1
|
Brockbals L, Thomas A, Schneider TD, Kraemer T, Steuer AE, Thevis M. Do dried blood spots have the potential to support result management processes in routine sports drug testing?-Part 3: LC-MS/MS-based peptide analysis for dried blood spot sampling time point estimation. Drug Test Anal 2024; 16:792-800. [PMID: 36829300 DOI: 10.1002/dta.3463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Along with the recent acknowledgement of the World Anti-Doping Agency to use dried blood spot (DBS) samples for routine doping control purposes, there have been propositions to use DBS as a matrix that allows regular proactive remotely supervised self-sampling, providing potential longitudinal monitoring of an athlete's exposure to doping agents. However, several organizational aspects have to be considered before implementation, such as the verification of the sample collections time point. Based on a previous untargeted proteomics workflow utilizing liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify protein/peptide markers to define the time since deposition of a bloodstain, the aim of the current study was to develop a targeted LC-HRMS/MS analytical method for promising peptidic target analytes. A long-term DBS storage experiment was carried out over a 3-month period (sample collection time points: 0, 2, 4, 7, 14, 21, 28, 42, 56, 70, 84 and 91 days) with DBS samples of 10 volunteers for longitudinal investigation of signal abundance changes of targeted peptide sequences at different storage temperatures (room temperature [RT], 4°C and -20°C). Prior to experimental analysis, LC-HRMS/MS method characteristics were successfully assessed, including intraday precision, carryover and sample extract stability. For estimation of DBS sample collection time points, ratios of two peptides that originate from the same protein prior to tryptic digestion were created. Two targeted peptide area ratios were found to significantly increase after being stored at RT for 28 days, representing potential markers for future use in routine doping controls that contribute to advancing complementary avenues in anti-doping.
Collapse
Affiliation(s)
- Lana Brockbals
- Center for Preventive Doping Research, Institute of Biochemistry, German Sports University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sports University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Tom D Schneider
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sports University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|
2
|
Juma MW, Birech Z, Mwenze NM, Ondieki AM, Maaza M, Mokhotjwa SD. Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles. Sci Rep 2024; 14:5721. [PMID: 38459089 PMCID: PMC10923944 DOI: 10.1038/s41598-024-56456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.
Collapse
Affiliation(s)
- Moses Wabwile Juma
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa.
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa.
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.
| | - Zephania Birech
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Nancy Mwikali Mwenze
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Annah Moraa Ondieki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| | - Simon Dhlamini Mokhotjwa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| |
Collapse
|
3
|
Thevis M, Walpurgis K, Thomas A. DropWise: current role and future perspectives of dried blood spots (DBS), blood microsampling, and their analysis in sports drug testing. Crit Rev Clin Lab Sci 2023; 60:41-62. [PMID: 35938300 DOI: 10.1080/10408363.2022.2103085] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For decades, blood testing has been an integral part of routine doping controls. The breadth of information contained in blood samples has become considerably more accessible for anti-doping purposes over the last 10 years through technological advancements regarding analytical instrumentation as well as enhanced sample collection systems. Particularly, microsampling of whole blood and serum, for instance as dried blood spots (DBS), has opened new avenues in sports drug testing and substantially increased the availability and cost-effectiveness of doping control specimens. Thus, microvolume blood specimens possess the potential to improve monitoring of blood hormone and drug levels, support evaluation of circulating drug concentrations in competition, and enhance the stability of labile markers and target analytes in blood passport analyses as well as peptide hormone and steroid ester detection. Further, the availability of the fraction of lysed erythrocytes for anti-doping purposes warrants additional investigation, considering the sequestering capability of red blood cells (RBCs) for certain substances, as a complementary approach in support of the clean sport.
