on day 35 and 139 ± 36% on day 39, while no increase was observed in RET%. After rhEPO administration, during the washout phase, mean values decreased to a minimum of 64 ± 4% and 64 ± 11% for CD71/Band 3 and RET%, respectively. However, CD71/Band 3 remained below 75% of baseline for at least 4 weeks after rhEPO injection, while RET% returned to baseline levels. The results demonstrate that immature reticulocyte proteins have a larger response to rhEPO administration than the current biomarker, RET%, and can be monitored in the DBS matrix.
Collapse
Affiliation(s)
- Holly D. Cox
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | | | | | - Jacob D. Husk
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | - Andre K. Crouch
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| |
Collapse
|
10
|
Zhou X, He S, Zezhou L, Jiayu W, Zhou W, Liu X, Zhao M, Zhang L. Discovery of c.577del in EPO: Investigations into endogenous EPO double-band detected in blood with SAR-PAGE. Drug Test Anal 2021; 14:622-633. [PMID: 34791828 DOI: 10.1002/dta.3200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Recently, some athletes were repetitively found to have rEPO positive results, including a characterized double-band pattern in blood samples, in routine doping analysis. In contrast to previous findings from excretion studies, this double-band pattern showed the same relative intensity even when the samples were collected weeks (/months) apart. We therefore suspected that these "positive" doping control samples were related with a novel pathway of endogenous EPO production. Thus, follow-up investigations were warranted to characterize the origin of such analytical test results and to avoid the issuing of adverse analytical findings in the absence of rEPO by identifying the root cause of these "constantly positives." In this study, we designed and conducted a series of causal studies, including population screening of EPO profiles, exploration of EPO de-N-glycosylation, single nucleotide polymorphism (SNP) browsing in EPO, sequencing of EPO exons, genealogical analysis of the c.577del EPO variant, and finally expression and investigation of mutant EPO. In summary, we found that these "constantly positives" were related to endogenous EPO production associated with the c.577del EPO variant. The frequency of this variant was 0.39% in our Chinese population pool. The mutant EPO encoded by this variant is 27 amino acids longer than the wild-type. The molecular weight of this mutant EPO is approximately the same as that of rEPO, exhibiting a similar electrophoretic behavior. To prevent charges against carriers of the c.577del variant, a revised rEPO testing strategy has been implemented in the new version of TD EPO.
Collapse
Affiliation(s)
- Xinmiao Zhou
- National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing, China
| | - Sen He
- National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing, China
| | - Li Zezhou
- National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wang Jiayu
- National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xinchao Liu
- National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing, China
| | - Meiping Zhao
- National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lisi Zhang
- National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing, China
| |
Collapse
|
11
|
Saad K, Salama S, Horvatovich P, Al Maadheed M, Georgakopoulos C. Olympic anti-doping laboratory: the analytical technological road from 2016 Rio De Janeiro to 2021 Tokyo. Bioanalysis 2021; 13:1511-1527. [PMID: 34617444 DOI: 10.4155/bio-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The summer Olympic Games is the major mega sports event since the first modern era Olympiad, held in Athens, Greece in 1896. International Olympic Committee (IOC) has the responsibility of the organization of the summer and winter Games ensuring the broadcast in all corners of earth. The World Anti-Doping Agency (WADA) is the responsible organization of the fight against doping in sports. IOC and WADA support the event's country WADA Accredited Laboratory to incorporate the maximum of the new analytical technologies to become applicable during the event's antidoping testing. The current study reviewed the last 5 years progresses of the antidoping system with emphasis on the laboratory field.
Collapse
Affiliation(s)
- Khadija Saad
- Anti-Doping Lab Qatar (ADLQ), Doha, 27775, Qatar
| | - Sofia Salama
- Anti-Doping Lab Qatar (ADLQ), Doha, 27775, Qatar
| | | | | | | |
Collapse
|
12
|
Martin L, Kafi R, Zhou X, Zhang L, Ericsson M, Marchand A. Detection of recombinant erythropoietin biosimilar Jimaixin TM after administration in healthy subjects. Drug Test Anal 2021; 14:72-79. [PMID: 34391213 DOI: 10.1002/dta.3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
JimaixinTM (Jintan Ltd, China) is a biosimilar of recombinant erythropoietin (rEPO) now authorized for therapeutic application in China. With a risk of abuse by athletes, a clear evaluation of its detection using the electrophoretic methods in use in antidoping laboratories was necessary. In a previous work, we showed that JimaixinTM electrophoretic profile presented slight changes compared to the original drug (first generation rEPO) and that a spike of JimaixinTM in urine and serum was well identified by SDS-PAGE but with less performance by IEF-PAGE unless a neuraminidase treatment was applied first. The aims of this research were to perform an intravenous administration of JimaixinTM on 3 healthy subjects (one microdose (10 IU/kg) and 3 therapeutic doses (50 IU/kg)) and to evaluate the detection in urine and blood up to 7 days post-administration. Analysis of the samples showed that JimaixinTM detection was complicated by IEF-PAGE due to the loss of the most distinctive basic isoforms. In addition, a neuraminidase treatment did not improve detection (contrary to the observations from spike experiments). On the contrary JimaixinTM was very efficiently detected in blood and urine by SDS-PAGE: up to 40h after a microdose and up to 7 days after the therapeutic doses. The effect of JimaixinTM on hematological parameters was limited to a clear but transitory increase of the reticulocytes. These data give new elements to better survey a potential misuse of JimaixinTM by athletes.
