1
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum Influence the Temporal Dynamics of Cartilaginous Mesenchymal Condensations in Developing Trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610014. [PMID: 39282283 PMCID: PMC11398369 DOI: 10.1101/2024.09.02.610014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. Notably, we observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated by E11.5 in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute. Cincinnati Children's Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center and University of Cincinnati Honors Program. Current affiliation University of Cincinnati, College of Medicine
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center. Current affiliation: Nationwide Children's Hospital Columbus OH
| | - Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center and University of Cincinnati Honors Program
| | - Yixin Wu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center. Current affiliation: Washington University in St. Louis, Division of Biology & Biomedical Sciences
| | - Yan Xu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
2
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
3
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Zhu H, Liu D, Jia H. Analysis of Wnt7B and BMP4 expression patterns in congenital pulmonary airway malformation. Pediatr Pulmonol 2020; 55:765-770. [PMID: 31962011 DOI: 10.1002/ppul.24651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/07/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Congenital pulmonary airway malformation (CPAM) is a rare disorder characterized by aberrant overgrowth of terminal bronchioles. The objective of this study was to describe wingless-type MMTV integration site family 7B (Wnt7B) and bone morphogenetic protein 4 (BMP4) expression patterns in human CPAM lesions and to explore the possible roles of Wnt7B and BMP4 in the pathogenesis of CPAM. METHODS Fifteen tissue samples from patients with CPAM were obtained from the Pathology Department of Shengjing Hospital of China Medical University. Samples representing CPAM lesions and adjacent normal lung tissues were collected and Wnt7B and BMP4 expression was detected through immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. RESULTS IHC revealed that Wnt7B immunopositive cells were only detected in epithelial cells, whereas BMP4 immunopositive cells were detected in epithelial and mesenchymal cells. Expression of Wnt7B and BMP4 immunopositive cells was higher in CPAM lesions than that in adjacent normal lung tissue. qRT-PCR and Western blotting showed that Wnt7B and BMP4 mRNA and protein expression were significantly higher in CPAM lesions than in adjacent normal lung tissue (P < .05). Overall, the level of BMP4 was higher than that of Wnt7B. CONCLUSIONS Increased expression of Wnt7B and BMP4 appear to be related to the pathogenesis of CPAM and abnormal pulmonary development. Upregulation of Wnt7B and BMP4 could play an important role in the development of the bronchial-alveolar structures that characterize CPAM.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Dan Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
5
|
Alveolar Differentiation Potency of Human Distal Airway Stem Cells Is Associated with Pulmonary Pathological Conditions. Stem Cells Int 2019; 2019:7123078. [PMID: 31281383 PMCID: PMC6590602 DOI: 10.1155/2019/7123078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/05/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background This study is aimed at characterizing the human distal airway stem cells (DASCs) and assessing their therapeutic potential in patients with chronic, degenerative lung diseases. These findings will provide a comprehensive understanding for further clinical applications utilizing autologous airway stem cells as therapeutic intervention in respiratory diseases. Methods DASCs were isolated from healthy subjects or patients diagnosed with bronchiectasis, chronic obstructive pulmonary diseases (COPD), or interstitial lung disease (ILD). Differentiation capacity, a key property of the stem cells, was studied using a novel monolayer differentiation system. The differentiated cells were evaluated for alveolar and bronchial cell marker expression, and the quantified expression level of differentiated cells was further examined for their relationship with age and pulmonary function of the subjects. Results and Conclusions Differentiation of DASCs and tracheal stem cells (TSCs) yielded an alveolus-like structure and a tube-shaped structure, respectively, with distinct marker gene expression. Additionally, single-cell-derived clones showed diverse differentiation fates, even if the clones arise from identical or different individuals. More importantly, the alveolar differentiation potency was higher in DASCs derived from patients than from healthy people. The differentiation efficiency of DASCs also correlates with age in patients with bronchiectasis and ILD.
Collapse
|
6
|
Li Q, Jiao J, Li H, Wan H, Zheng C, Cai J, Bao S. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci 2018; 131:jcs.217406. [PMID: 29950483 DOI: 10.1242/jcs.217406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Branching morphogenesis is essential for the successful development of a functional lung to accomplish its gas exchange function. Although many studies have highlighted requirements for the bone morphogenetic protein (BMP) signaling pathway during branching morphogenesis, little is known about how BMP signaling is regulated. Here, we report that the protein arginine methyltransferase 5 (Prmt5) and symmetric dimethylation at histone H4 arginine 3 (H4R3sme2) directly associate with chromatin of Bmp4 to suppress its transcription. Inactivation of Prmt5 in the lung epithelium results in halted branching morphogenesis, altered epithelial cell differentiation and neonatal lethality. These defects are accompanied by increased apoptosis and reduced proliferation of lung epithelium, as a consequence of elevated canonical BMP-Smad1/5/9 signaling. Inhibition of BMP signaling by Noggin rescues the lung branching defects of Prmt5 mutant in vitro Taken together, our results identify a novel mechanism through which Prmt5-mediated histone arginine methylation represses canonical BMP signaling to regulate lung branching morphogenesis.
Collapse
Affiliation(s)
- Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Institute of Women and Children's Health, and Department of Pediatrics, Huaxi Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Fox E, Shojaie S, Wang J, Tseu I, Ackerley C, Bilodeau M, Post M. Three-dimensional culture and FGF signaling drive differentiation of murine pluripotent cells to distal lung epithelial cells. Stem Cells Dev 2015; 24:21-35. [PMID: 25079436 DOI: 10.1089/scd.2014.0227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reciprocal signaling between the lung mesenchyme and epithelium is crucial for differentiation and branching morphogenesis. We hypothesized that the combination of signaling pathways comprising early epithelial-mesenchymal interactions and a 3D spatial environment are necessary for an efficient induction of embryonic and induced pluripotent stem cells (ESCs and iPSCs) into a lung cell phenotype with hallmarks of the distal niche. Aggregating early, but not late, embryonic lung mesenchyme with endoderm-induced mouse ESCs and iPSCs for 6 days resulted in organization into tubular structures and differentiation of the tubular lining cells to an NKX2-1(+)/SOX2(-)/SOX9(+)/proSFTPC(+) lineage. Over 80% of the endoderm-induced cells committed to an NKX2-1(+) lineage. Electron microscopy analysis demonstrated numerous multivesicular bodies and glycogen deposits in the tubular lining cells, characteristic features of type II epithelial cell progenitors. Using soluble FGFR2 receptor antagonists, we demonstrate that reciprocal fibroblast growth factor (FGF) 2, 7, and 10 signaling is essential for differentiation of endoderm-induced cells to an NKX2-1(+)/proSFTPC(+) phenotype within 3D aggregates. Only FGF2 was able to commit endoderm-induced cells in monolayer cultures to an NKX2-1(+) lineage, however with a significant lower efficiency (∼16%) than seen with mesenchyme. Thus, while FGF2 signaling alone can induce a primed population of ESCs and iPSCs, the cells do not differentiate to distal lung epithelial progenitors with the same efficiency and level of maturity that is achieved when the complex tissue and 3D environment of the developing lung is more accurately recapitulated.