Collapse
Affiliation(s)
- M Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Bonn, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - A Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
4
|
Berger BK, Wicker AP, Preuss EK, Fujito Y, Hedgepeth W, Nishimura M, Schug KA. Streamlined stationary phase selection facilitated by a “sample-plug retention test” in supercritical fluid extraction-supercritical fluid chromatography-mass spectroscopy (SFE-SFC-MS) method development for on-line extraction of anabolic agents. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2098319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Blair K. Berger
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - A. Paige Wicker
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Emily K. Preuss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Yuka Fujito
- Innovation Center, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - William Hedgepeth
- Innovation Center, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - Masayuki Nishimura
- Innovation Center, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
5
|
Garzinsky AM, Thomas A, Thevis M. Probing for factors influencing exhaled breath drug testing in sports- Pilot studies focusing on the tested individual's tobacco smoking habit and sex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9262. [PMID: 35094434 DOI: 10.1002/rcm.9262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Exhaled breath (EB) was found to be a promising matrix in the field of sports drug testing due to the non-invasive and non-intrusive sampling procedure, but significant inter-individual variations regarding detected drug concentrations have been observed in previous studies. To investigate whether the detectability of doping agents in EB is affected by sex or tobacco smoking, two administration studies were conducted with male and female smokers and nonsmokers concerning the elimination of the beta blocker propranolol and the stimulant pseudoephedrine into EB. METHODS Following the administration of 40 mg propranolol or 30 mg pseudoephedrine, a total of 19 participants, including female and male nonsmokers as well as female and male smokers, collected EB and dried blood spot (DBS) samples over a period of 24 h. Respective analyte concentrations were determined using liquid chromatography and high-resolution tandem mass spectrometry, and semi-quantitative assays were characterized with regard to selectivity, limit of detection and identification, precision, linearity, and carryover. RESULTS Both propranolol and pseudoephedrine were identified in post-administration EB samples from female and male nonsmokers as well as female and male smokers, and the maximum detected drug levels ranged from 9 to 2847 pg/cartridge for propranolol and from 26 to 4805 pg/cartridge for pseudoephedrine. The corresponding DBS levels were in a range of 4-30 ng/mL for propranolol and 55-186 ng/mL for pseudoephedrine. CONCLUSIONS Neither the consumption of cigarettes nor the sex appears to represent a decisive criterion as to the detectability of propranolol or pseudoephedrine in EB, but inter-individual variations regarding the detected drug levels were observed among all studied population groups.
Collapse
Affiliation(s)
- Ann-Marie Garzinsky
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| |
Collapse
|
6
|
Garzinsky AM, Thomas A, Krug O, Thevis M. Probing for the presence of doping agents in exhaled breath using chromatographic/mass spectrometric approaches. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8939. [PMID: 32881194 DOI: 10.1002/rcm.8939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Exhaled breath (EB) has been demonstrated to be a promising alternative matrix in sports drug testing due to its non-invasive and non-intrusive nature compared with urine and blood collection protocols. In this study, a pilot-test system was employed to create drug-containing aerosols simulating EB in support of the analytical characterization of EB sampling procedures, and the used analytical method was extended to include a broad spectrum of prohibited substances. METHODS Artificial and authentic EB samples were collected using sampling devices containing an electret filter, and doping agents were detected by means of liquid chromatography and tandem mass spectrometry with unispray ionization. The analytical approach was characterized with regard to specificity, limits of detection, carry-over, recovery and matrix effects, and the potential applicability to routine doping controls was shown using authentic EB samples collected after single oral dose applications of glucocorticoids and stimulants. RESULTS The analytical method was found to be specific for a total of 49 model substances relevant in sports drug testing, with detection limits ranging from 1 to 500 pg per cartridge. Both ion suppression (-62%) and ion enhancement (+301%) effects were observed, and all model compounds applied to EB sampling devices were still detected after 28 days of storage at room temperature. Authentic EB samples collected after the oral administration of 10 mg of prednisolone resulted in prednisolone findings in specimens obtained from 3 out of 6 participants up to 2 h. In octodrine, dimethylamylamine (DMAA) and isopropylnorsynephrine post-administration EB samples, the drugs were detected over a period of 50, 48, and 8 h, respectively. CONCLUSIONS With the analytical approach developed within this study, the identification of a broad spectrum of prohibited doping agents in EB samples was accomplished. Application studies and stability tests provided information to characterize EB as a potential matrix in sports drug testing.