Collapse
Affiliation(s)
- Laurent Martin
- Analyses Department-Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Rafik Kafi
- Analyses Department-Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Xinmiao Zhou
- National Anti-doping Laboratory, Chinese Anti-Doping Agency (CHINADA), Beijing, China
| | - Lisi Zhang
- National Anti-doping Laboratory, Chinese Anti-Doping Agency (CHINADA), Beijing, China
| | - Magnus Ericsson
- Analyses Department-Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Alexandre Marchand
- Analyses Department-Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| |
Collapse
|
13
|
Loria F, Cox HD, Voss SC, Rocca A, Miller GD, Townsend N, Georgakopoulos C, Eichner D, Kuuranne T, Leuenberger N. The use of RNA-based 5'-aminolevulinate synthase 2 biomarkers in dried blood spots to detect recombinant human erythropoietin microdoses. Drug Test Anal 2021; 14:826-832. [PMID: 34216436 PMCID: PMC9545850 DOI: 10.1002/dta.3123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
The hematological module of the Athlete Biological Passport (ABP) is used for indirect detection of blood manipulations; however, the use of this method to detect doping, such as with microdoses of recombinant human erythropoietin (rhEPO), is problematic. For this reason, the sensitivity of ABP must be enhanced by implementing novel biomarkers. Here, we show that 5'-aminolevulinate synthase 2 (ALAS2) mRNAs are useful transcriptomic biomarkers to improve the indirect detection of rhEPO microdosing. Moreover, the sensitivity was sufficient to distinguish rhEPO administration from exposure to hypoxic conditions. Levels of mRNAs encoding carbonate anhydrase 1 (CA1) and solute carrier family 4 member 1 (SLC4A1) RNA, as well as the linear (L) and linear + circular (LC) forms of ALAS2 mRNA, were monitored for 16 days after rhEPO microdosing and during exposure to hypoxic conditions. ALAS2 mRNAs increased by 300% compared with the baseline values after rhEPO microdosing. Moreover, ALAS2 mRNAs were not significantly increased under hypoxic conditions. By contrast, CA1 mRNA was increased after both rhEPO microdosing and hypoxia, whereas SLC4A1 mRNA did not significantly increase under either condition. Furthermore, the analyses described here were performed using dried blood spots (DBSs), which provide advantages in terms of the sample collection, transport, and storage logistics. This study demonstrates that ALAS2 mRNA levels are sensitive and specific transcriptomic biomarkers for the detection of rhEPO microdosing using the hematological module of the ABP, and this method is compatible with the use of DBSs for anti-doping analyses.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | | | - Angela Rocca
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Nathan Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Doha, Qatar
| | | | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2019/2020. Drug Test Anal 2020; 13:8-35. [PMID: 33185038 DOI: 10.1002/dta.2969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
Analytical chemistry-based research in sports drug testing has been a dynamic endeavor for several decades, with technology-driven innovations continuously contributing to significant improvements in various regards including analytical sensitivity, comprehensiveness of target analytes, differentiation of natural/endogenous substances from structurally identical but synthetically derived compounds, assessment of alternative matrices for doping control purposes, and so forth. The resulting breadth of tools being investigated and developed by anti-doping researchers has allowed to substantially improve anti-doping programs and data interpretation in general. Additionally, these outcomes have been an extremely valuable pledge for routine doping controls during the unprecedented global health crisis that severely affected established sports drug testing strategies. In this edition of the annual banned-substance review, literature on recent developments in anti-doping published between October 2019 and September 2020 is summarized and discussed, particularly focusing on human doping controls and potential applications of new testing strategies to substances and methods of doping specified the World Anti-Doping Agency's 2020 Prohibited List.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|
15
|
Voss SC, Orie NN, El-Saftawy W, Saghbazarian S, Al-Kaabi A, Georgakopoulos C, Athanasiadou I, Mohamed-Ali V, Al-Maadheed M. Horseradish-peroxidase-conjugated anti-erythropoietin antibodies for direct recombinant human erythropoietin detection: Proof of concept. Drug Test Anal 2020; 13:529-538. [PMID: 33119945 DOI: 10.1002/dta.2957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/11/2022]
Abstract