Collapse
Affiliation(s)
- Emily Fox
- 1 Physiology and Experimental Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children , Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Moodley Y, Thompson P, Warburton D. Stem cells: a recapitulation of development. Respirology 2014; 18:1167-76. [PMID: 24033442 DOI: 10.1111/resp.12186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells are cells that can differentiate into any tissue from all germ layers and include embryonic stem cells and induced pluripotent cells (iPS). Embryonic stem cells are derived from 8-day blastocysts obtained from unutilized embryos following in vitro fertilization, while iPS is obtained following transfection of dermal fibroblasts with pluripotent genes (sex determining region Y-binding, Kruppel-like factor 4, octamer-binding transcription factor 4 and c-Myc). The major challenge is to differentiate these cells into lung epithelium for therapeutic applications as well as to model lung diseases such as cystic fibrosis. In this review, the developmental pathways of the lung and how these pathways have been recapitulated in vitro to induce differentiation of pluripotent cells to lung epithelium were examined.
Collapse
Affiliation(s)
- Yuben Moodley
- Lung Institute of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, Royal Perth Hospital, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | | |
Collapse
|
9
|
Shiomi T, Sklepkiewicz P, Bodine PVN, D'Armiento JM. Maintenance of the bronchial alveolar stem cells in an undifferentiated state by secreted frizzled-related protein 1. FASEB J 2014; 28:5242-9. [PMID: 25212222 DOI: 10.1096/fj.13-242735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bronchoalveolar stem cells (BASCs) are mobilized during injury and identified as lung progenitor cells, but the molecular regulation of this population of cells has not been elucidated. Secreted frizzled-related protein 1 (SFRP1) is a critical molecule involved in alveolar duct formation in the lung and here we demonstrate its importance in controlling cell differentiation during lung injury. Mice lacking SFRP1 exhibited a rapid repair response leading to aberrant proliferation of differentiated cells. Furthermore, SFRP1 treatment of BASCs maintained these cells in a quiescent state. In vivo overexpression of SFRP1 after injury suppressed differentiation and resulted in the accumulation of BASCs correlating with in vitro studies. These findings suggest that SFRP1 expression in the adult maintains progenitor cells within their undifferentiated state and suggests that manipulation of this pathway is a potential target to augment the lung repair process during disease.
Collapse
Affiliation(s)
- Takayuki Shiomi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | - Piotr Sklepkiewicz
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | | | - Jeanine M D'Armiento
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| |
Collapse
|
10
|
Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Wert SE, Zorn AM. A Molecular atlas of Xenopus respiratory system development. Dev Dyn 2014; 244:69-85. [PMID: 25156440 DOI: 10.1002/dvdy.24180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. RESULTS In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. CONCLUSIONS We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lajoie M, Hsu YC, Gronostajski RM, Bailey TL. An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation. BMC Genomics 2014; 15:231. [PMID: 24661679 PMCID: PMC4023408 DOI: 10.1186/1471-2164-15-231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/11/2014] [Indexed: 01/22/2023] Open
Abstract
Background Lung maturation is a late fetal developmental event in both mice and humans. Because of this, lung immaturity is a serious problem in premature infants. Disruption of genes for either the glucocorticoid receptor (Nr3c1) or the NFIB transcription factors results in perinatal lethality due to lung immaturity. In both knockouts, the phenotype includes excess cell proliferation, failure of saccularization and reduced expression of markers of epithelial differentiation. This similarity suggests that the two genes may co-regulate a specific set of genes essential for lung maturation. Results We analyzed the roles of these two transcription factors in regulating transcription using ChIP-seq data for NFIB, and RNA expression data and motif analysis for both. Our new ChIP-seq data for NFIB in lung at E16.5 shows that NFIB binds to a NFI motif. This motif is over-represented in the promoters of genes that are under-expressed in Nfib-KO mice at E18.5, suggesting an activator role for NFIB. Using available microarray data from Nr3c1-KO mice, we further identified 52 genes that are under-expressed in both Nfib and Nr3c1 knockouts, an overlap which is 13.1 times larger than what would be expected by chance. Finally, we looked for enrichment of 738 recently published transcription factor motifs in the promoters of these putative target genes and found that the NFIB and glucocorticoid receptor motifs were among the most enriched, suggesting that a subset of these genes may be directly activated by Nfib and Nr3c1. Conclusions Our data provide the first evidence for Nfib and Nr3c1 co-regulating genes related to lung maturation. They also establish that the in vivo DNA-binding specificity of NFIB is the same as previously seen in vitro, and highly similar to that of the other NFI-family members NFIA, NFIC and NFIX.
Collapse
Affiliation(s)
| | | | | | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia 4072, Australia.
| |
Collapse
|
12
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
13
|
Cellière G, Menshykau D, Iber D. Simulations demonstrate a simple network to be sufficient to control branch point selection, smooth muscle and vasculature formation during lung branching morphogenesis. Biol Open 2012; 1:775-88. [PMID: 23213471 PMCID: PMC3507219 DOI: 10.1242/bio.20121339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/08/2012] [Indexed: 01/02/2023] Open
Abstract
Proper lung functioning requires not only a correct structure of the conducting airway tree, but also the simultaneous development of smooth muscles and vasculature. Lung branching morphogenesis is strongly stereotyped and involves the recursive use of only three modes of branching. We have previously shown that the experimentally described interactions between Fibroblast growth factor (FGF)10, Sonic hedgehog (SHH) and Patched (Ptc) can give rise to a Turing mechanism that not only reproduces the experimentally observed wildtype branching pattern but also, in part counterintuitive, patterns in mutant mice. Here we show that, even though many proteins affect smooth muscle formation and the expression of Vegfa, an inducer of blood vessel formation, it is sufficient to add FGF9 to the FGF10/SHH/Ptc module to successfully predict simultaneously the emergence of smooth muscles in the clefts between growing lung buds, and Vegfa expression in the distal sub-epithelial mesenchyme. Our model reproduces the phenotype of both wildtype and relevant mutant mice, as well as the results of most culture conditions described in the literature.