Collapse
Affiliation(s)
- Ann-Marie Garzinsky
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany
| | - Oliver Krug
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, 50933, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| |
Collapse
|
7
|
Reverter-Branchat G, Segura J, Pozo OJ. On the road of dried blood spot sampling for antidoping tests: Detection of GHRP-2 abuse. Drug Test Anal 2020; 13:510-522. [PMID: 33197153 DOI: 10.1002/dta.2975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Dried blood spots (DBSs) sampling is gaining support by the antidoping community because of simplicity and cost-effective characteristics, especially in collection, transport, and storage. Nevertheless, DBS applicability demands specific studies for each of the analytes proposed for testing. Here, GHRP-2 has been selected as a representing member of the growth hormone-releasing peptides (GHRPs) family to provide further evidence of DBS suitability for GHRPs abuse detection in sport testing. An analytical procedure to extract GHRP-2 and its main metabolite (AA-3) from DBS and to detect them by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. The method has been validated for the detection of GHRP-2. Specificity and identification capabilities have been assessed in agreement with antidoping guidelines. The low AA-3 levels found in DBS samples prevented its effective application for the determination of this metabolite. The limit of detection (LoD) for GHRP-2 has been established at 50 pg/ml. Long-term stability (>2 years) has been confirmed. The procedure has been successfully applied to actual DBS samples from an administration study with a single intravenous dose of GHRP-2 (100 μg) being detected up to 4 h after drug injection. GHRP-2 concentrations have been higher in venous blood DBS than in capillary blood DBS. Despite the observed differences, a similar detection window has been achieved independently of the type of blood used. In summary, this study provides specific evidence supporting DBS usefulness to detect GHRP-2, and potentially other GHRPs family members, for antidoping tests.
Collapse
Affiliation(s)
- Gemma Reverter-Branchat
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jordi Segura
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
8
|
Thevis M, Kuuranne T, Dib J, Thomas A, Geyer H. Do dried blood spots (DBS) have the potential to support result management processes in routine sports drug testing? Drug Test Anal 2020; 12:704-710. [PMID: 32180361 DOI: 10.1002/dta.2790] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Dried blood spots (DBS) have been considered as complementary matrix in sports drug testing for many years. Especially concerning substances prohibited in-competition only, the added value of DBS collected concomitantly with routine doping control urine samples has been debated, and an increasing potential of DBS has been discussed in the scientific literature. To which extent and under which prerequisites DBS can contribute to enhanced anti-doping efforts is currently evaluated. As a proof-of-principle, two analytical applications, one targeting cocaine/benzoyl ecgonine and the other prednisone/prednisolone, are presented in this perspective to indicate potential added value but also presently existing limitations of the DBS approach.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Josef Dib
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|
9
|
Miller GD, Van Wagoner RM, Bruno BJ, Husk JD, Fedoruk MN, Eichner D. Investigating oral fluid and exhaled breath as alternative matrices for anti-doping testing: Analysis of 521 matched samples. J Pharm Biomed Anal 2019; 176:112810. [DOI: 10.1016/j.jpba.2019.112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/20/2023]
|
10
|
Faiss R, Saugy J, Saugy M. Fighting Doping in Elite Sports: Blood for All Tests! Front Sports Act Living 2019; 1:30. [PMID: 33344954 PMCID: PMC7739585 DOI: 10.3389/fspor.2019.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
In the fight against doping, detection of doping substances in biological matrices is paramount. Analytical possibilities have evolved and sanctioning a doping scenario by detecting forbidden bioactive compounds circulating unmodified in blood is nowadays very attractive. In addition, the World Anti-Doping Agency (WADA) introduced the Athlete Biological Passport (ABP) a decade ago as a new paradigm inferring the use of prohibited substances or methods through longitudinal profiling, or serial analyses of indirect biomarkers of doping, to be both scientifically and legally robust. After the introduction in 2008 of an hematological module (i.e., based on variations of blood variables) aiming to identify enhancement of oxygen transport and any form of blood transfusion or manipulation, a urinary steroidal module was additionally introduced in 2014 composed of concentrations and ratios of various endogenously produced steroidal hormones. Some evidence tends to discredit steroid profiles obtained from urine analyses to detect the use of endogenous androgenic anabolic steroids (EAAS), when administered exogenously, due to high rates of false negatives with short half-life and topical formulations rendering profile alteration only minimal or equivocal. On the other hand, steroid hormones quantification in blood showed a promising ability to detect testosterone doping and interesting complementarities to the ABP thanks to the most recent analytical techniques (UHPLC-HRMS or/and MS/MS). This perspective article explores the opportunities of blood samples to monitor not only hematological but also steroid profiles in elite athletes.