Antidoping testing for recombinant human erythropoietin (EPO) is routinely performed by gel electrophoresis followed by western blot analysis with primary and secondary antibodies. The two antibody steps add more than 24 h to the testing time of a purified sample. The aim of this study was to test the concept of using directly horseradish-peroxidase (HRP)-conjugated anti-EPO primary antibody, without the need for a secondary antibody, to reduce the analysis time and eliminate non-specific cross-reactivity with secondary antibodies. An in-house, periodate coupling (R&D systems, clone AE7A5) and three commercially available anti-human EPO-HRP conjugates from Genetex, Novus Biologicals and Santa Cruz were evaluated for specificity and sensitivity, using recombinant human EPO standards, negative human urine samples and urine samples from an EPO excretion study. The in-house anti-EPO-HRP conjugate was performed as well as the current two-step application of unconjugated primary and secondary antibodies used in routine analysis, with comparable specificity and sensitivity. The analysis time was markedly reduced for purified samples from 25 h with the routine method down to 7 h with the in-house HRP conjugate. Of the three commercially available conjugates tested, only the Santa Cruz anti-EPO-HRP conjugate showed comparable specificity but had lower sensitivity to both the in-house and the antibody combination currently applied routinely. The other two commercially available conjugates (Genetex and Novus Biologicals) did not show any visible bands with the EPO standards. The results clearly demonstrate the potential utility of a directly HRP-conjugated anti-EPO antibody to reduce analysis time for EPO in doping control.
Collapse
Affiliation(s)
| | - Nelson N Orie
- Anti-Doping Lab Qatar, Doha, Qatar.,Centre for Metabolism and Inflammation, Division of Medicine, University College London, London, UK
| | | | | | | | | | | | - Vidya Mohamed-Ali
- Anti-Doping Lab Qatar, Doha, Qatar.,Centre for Metabolism and Inflammation, Division of Medicine, University College London, London, UK
| | - Mohammed Al-Maadheed
- Anti-Doping Lab Qatar, Doha, Qatar.,Centre for Metabolism and Inflammation, Division of Medicine, University College London, London, UK
| |
Collapse
|
16
|
Capdeville P, Martin L, Cholet S, Damont A, Audran M, Ericsson M, Fenaille F, Marchand A. Evaluation of erythropoietin biosimilars Epotin™, Hemax® and Jimaixin™ by electrophoretic methods used for doping control analysis and specific N-glycan analysis revealed structural differences from original epoetin alfa drug Eprex®. J Pharm Biomed Anal 2020; 194:113750. [PMID: 33234415 DOI: 10.1016/j.jpba.2020.113750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Recombinant human erythropoietin (rEPO) biosimilars are copies of epoetin drugs developed after the first patents ended. However differences in the process of production can result in small structural differences when compared to the reference product. Differences in N-glycosylation profiles are of particular importance for rEPOs, because they can drastically impact the half-life in circulation and activity. Changes of structure can also impact electrophoretic profiles that are used to reveal the presence of a rEPO in a doping control sample. In this study three not well characterized biosimilars were evaluated (Jimaixin™ authorized in China, and Hemax® and Epotin™ authorized in Algeria). As these products could be used for doping, first their EPO profiles were determined using the antidoping methods (electrophoretic separation by the charge (isolectric focusing, IEF-PAGE) or the molecular weight (SDS-PAGE) and specific EPO immunodetection). Compared to the original epoetin alfa Eprex®, it revealed more basic isoforms for Epotin™ and Jimaixin™ after IEF-PAGE and a slightly lower molecular weight after SDS-PAGE in particular for Hemax®. To better understand the reason for these differences, EPO specific N-glycans were evaluated using two complementary approaches: MALDI-TOF mass spectrometry (MS) and hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection. All three biosimilars presented a significant decrease in the major glycan forms of Eprex® along with an increase in less complex forms. Jimaixin™ and Epotin™ presented also a lower amount of fully sialylated forms. HILIC method also showed that O-acetylation level of sialic acid residues might vary from one rEPO to the other.
Collapse
Affiliation(s)
- Perrine Capdeville
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Laurent Martin
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Michel Audran
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Magnus Ericsson
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Alexandre Marchand
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France.
| |
Collapse
|
17
|
Martin L, Garcia Rodriguez JC, Audran M, Ericsson M, Maurice T, Marchand A. Detection of a nonerythropoietic erythropoietin, Neuro‐EPO, in blood after intranasal administration in rat. Drug Test Anal 2020; 12:1605-1613. [DOI: 10.1002/dta.2924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Laurent Martin
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| | | | - Michel Audran
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| | - Magnus Ericsson
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| | | | - Alexandre Marchand
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| |
Collapse
|