Collapse
Affiliation(s)
- Géraldine Cellière
- Department for Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26, 4058 Basel , Switzerland
| | | | | |
Collapse
|
14
|
Branch mode selection during early lung development. PLoS Comput Biol 2012; 8:e1002377. [PMID: 22359491 PMCID: PMC3280966 DOI: 10.1371/journal.pcbi.1002377] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes. Most organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching. While the branching sequence is identical in mice of identical genetic background it differs between mouse strains. This suggests that the positioning of branch points and the type of branching sensitively depends on information encoded in the genome. Encoding every branching point independently in the genome would require a large number of genes, and it is more likely that a recursive, self-organized process exists that determines the patterning. While many regulatory molecules have been identified an integrated understanding of the regulatory network (program) is missing. Based on available experimental data we have developed a model for lung branching. The model correctly predicts branching phenotypes in mutants and suggests that also the growth speed of the lung tip can affect the positioning and type of the next branching event.
Collapse
|
15
|
Hashimoto S, Nakano H, Suguta Y, Irie S, Jianhua L, Katyal SL. Exogenous fibroblast growth factor-10 induces cystic lung development with altered target gene expression in the presence of heparin in cultures of embryonic rat lung. Pathobiology 2012; 79:127-43. [PMID: 22261751 DOI: 10.1159/000334839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that FGF-10 regulates lung branching morphogenesis. In this study, we determined the effects of FGF-10 on lung branching morphogenesis and accompanying gene expression in cultures of embryonic rat lungs. METHODS Embryonic day 14 rat lungs were cultured with FGF-10 (0-250 ng/ml) in the absence or presence of heparin (30 ng/ml) for 4 days. Gene expression profiles were analyzed by Affymetrix microchip array including pathway analysis. Some of these genes, functionally important in FGF-10 signaling, were further analyzed by Northern blot, real-time PCR, in situ hybridization and immunohistochemistry. RESULTS Exogenous FGF-10 inhibited branching and induced cystic lung growth only in cultures containing heparin. In total, 252 upregulated genes and 164 downregulated genes were identified, and these included Spry1 (Sprouty-1), Spry2 (Sprouty-2), Spred-1, Bmp4 (bone morphogenetic protein-4, BMP-4), Shh (sonic hedgehog, SHH), Pthlh (parathyroid hormone-related protein, PTHrP), Dusp6 (MAP kinase phosphatase-3, MKP-3) and Clic4 (chloride intracellular channel-4, CLIC-4) among the upregulated genes and Igf1 (insulin-like growth factor-1, IGF-1), Tcf21 (POD), Gyg1 (glycogenin 1), Sparc (secreted protein acidic and rich in cysteine, SPARC), Pcolce (procollagen C-endopeptidase enhancer protein, Pro CEP) and Lox (lysyl oxidase) among the downregulated genes. Gsk3β and Wnt2, which are involved in canonical Wnt signaling, were up- and downregulated, respectively. CONCLUSIONS Unlike FGF-7, FGF-10 effects on lung branching morphogenesis are heparin-dependent. Sprouty-2, BMP-4, SHH, IGF-1, SPARC and POD are known to regulate branching morphogenesis; however, potential roles of CLIC-4 and MKP-3 in lung branching morphogenesis remain to be investigated. FGF-10 may also function in regulating branching morphogenesis or inducing cystic lung growth by inhibiting Wnt2/β-catenin signaling.
Collapse
Affiliation(s)
- Shuichi Hashimoto
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pa., USA.
| | | | | | | | | | | |
Collapse
|
16
|
Bridges JP, Lin S, Ikegami M, Shannon JM. Conditional hypoxia inducible factor-1α induction in embryonic pulmonary epithelium impairs maturation and augments lymphangiogenesis. Dev Biol 2011; 362:24-41. [PMID: 22094019 DOI: 10.1016/j.ydbio.2011.10.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Hypoxia inducible factor (HIF) 1a, EPAS1 and NEPAS are expressed in the embryonic mouse lung and each isoform exhibits distinct spatiotemporal expression patterns throughout morphogenesis. To further assess the role of the HIF1a isoform in lung epithelial cell differentiation and homeostasis, we created transgenic mice that express a constitutively active isoform of human HIF-1a (HIF-1a three point mutant (TPM)), in a doxycycline-dependent manner. Expression of HIF1a TPM in the developing pulmonary epithelium resulted in lung hypoplasia characterized by defective branching morphogenesis, altered cellular energetics and impaired epithelial maturation, culminating in neonatal lethality at birth from severe respiratory distress. Histological and biochemical analyses revealed expanded glycogen pools in the pulmonary epithelial cells at E18.5, concomitant with decreased pulmonary surfactant, suggesting a delay or an arrest in maturation. Importantly, these defects occurred in the absence of apoptosis or necrosis. In addition, sub-pleural hemorrhaging was evident as early as E14.5 in HIF1a TPM lungs, despite normal patterning of the blood vasculature, consistent with defects in endothelial barrier function. Epithelial expression of HIF1a TPM also resulted in increased VEGFA and VEGFC production, an increase in the number of lymphatic vessels and indirect activation of the multiple Notch pathway components in endothelial precursor cells. Collectively, these data indicate that HIF-1a protein levels in the pulmonary epithelium must be tightly controlled for proper development of the epithelial and mesenchymal compartments.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
17
|
Yin Y, Wang F, Ornitz DM. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 2011; 138:3169-77. [PMID: 21750028 DOI: 10.1242/dev.065110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
18
|
Franco-Montoya ML, Boucherat O, Thibault C, Chailley-Heu B, Incitti R, Delacourt C, Bourbon JR. Profiling target genes of FGF18 in the postnatal mouse lung: possible relevance for alveolar development. Physiol Genomics 2011; 43:1226-40. [PMID: 21878612 DOI: 10.1152/physiolgenomics.00034.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Better understanding alveolarization mechanisms could help improve prevention and treatment of diseases characterized by reduced alveolar number. Although signaling through fibroblast growth factor (FGF) receptors is essential for alveolarization, involved ligands are unidentified. FGF18, the expression of which peaks coincidentally with alveolar septation, is likely to be involved. Herein, a mouse model with inducible, lung-targeted FGF18 transgene was used to advance the onset of FGF18 expression peak, and genome-wide expression changes were determined by comparison with littermate controls. Quantitative RT-PCR was used to confirm expression changes of selected up- and downregulated genes and to determine their expression profiles in the course of lung postnatal development. This allowed identifying so-far unknown target genes of the factor, among which a number are known to be involved in alveolarization. The major target was adrenomedullin, a promoter of lung angiogenesis and alveolar development, whose transcript was increased 6.9-fold. Other genes involved in angiogenesis presented marked expression increases, including Wnt2 and cullin2. Although it appeared to favor cell migration notably through enhanced expression of Snai1/2, FGF18 also induced various changes consistent with prevention of epithelial-mesenchymal transition. Together with antifibrotic effects driven by induction of E prostanoid receptor 2 and repression of numerous myofibroblast markers, this could prevent alveolar septation-driving mechanisms from becoming excessive and deleterious. Last, FGF18 up- or downregulated genes of extracellular matrix components and epithelial cell markers previously shown to be up- or downregulated during alveolarization. These findings therefore argue for an involvement of FGF18 in the control of various developmental events during the alveolar stage.