Collapse
Affiliation(s)
- Raphael Faiss
- REDs, Research and Expertise in Antidoping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas Saugy
- REDs, Research and Expertise in Antidoping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martial Saugy
- REDs, Research and Expertise in Antidoping Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Sardela PDDO, Sardela VF, da Silva AMDS, Pereira HMG, de Aquino Neto FR. A pilot study of non-targeted screening for stimulant misuse using high-resolution mass spectrometry. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00482-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Thevis M, Geyer H, Tretzel L, Schänzer W. Sports drug testing using complementary matrices: Advantages and limitations. J Pharm Biomed Anal 2016; 130:220-230. [DOI: 10.1016/j.jpba.2016.03.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/27/2016] [Indexed: 01/14/2023]
|
13
|
Thevis M, Thomas A, Schänzer W. Detecting peptidic drugs, drug candidates and analogs in sports doping: current status and future directions. Expert Rev Proteomics 2014; 11:663-73. [DOI: 10.1586/14789450.2014.965159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Dvorak J, Baume N, Botré F, Broséus J, Budgett R, Frey WO, Geyer H, Harcourt PR, Ho D, Howman D, Isola V, Lundby C, Marclay F, Peytavin A, Pipe A, Pitsiladis YP, Reichel C, Robinson N, Rodchenkov G, Saugy M, Sayegh S, Segura J, Thevis M, Vernec A, Viret M, Vouillamoz M, Zorzoli M. Time for change: a roadmap to guide the implementation of the World Anti-Doping Code 2015. Br J Sports Med 2014; 48:801-6. [PMID: 24764550 PMCID: PMC4033186 DOI: 10.1136/bjsports-2014-093561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A medical and scientific multidisciplinary consensus meeting was held from 29 to 30 November 2013 on Anti-Doping in Sport at the Home of FIFA in Zurich, Switzerland, to create a roadmap for the implementation of the 2015 World Anti-Doping Code. The consensus statement and accompanying papers set out the priorities for the antidoping community in research, science and medicine. The participants achieved consensus on a strategy for the implementation of the 2015 World Anti-Doping Code. Key components of this strategy include: (1) sport-specific risk assessment, (2) prevalence measurement, (3) sport-specific test distribution plans, (4) storage and reanalysis, (5) analytical challenges, (6) forensic intelligence, (7) psychological approach to optimise the most deterrent effect, (8) the Athlete Biological Passport (ABP) and confounding factors, (9) data management system (Anti-Doping Administration & Management System (ADAMS), (10) education, (11) research needs and necessary advances, (12) inadvertent doping and (13) management and ethics: biological data. True implementation of the 2015 World Anti-Doping Code will depend largely on the ability to align thinking around these core concepts and strategies. FIFA, jointly with all other engaged International Federations of sports (Ifs), the International Olympic Committee (IOC) and World Anti-Doping Agency (WADA), are ideally placed to lead transformational change with the unwavering support of the wider antidoping community. The outcome of the consensus meeting was the creation of the ad hoc Working Group charged with the responsibility of moving this agenda forward.
Collapse
Affiliation(s)
- Jiri Dvorak
- FIFA/F-MARC FIFA-Strasse, , Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Targeting prohibited substances in doping control blood samples by means of chromatographic–mass spectrometric methods. Anal Bioanal Chem 2013; 405:9655-67. [DOI: 10.1007/s00216-013-7224-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/26/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022]
|
16
|
Thomas A, Vogel M, Piper T, Krug O, Beuck S, Schänzer W, Thevis M. Quantification of AICAR-ribotide concentrations in red blood cells by means of LC-MS/MS. Anal Bioanal Chem 2013; 405:9703-9. [PMID: 23828211 DOI: 10.1007/s00216-013-7162-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/06/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
AICAR (5-amino-4-imidazolecarboxyamide ribonucleoside) arguably provides performance-enhancing properties even in the absence of physical exercise and, therefore, the substance is banned in elite sports since 2009. Due to the natural presence of AICAR in human blood and urine, uncovering the misuse by direct qualitative analysis is not possible. Entering the circulation, the riboside is immediately incorporated into red blood cells (RBCs) and transformed into the corresponding ribotide (5'-monophosphate) form. Within the present study, an analytical method was developed to determine AICAR-ribotide concentrations in RBC concentrates by means of liquid chromatography-tandem mass spectrometry. The method was validated enabling quantitative result interpretation considering the parameters specificity, precision (intra- and interday), linearity, recovery, accuracy (LOD/LOQ), stability and ion suppression. By analysing 99 RBC samples of young athletes, normal physiological levels of AICAR-ribotide were determined (10-500 ng/mL), and individual levels were found to be stable for several days. Employing in vitro incubation experiments with AICAR riboside in fresh whole blood samples, the ribotide concentrations were observed to increase significantly within 30 min from baseline to 1-10 μg/mL. These levels are considered conserved for the lifetime of the erythrocyte and, thus, the results of the in vitro model strongly support the hypothesis that measuring abnormally high AICAR-ribotide concentrations in RBC of elite athletes has the potential to uncover the misuse of this substance for a long period of time.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf, 50933, Cologne, Germany,
| | | | | | | | | | | | | |
Collapse
|
17
|
Höppner S, Schänzer W, Thevis M. Fragmentation studies of SIRT1-activating drugs and their detection in human plasma for doping control purposes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:35-50. [PMID: 23239315 DOI: 10.1002/rcm.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE The efficiency of Sirtuin1, a major target for the treatment of various metabolic disorders such as inflammation and type 2 diabetes mellitus, can be modulated via low molecular mass SIRT1 activators (e.g. resveratrol, SRT1720, and SRT2104).The administration of such compounds results in increased deacetylation of substrates including p53, FOXO1, and PGC1alpha, potentially leading to an improved physical performance. Consequently, proactive and preventive anti-doping measures are required and an assay dedicated to serum and plasma was desirable. METHODS Model substances of emerging SIRT1 drug candidates were obtained and synthesized and their mass spectrometric behavior following positive or negative electrospray ionization and collision-induced dissociation was elucidated using low and high resolution/high accuracy (tandem) mass spectrometry. Subsequently, a screening and confirmation procedure necessitating 100 μL of plasma was established employing liquid chromatography/tandem mass spectrometry (LC/MS/MS) based on diagnostic ion transitions recorded in multiple reaction monitoring mode. Sample preparation consisted of the addition of two deuterated internal standards (D(8)-SRT1720 and D(4)-resveratrol) to the plasma specimen and subsequent protein precipitation. RESULTS Characteristic product ions indicative of the core structures of the model analytes were characterized and utilized for the development of a multi-analyte LC/MS/MS detection method applicable to sports drug testing programs. The doping control assay was validated with regard to specificity, limits of detection (0.1-1 ng/mL), recoveries (90-98%), intraday and interday precisions (2-18%), and ion suppression/enhancement effects. CONCLUSIONS The fragmentation pathways of SRT1720 and 4 SIRT1 activator models based on a common thiazole-imidazole nucleus as well as two different complementary activators (SIRT1 activator 3 and CAY10602), comprising a quinoxaline core, were studied. The resulting information was used to establish and validate a sports drug testing methodology relevant for an efficient and timely anti-doping procedure, targeting a new class of emerging therapeutics possessing significant potential for misuse in elite and amateur sport.