Collapse
|
19
|
Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2011; 353:242-58. [PMID: 21385574 DOI: 10.1016/j.ydbio.2011.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/12/2023]
Abstract
Six1 is a member of the six-homeodomain family of transcription factors. Six1 is expressed in multiple embryonic cell types and plays important roles in proliferation, differentiation and survival of precursor cells of different organs, yet its function during lung development was hitherto unknown. Herein we show that Six1(-/-) lungs are severely hypoplastic with greatly reduced epithelial branching and increased mesenchymal cellularity. Six1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Six1(-/-) lung epithelial cells show increased expression of differentiation markers, but loss of progenitor cell markers. Six1 overexpression in MLE15 lung epithelial cells in vitro inhibited cell differentiation, but increases the expression of progenitor cell markers. In addition, Six1(-/-) embryos and newborn mice exhibit mesenchymal overproliferation, decreased Fgf10 expression and severe defects in the smooth muscle component of the bronchi and major pulmonary vessels. These defects lead to rupture of major vessels in mutant lungs after birth. Treatment of Six1(-/-) epithelial explants in culture with recombinant Fgf10 protein restores epithelial branching. As Shh expression is abnormally increased in Six1(-/-) lungs, we also treated mutant mesenchymal explants with recombinant Shh protein and found that these explants were competent to respond to Shh and continued to grow in culture. Furthermore, inhibition of Shh signaling with cyclopamine stimulated Six1(-/-) lungs to grow and branch in culture. This study provides the first evidence for the requirement of Six1 in coordinating Shh-Fgf10 signaling in embryonic lung to ensure proper levels of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel and essential functions for Six1 as a critical coordinator of Shh-Fgf10 signaling during embryonic lung development. We propose that Six1 is hence critical for coordination of proper lung epithelial, mesenchymal and vascular development.
Collapse
|
20
|
Domyan ET, Sun X. Patterning and plasticity in development of the respiratory lineage. Dev Dyn 2010; 240:477-85. [PMID: 21337460 DOI: 10.1002/dvdy.22504] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2010] [Indexed: 11/07/2022] Open
Abstract
The mammalian respiratory lineage, consisting of the trachea and lung, originates from the ventral foregut in an early embryo. Reciprocal signaling interactions between the foregut epithelium and its associated mesenchyme guide development of the respiratory endoderm, from a naive sheet of cells to multiple cell types that line a functional organ. This review synthesizes current understanding of the early events in respiratory system development, focusing on three main topics: (1) specification of the respiratory system as a distinct organ of the endoderm, (2) patterning and differentiation of the nascent respiratory epithelium along its proximal-distal axis, and (3) plasticity of the respiratory cells during the process of development. This review also highlights areas in need of further study, including determining how early endoderm cells rapidly switch their responses to the same signaling cues during development, and how the general proximal-distal pattern of the lung is converted to fine-scale organization of multiple cell types along this axis.