Collapse
Affiliation(s)
- Sebastian Höppner
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | | | | |
Collapse
|
18
|
Thomas A, Geyer H, Schänzer W, Crone C, Kellmann M, Moehring T, Thevis M. Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer. Anal Bioanal Chem 2012; 403:1279-89. [PMID: 22231507 DOI: 10.1007/s00216-011-5655-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/11/2011] [Accepted: 12/12/2011] [Indexed: 11/28/2022]
Abstract
In the present study, a new type of mass spectrometer combining a quadrupole mass filter, a higher collision dissociation (HCD) cell and an Orbitrap detector, was evaluated for the analysis of dried blood spots (DBS) in doping controls. DBS analysis is characterized by the necessity to detect prohibited compounds in sub-nanogram-per-milliliter levels with high identification capacity. After extraction of DBS with an organic solvent and liquid chromatographic separation (using a regular C18-RP-analytical UHPLC-column) of target analytes, mass spectrometry is performed with a high-resolution full scan in positive and negative mode by means of electrospray ionisation. Single-product ion mass spectra are acquired using the data-dependent analysis mode (employing an inclusion list) for previously selected precursors of known prohibited compounds with fixed retention time ranges. Besides, a sensitive screening in a targeted approach, non-targeted analysis for retrospective data evaluation is thus possible. The chosen experimental design enables the determination of various drugs from different classes with one generic sample preparation which is shown for 26 selected model compounds (Δ(9)-tetrahydrocannabinol (THC), tetrahydrocannabinol-9-carboxylic acid (THC-COOH), methylhexaneamine, methylphenidate, cocaine, nikethamide, 3,4-methylenedioxyamphetamine, N-methyl-3,4-methylenedioxyamphetamine, strychnine, mesocarb, salbutamol, formoterol, clenbuterol, metandienone, stanozolol, bisoprolol, propranolol, metoprolol, anastrazole, clomiphene, exemestane, dexamethasone, budesonide, selective androgen receptor modulator (SARM) S4 (andarine), SARM S1, hydrochlorothiazide). Generally, only qualitative result interpretation was focussed upon, but for target analytes with deuterium-labelled internal standards (salbutamol, clenbuterol, cocaine, dexamethasone, THC-COOH and THC) quantitative analysis was also possible. Especially the most challenging analytes, THC and its carboxy metabolite, were detected in DBS at relevant concentrations (<0.5 ng/mL) using targeted HCD experiments. The method was validated for the parameters: specificity, linearity (0-20 ng/mL), precision (<25%), recovery (mean 60%), limit of detection/quantification, ion suppression, stability and accuracy (80-120%). Six isotope-labelled analogues used as internal standards facilitate a quantitative result interpretation which is of utmost importance especially for in-competition drug sports testing.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lönnberg M, Andrén M, Birgegård G, Drevin M, Garle M, Carlsson J. Rapid detection of erythropoiesis-stimulating agents in urine and serum. Anal Biochem 2012; 420:101-14. [DOI: 10.1016/j.ab.2011.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 08/24/2011] [Accepted: 09/17/2011] [Indexed: 11/27/2022]
|
20
|
Badoud F, Guillarme D, Boccard J, Grata E, Saugy M, Rudaz S, Veuthey JL. Analytical aspects in doping control: challenges and perspectives. Forensic Sci Int 2011; 213:49-61. [PMID: 21824736 DOI: 10.1016/j.forsciint.2011.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 01/10/2023]
Abstract