Collapse
|
21
|
El-Hashash AHK, Al Alam D, Turcatel G, Bellusci S, Warburton D. Eyes absent 1 (Eya1) is a critical coordinator of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2010; 350:112-26. [PMID: 21129374 DOI: 10.1016/j.ydbio.2010.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 01/12/2023]
Abstract
The proper level of proliferation and differentiation along the proximodistal axis is crucial for lung organogenesis. Elucidation of the factors that control these processes will therefore provide important insights into embryonic lung development and regeneration. Eya1 is a transcription factor/protein phosphatase that regulates cell lineage specification and proliferation. Yet its functions during lung development are unknown. In this paper we show that Eya1(-/-) lungs are severely hypoplastic with reduced epithelial branching and increased mesenchymal cellularity. Eya1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Eya1(-/-) lung epithelial cells show loss of progenitor cell markers with increased expression of differentiation markers and cell cycle exit. In addition, Eya1(-/-) embryos and newborn mice exhibit severe defects in the smooth muscle component of the bronchi and major pulmonary vessels with decreased Fgf10 expression. These defects lead to rupture of the major vessels and hemorrhage into the lungs after birth. Treatment of Eya1(-/-) epithelial explants in culture with recombinant Fgf10 stimulates epithelial branching. Since Shh expression and activity are abnormally increased in Eya1(-/-) lungs, we tested whether genetically lowering Shh activity could rescue the Eya1(-/-) lung phenotype. Indeed, genetic reduction of Shh partially rescues Eya1(-/-) lung defects while restoring Fgf10 expression. This study provides the first evidence that Eya1 regulates Shh signaling in embryonic lung, thus ensuring the proper level of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel functions for Eya1 as a critical upstream coordinator of Shh-Fgf10 signaling during embryonic lung development. We conclude, therefore, that Eya1 function is critical for proper coordination of lung epithelial, mesenchymal and vascular development.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
22
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li C, Li A, Li M, Xing Y, Chen H, Hu L, Tiozzo C, Anderson S, Taketo MM, Minoo P. Stabilized beta-catenin in lung epithelial cells changes cell fate and leads to tracheal and bronchial polyposis. Dev Biol 2009; 334:97-108. [PMID: 19631635 DOI: 10.1016/j.ydbio.2009.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/15/2009] [Accepted: 07/09/2009] [Indexed: 01/22/2023]
Abstract
The precise mechanisms by which beta-catenin controls morphogenesis and cell differentiation remain largely unknown. Using embryonic lung development as a model, we deleted exon 3 of beta-catenin via Nkx2.1-cre in the Catnb[+/lox(ex3)] mice and studied its impact on epithelial morphogenesis. Robust selective accumulation of truncated, stabilized beta-catenin was found in Nkx2.1-cre;Catnb[+/lox(ex3)] lungs that were associated with the formation of polyp-like structures in the trachea and main-stem bronchi. Characterization of polyps suggests that accumulated beta-catenin impacts epithelial morphogenesis in at least two ways. "Intracellular" accumulation of beta-catenin blocked differentiation of spatially-appropriate airway epithelial cell types, Clara cells, ciliated cells and basal cells, and activated UCHL1, a marker for pulmonary neuroendocrine cells. There was also evidence for a "paracrine" impact of beta-catenin accumulation, potentially mediated via activation of Bmp4 that inhibited Clara and ciliated, but not basal cell differentiation. Thus, excess beta-catenin can alter cell fate determination by both direct and paracrine mechanisms.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Women's and Children's Hospital, USC Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Montesano R, Sarközi R, Schramek H. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells. Biochem Biophys Res Commun 2008; 374:164-8. [DOI: 10.1016/j.bbrc.2008.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/30/2022]
|
25
|
Winkler ME, Mauritz C, Groos S, Kispert A, Menke S, Hoffmann A, Gruh I, Schwanke K, Haverich A, Martin U. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells. CLONING AND STEM CELLS 2008; 10:49-64. [PMID: 18241124 DOI: 10.1089/clo.2007.0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.
Collapse
Affiliation(s)
- Monica E Winkler
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Metzger DE, Stahlman MT, Shannon JM. Misexpression of ELF5 disrupts lung branching and inhibits epithelial differentiation. Dev Biol 2008; 320:149-60. [PMID: 18544451 DOI: 10.1016/j.ydbio.2008.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 12/30/2022]
Abstract
ELF5, an Ets family transcription factor found exclusively in epithelial cells, is expressed in the distal lung epithelium during embryogenesis, then becomes restricted to proximal airways at the end of gestation and postnatally. To test the hypothesis that ELF5 represses distal epithelial differentiation, we generated a transgenic mouse model in which a doxycycline inducible HA-tagged mouse Elf5 transgene was placed under the control of the lung epithelium-specific human SFTPC promoter. We found that expressing high levels of ELF5 during early lung development disrupted branching morphogenesis and produced a dilated epithelium. The effects of ELF5 on morphogenesis were stage-dependent, since inducing the transgene on E16.5 had no effect on branching. ELF5 reduced expression of the distal lung epithelial differentiation markers Erm, Napsa and Sftpc, and type II cell ultrastructural differentiation was immature. ELF5 overexpression did not induce the proximal airway epithelial markers Ccsp and Foxj1, but did induce expression of p63, a marker of basal cells in the trachea and esophagus. High ELF5 levels also induced the expression of genes found in other endodermal epithelia but not normally associated with the lung. These results suggest that precise levels of ELF5 regulate the specification and differentiation of epithelial cells in the lung.
Collapse
Affiliation(s)
- David E Metzger
- Division of Pulmonary Biology, Cincinnati Children's Hosptial Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
27
|
|
28
|
Chen Z, Chintagari NR, Guo Y, Bhaskaran M, Chen J, Gao L, Jin N, Weng T, Liu L. Gene expression of rat alveolar type II cells during hyperoxia exposure and early recovery. Free Radic Biol Med 2007; 43:628-42. [PMID: 17640573 PMCID: PMC2075096 DOI: 10.1016/j.freeradbiomed.2007.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/26/2007] [Accepted: 05/23/2007] [Indexed: 12/18/2022]
Abstract
Alveolar epithelial cell (AEC) injury and repair during hyperoxia exposure and recovery have been investigated for decades, but the molecular mechanisms of these processes are not clear. To identify potentially important genes involved in lung injury and repair, we studied the gene expression profiles of isolated AEC II from control, 48-h hyperoxia-exposed (>95% O(2)), and 1-7 day recovering rats using a DNA microarray containing 10,000 genes. Fifty genes showed significant differential expression between two or more time points (P<0.05, fold change >2). These genes can be classified into 8 unique gene expression patterns. Real-time PCR verified 14 selected genes in three patterns related to hyperoxia exposure and early recovery. The change in the protein level for two of the selected genes, bmp-4 and retnla, paralleled that of the mRNA level. Many of these genes were found to be involved in cell proliferation and differentiation. In an in vitro AEC trans-differentiation culture model using AEC II isolated from control and 48-h hyperoxia-exposed rats, the expressions of the cell proliferation and differentiation genes identified above were consistent with their predicted roles in the trans-differentiation of AEC. These data indicate that a coordinated mechanism may control AEC differentiation during in vivo hyperoxia exposure and recovery as well as during in vitro AEC culture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Liu
- *Correspondence should be addressed to: Lin Liu, Ph.D., Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, Oklahoma 74078, Tel: (405) 744-4526, Fax: (405) 744-8263, E-mail:
| |
Collapse
|
29
|
Metzger DE, Xu Y, Shannon JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn 2007; 236:1175-92. [PMID: 17394208 DOI: 10.1002/dvdy.21133] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling has been shown to be essential for many aspects of normal lung development. To determine epithelial targets of FGF signaling, we cultured embryonic day (E) 11.5 mouse lungs for 24 hr in the presence or absence of the FGF receptor antagonist SU5402, which inhibited branching morphogenesis. Affymetrix gene chip analysis of treated and control epithelia identified several genes regulated by FGF signaling, including Elf5, a member of the Epithelial-specific Ets family of transcription factors. SU5402 reduced Elf5 expression in mesenchyme-free cultures of E12.5 epithelium, demonstrating that the inhibition was direct. In situ hybridization revealed that Elf5 had a dynamic pattern of expression during lung development. We found that expression of Elf5 was induced by FGF7 and FGF10, ligands that primarily bind FGFR2b. To further define the pathways by which FGFs activate Elf5 expression, we cultured E11.5 lung tips in the presence of compounds to inhibit FGF receptors (SU5402), PI3-Kinase/Akt-mediated signaling (LY294002), and MAP Kinase/Erk-mediated signaling (U0126). We found that SU5402 and LY294002 significantly reduced Elf5 expression, whereas U0126 had no effect. LY294002 also reduced Elf5 expression in cultures of purified epithelium. Finally, pAkt was coexpressed with Elf5 in the proximal epithelial airways of E17.5 lungs. These results demonstrate that Elf5 is an FGF-sensitive transcription factor in the lung with a dynamic pattern of expression and that FGF regulation of Elf5 by means of FGFR2b occurs through the PI3-Kinase/Akt pathway.
Collapse
Affiliation(s)
- David E Metzger
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | |
Collapse
|
30
|
Lü J, Qian J, Keppler D, Cardoso WV. Cathespin H is an Fgf10 target involved in Bmp4 degradation during lung branching morphogenesis. J Biol Chem 2007; 282:22176-84. [PMID: 17500053 DOI: 10.1074/jbc.m700063200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During lung development, signaling by Fgf10 (fibroblast growth factor 10) and its receptor Fgfr2b is critical for induction of a gene network that controls proliferation, differentiation, and branching of the epithelial tubules. The downstream events triggered by Fgf10-Fgfr2b signaling during this process are still poorly understood. In a global screen for transcriptional targets of Fgf10, we identified Ctsh (cathepsin H), a gene encoding a lysosomal cysteine protease of the papain family, highly up-regulated in the developing lung epithelium. Here we show that among other cathepsin genes present in the lung, Ctsh is the only family member selectively induced by Fgf10 in the lung epithelium. We provide evidence that, during branching morphogenesis, epithelial expression of Ctsh overlaps temporally and spatially with that of Bmp4 (bone morphogenetic protein 4), another target of Fgf10. Moreover, we show that Ctsh controls the availability of mature Bmp4 protein in the embryonic lung and that inhibiting Ctsh activity leads to a marked accumulation of Bmp4 protein and disruption of branching morphogenesis. Tightly controlled levels of Bmp4 signaling are critical for patterning of the distal lung epithelium. Our study suggests a potentially novel posttranscriptional mechanism in which Ctsh rapidly removes Bmp4 from forming buds to limit Bmp4 action. The presence of both Ctsh and Bmp4 or Bmp4 signaling activity in other developing structures, such as the kidney, yolk sac, and choroid plexus, suggests a possible general role of Ctsh in regulating Bmp4 proteolysis in different morphogenetic events.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
31
|
Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc Natl Acad Sci U S A 2006; 103:11724-9. [PMID: 16864775 PMCID: PMC1544237 DOI: 10.1073/pnas.0604946103] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pulmonary surfactant is a complex of lipids and proteins produced and secreted by alveolar type II cells that provides the low surface tension at the air-liquid interface. The phospholipid most responsible for providing the low surface tension in the lung is dipalmitoylphosphatidylcholine. Dipalmitoylphosphatidylcholine is synthesized in large part by phosphatidylcholine (PC) remodeling, and a lysophosphatidylcholine (lysoPC) acyltransferase is thought to play a critical role in its synthesis. However, this acyltransferase has not yet been identified. We have cloned full-length rat and mouse cDNAs coding for a lysoPC acyltransferase (LPCAT). LPCAT encodes a 535-aa protein of approximately 59 kDa that contains a transmembrane domain and a putative acyltransferase domain. When transfected into COS-7 cells and HEK293 cells, LPCAT significantly increased lysoPC acyltransferase activity. LPCAT preferred lysoPC as a substrate over lysoPA, lysoPI, lysoPS, lysoPE, or lysoPG and prefers palmitoyl-CoA to oleoyl-CoA as the acyl donor. This LPCAT was preferentially expressed in the lung, specifically within alveolar type II cells. Expression in the fetal lung and in rat type II cells correlated with the expression of the surfactant proteins. LPCAT expression in fetal lung explants was sensitive to dexamethasone and FGFs. KGF was a potent stimulator of LPCAT expression in cultured adult type II cells. We hypothesize that LPCAT plays a critical role in regulating surfactant phospholipid biosynthesis and suggest that understanding the regulation of LPCAT will offer important insight into surfactant phospholipid biosynthesis.
Collapse
Affiliation(s)
- Xueni Chen
- *Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206
| | - Brian A. Hyatt
- Department of Biology, Bethel University, 3900 Bethel Drive, St. Paul, MN 55112; and
| | - Michael L. Mucenski
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Robert J. Mason
- *Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206
- To whom correspondence should be addressed. E-mail:
| | - John M. Shannon
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| |
Collapse
|
32
|
Samadikuchaksaraei A, Cohen S, Isaac K, Rippon HJ, Polak JM, Bielby RC, Bishop AE. Derivation of distal airway epithelium from human embryonic stem cells. ACTA ACUST UNITED AC 2006; 12:867-75. [PMID: 16674299 DOI: 10.1089/ten.2006.12.867] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pluripotency of embryonic stem cells (ESC) is offering new opportunities in tissue engineering and cell therapy. We have shown previously that alveolar epithelial cells, specifically type II pneumocytes, can be derived from murine ESC and hypothesized that a similar protocol could be used successfully on human ESC. Undifferentiated human ESC were induced to form embryoid bodies that were transferred into adherent culture conditions and grown in a medium designed for the maintenance of mature small airway epithelium. On inverted microscopy, the generated cells showed the cobblestone-like morphology of epithelium. The presence of surfactant protein C, a specific marker of type II pneumocytes, and its corresponding RNA were demonstrated by immunostaining and reverse transcription polymerase chain reaction, respectively. Electron microscopy revealed frequent cells with the typical ultrastructure of type II pneumocytes. This study provides evidence for in vitro induction of the differentiation from human ESC of alveolar type II cells, which have the potential for therapeutic use or construction of an in vitro model of human lung.