Since the first anti-doping tests in the 1960s, the analytical aspects of the testing remain challenging. The evolution of the analytical process in doping control is discussed in this paper with a particular emphasis on separation techniques, such as gas chromatography and liquid chromatography. These approaches are improving in parallel with the requirements of increasing sensitivity and selectivity for detecting prohibited substances in biological samples from athletes. Moreover, fast analyses are mandatory to deal with the growing number of doping control samples and the short response time required during particular sport events. Recent developments in mass spectrometry and the expansion of accurate mass determination has improved anti-doping strategies with the possibility of using elemental composition and isotope patterns for structural identification. These techniques must be able to distinguish equivocally between negative and suspicious samples with no false-negative or false-positive results. Therefore, high degree of reliability must be reached for the identification of major metabolites corresponding to suspected analytes. Along with current trends in pharmaceutical industry the analysis of proteins and peptides remains an important issue in doping control. Sophisticated analytical tools are still mandatory to improve their distinction from endogenous analogs. Finally, indirect approaches will be discussed in the context of anti-doping, in which recent advances are aimed to examine the biological response of a doping agent in a holistic way.
Collapse
Affiliation(s)
- Flavia Badoud
- School of Pharmaceutical Sciences, University of Geneva and Lausanne, 20 Bd d'Yvoy, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Strahm E, Marques-Vidal P, Pralong F, Dvorak J, Saugy M, Baume N. Influence of multiple injections of human chorionic gonadotropin (hCG) on urine and serum endogenous steroids concentrations. Forensic Sci Int 2011; 213:62-72. [PMID: 21798680 DOI: 10.1016/j.forsciint.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 01/28/2023]
Abstract
Since it is established that human chorionic gonadotropin (hCG) affects testosterone production and release in the human body, the use of this hormone as a performance enhancing drug has been prohibited by the World Anti-Doping Agency. Nowadays, the only validated biomarker of a hCG doping is its direct quantification in urine. However, this specific parameter is subjected to large inter-individual variability and its determination is directly dependent on the reliability of hCG immunoassays used. In order to counteract these weaknesses, new biomarkers need to be evidenced. To address this issue, a pilot clinical study was performed on 10 volunteers submitted to 3 subsequent hCG injections. Blood and urine samples were collected during two weeks in order to follow the physiological effects on related compounds such as the steroid profile or hormones involved in the hypothalamo-pituitary axis. The hCG pharmacokinetic observed in all subjects was, as expected, prone to important inter-individual variations. Using ROC plots, level of testosterone and testosterone on luteinizing hormone ratio in both blood and urine were found to be the most relevant biomarker of a hCG abuse, regardless of inter-individual variations. In conclusion, this study showed the crucial importance of reliable quantification methods to assess low differences in hormonal patterns. In regard to these results and to anti-doping requirements and constraints, blood together with urine matrix should be included in the anti-doping testing program. Together with a longitudinal follow-up approach it could constitute a new strategy to detect a hCG abuse, applicable to further forms of steroid or other forbidden drug manipulation.
Collapse
Affiliation(s)
- Emmanuel Strahm
- Swiss Laboratory for Doping Analyses, University Center of Legal Medecine, Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2011; 3:1-14. [DOI: 10.1002/dta.245] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/19/2010] [Indexed: 12/13/2022]
|
24
|
Zorzoli M, Rossi F. Implementation of the biological passport: The experience of the International Cycling Union. Drug Test Anal 2010; 2:542-7. [DOI: 10.1002/dta.173] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 11/11/2022]
|
25
|
Editorial. Recent advances in doping control initiated by anti-doping laboratories. Drug Test Anal 2010; 1:473. [PMID: 20355160 DOI: 10.1002/dta.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|