Collapse
Affiliation(s)
- Ali Samadikuchaksaraei
- Tissue Engineering & Regenerative Medicine Centre, Imperial College Faculty of Medicine, Chelsea & Westminster Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
del Moral PM, De Langhe SP, Sala FG, Veltmaat JM, Tefft D, Wang K, Warburton D, Bellusci S. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung. Dev Biol 2006; 293:77-89. [PMID: 16494859 DOI: 10.1016/j.ydbio.2006.01.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 11/23/2005] [Accepted: 01/23/2006] [Indexed: 12/31/2022]
Abstract
Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.
Collapse
Affiliation(s)
- Pierre-Marie del Moral
- Developmental Biology Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin S, Perl AKT, Shannon JM. Erm/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. J Biol Chem 2006; 281:16716-26. [PMID: 16613858 DOI: 10.1074/jbc.m602221200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Expression of surfactant protein C (SP-C), which is restricted to alveolar type II epithelial cells of the adult lung, is critically dependent on thyroid transcription factor 1 (TTF-1). In the present study we have demonstrated that Erm, a member of the Ets family of transcription factors, is expressed in the distal lung epithelium during development and is also restricted to alveolar type II cells in the adult. Erm was up-regulated by fibroblast growth factors (FGFs) in culture, and blocking FGF signaling inhibited Erm expression both in vivo and in vitro. The SP-C minimal promoter was found to contain two potential Ets binding sites, and electrophoretic mobility shift assays showed that two 20-bp wild-type oligonucleotides containing the 5'-GGA(A/T)-3' Ets consensus binding motif were shifted by nuclear extracts from MLE15 cells. Co-transfection assays showed that Erm by itself had little effect on SP-C promoter activity but that Erm significantly enhanced TTF-1-mediated SP-C transcription. Mutation of one of the Ets binding sites reduced SP-C transcription to background levels, whereas mutation of the other site resulted in increased SP-C transcription. Protein-protein interactions between Erm and TTF-1 were demonstrated by mammalian two-hybrid assays and by co-immunoprecipitation assays. Mapping studies showed that the Ets domain of Erm and the combined N terminus and homeodomain of TTF-1 were critical for this interaction. Treatment of primary cultures of adult alveolar type II cells with siRNA targeting Erm diminished expression of both Erm and SP-C but had no effect on beta-actin or GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Taken together, these results demonstrate that Erm is involved in SP-C regulation, which results from an interaction with TTF-1.
Collapse
Affiliation(s)
- Sui Lin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
35
|
Jesudason EC, Smith NP, Connell MG, Spiller DG, White MRH, Fernig DG, Losty PD. Peristalsis of airway smooth muscle is developmentally regulated and uncoupled from hypoplastic lung growth. Am J Physiol Lung Cell Mol Physiol 2006; 291:L559-65. [PMID: 16603591 DOI: 10.1152/ajplung.00498.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prenatal airway smooth muscle (ASM) peristalsis appears coupled to lung growth. Moreover, ASM progenitors produce fibroblast growth factor-10 (FGF-10) for lung morphogenesis. Congenital diaphragmatic hernia (CDH) is associated with lung hypoplasia, FGF-10 deficiency, and postnatal ASM dysfunction. We hypothesized ASM dysfunction emerges in tandem with, and may contribute toward, the primordial lung hypoplasia that precedes experimental CDH. Spatial origin and frequency of ASM peristaltic waves were measured in normal and hypoplastic rat lungs cultured from day 13.5 of gestation (lung hypoplasia was generated by nitrofen dosing of pregnant dams). Longitudinal lung growth was assayed by bud counts and tracing photomicrographs of cultures. Coupling of lung growth and peristalsis was tested by stimulation studies using serum, FGF-10, or nicotine and inhibition studies with nifedipine or U0126 (MEK1/2 inhibitor). In normal lung, ASM peristalsis is developmentally regulated: proximal ASM becomes quiescent (while retaining capacity for cholinergic-stimulated peristalsis). However, in hypoplastic lung, spontaneous proximal ASM activity persists. FGF-10 corrects this aberrant ASM activity in tandem with improved growth. Stimulation and inhibition studies showed that, unlike normal lung, changes in growth or peristalsis are not consistently accompanied by parallel modulation of the other. ASM peristalsis undergoes FGF-10-regulated spatiotemporal development coupled to lung growth: this process is disrupted early in lung hypoplasia. ASM dysfunction emerges in tandem with and may therefore contribute toward lung hypoplasia in CDH.
Collapse
Affiliation(s)
- E C Jesudason
- Division of Child Health, Centre for Cell Imaging, The Molecular Medicine Group, University of Liverpool, Institute of Child Health, Alder Hey Children's Hospital, Eaton Road, Liverpool, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
36
|
Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BLM. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol 2006; 291:67-82. [PMID: 16414041 DOI: 10.1016/j.ydbio.2005.12.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/22/2005] [Accepted: 12/01/2005] [Indexed: 12/26/2022]
Abstract
Lung development requires reciprocal epithelial/mesenchymal interactions, mediated by signaling factors such as Bmps made in both cell populations. To address the role of Bmp signaling in the epithelium, we have exploited the fact that Bmp receptor type Ia (Alk3) is expressed in the epithelium during branching morphogenesis. Deletion of Bmpr1a in the epithelium with an Sftpc-cre transgene leads to dramatic defects in lung development. There is reduced epithelial proliferation, extensive apoptosis, changes in cell morphology and extrusion of cells into the lumen. By E18.5, there are fewer Type II cells than normal, and the lung contains large fluid-filled spaces. If cell death is prevented by making embryos homozygous null for the proapoptotic gene, Bax, the epithelial cells that are rescued can apparently differentiate, but normal morphogenesis is not restored. To determine whether Bmps made by the epithelium can function in an autocrine manner, mesenchyme-free endoderm was cultured in Matrigel with Fgfs. Under these conditions, the mutant epithelium fails to undergo secondary budding. Abnormal development was also seen when Bmp4 was specifically deleted in the epithelium using the Sftpc-cre transgene. Our results support a model in which Bmp signaling primarily regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells.
Collapse
Affiliation(s)
- Maxwell C Eblaghie
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Kim SG, Yang BE, Oh SH, Min SK, Hong SP, Choi JY. The differential expression pattern of BMP-4 between the dentigerous cyst and the odontogenic keratocyst. J Oral Pathol Med 2005; 34:178-83. [PMID: 15689232 DOI: 10.1111/j.1600-0714.2004.00285.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bone morphogenic protein-4 (BMP-4) is widely expressed in oral cavity and involved in tooth morphogenesis, cellular differentiation and proliferation. The purpose of this study was to compare the difference in expression pattern of BMP-4 in odontogenic keratocysts (OKC) and dentigerous cysts (DC). METHODS We evaluated 77 cysts, OKC (n = 34) or DC (n = 43). The average age of patients with OKC was 29.5 +/- 14.4 and that of patients with DC was 36.1 +/- 19.4. The male to female ratio was 20:14 for OKC and 27:16 for DC. Ten cases of OKC were recurrences. Expression of BMP-4 was determined by immunohistochemistry and in situ hybridization. RESULTS The intensity scales were (-) for invisible or trace staining, (+) for visible staining, and (++) for dense, strong staining. OKCs exhibited the following staining patterns: the epithelium in 15/34 specimens and the mesenchymal cells in 17/34 specimens showed (++) stain. In contrast, the staining pattern of DC was (-) for epithelium in 37/43 specimens. The mesenchymal cells showed (-) degree staining in 30/43 specimens. The difference between the groups studied was significant (P < 0.001 in epithelium and mesenchymal cells). When recurrent and non-recurrent OKC were compared BMP-4 was expressed more intensely in the recurrent cases (P = 0.036 in epithelium). The difference in BMP-4 expression in mesenchymal cells was not significant. In situ hybridization demonstrated positive mRNA probes to BMP-4 were localized in epithelium and mesenchymal cells of OKCs and DCs. CONCLUSIONS BMP-4 was expressed more intensely in OKC when compared with DC, and was more intensely expressed in recurrent cases.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Medicine, Hallym University, Anyang, Korea.
| | | | | | | | | | | |
Collapse
|
38
|
Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone Morphogenic Proteins Are Overexpressed in Malignant Melanoma and Promote Cell Invasion and Migration. Cancer Res 2005. [DOI: 10.1158/0008-5472.448.65.2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Malignant melanoma cells are known to have altered expression of growth factors compared with normal human melanocytes. These changes probably favor tumor growth and progression and influence the tumor environment. The induction of transforming growth factor β1 (TGF-β1), TGF-β2, and TGF-β3 expression in malignant melanoma has been reported before, whereas the expression of related bone morphogenic protein (BMP) molecules has not been analyzed in melanomas until now. Here, we show that BMP4 and BMP7 are up-regulated in nine melanoma cell lines, whereas BMP2 is overexpressed in only two of the analyzed cell lines. Immunohistochemistry of primary and metastatic melanoma also shows increased BMP4 and BMP7 expression compared with nevi. Promoter studies reveal that expression is controlled at the transcriptional level. The transcription factor Ets-1 was identified as a positive regulator for BMP4 expression. In order to determine the functional relevance of BMP expression in malignant melanoma, chordin-expressing cell clones and antisense BMP4 cell clones were generated. The clones in which BMP4 activity and expression are reduced show no changes in proliferation or in attachment-independent growth when compared with controls. However, a strong reduction of migratory and invasive properties was observed in these cells, suggesting that BMP4 promotes melanoma cell invasion and migration and therefore has an important role in the progression of malignant melanoma.
Collapse
Affiliation(s)
| | - Ina Poser
- 1University of Regensburg Medical School, Regensburg, Germany
| | - Fabrice Soncin
- 2Centre National de la Recherche Scientifique UMR8526, Institut de Biologie de Lille, Lille, France; and
| | - Frauke Bataille
- 1University of Regensburg Medical School, Regensburg, Germany
| | - Markus Moser
- 3Max-Plank-Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
39
|
Hyatt BA, Shangguan X, Shannon JM. FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium. Am J Physiol Lung Cell Mol Physiol 2005; 287:L1116-26. [PMID: 15531758 DOI: 10.1152/ajplung.00033.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction, growth, and differentiation of epithelial lung buds are regulated by the interaction of signals between the lung epithelium and its surrounding mesenchyme. Fibroblast growth factor-10 (FGF-10), which is expressed in the mesenchyme near the distal tips, and bone morphogenetic protein 4 (BMP4), which is expressed in the most distal regions of the epithelium, are important molecules in lung morphogenesis. In the present study, we used two in vitro systems to examine the induction, growth, and differentiation of lung epithelium. Transfilter cultures were used to determine the effect of diffusible factors from the distal lung mesenchyme (LgM) on epithelial branching, and FGF-10 bead cultures were used to ascertain the effect of a high local concentration of a single diffusible molecule on the epithelium. Embryonic tracheal epithelium (TrE) was induced to grow in both culture systems and to express the distal epithelial marker surfactant protein C at the tips nearest the diffusible protein source. TrE cultured on the opposite side of a filter to LgM branched in a pattern resembling intact lungs, whereas TrE cultured in apposition to an FGF-10 bead resembled a single elongating epithelial bud. Examination of the role of BMP4 on lung bud morphogenesis revealed that BMP4 signaling suppressed expression of the proximal epithelial genes Ccsp and Foxj1 in both types of culture and upregulated the expression of Sprouty 2 in TrE cultured with an FGF-10 bead. Antagonizing BMP signaling with Noggin, however, increased expression of both Ccsp and Foxj1.
Collapse
Affiliation(s)
- Brian A Hyatt
- Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
40
|
Abstract
Classical experiments in embryology have shown that normal growth, morphogenetic patterning, and cellular differentiation in the developing lung depend on interactive signaling between the endodermal epithelium and mesenchyme derived from splanchnic mesoderm. These interactions are mediated by a myriad of diffusible factors that are precisely regulated in their temporal and spatial expression. In this review we first describe factors regulating formation of the embryonic foregut. We then discuss the experiments demonstrating the importance of tissue interactions in lung patterning and differentiation. Finally, we detail the roles that a few key signaling systems-fibroblast growth factors and their receptors, sonic hedgehog and Gli genes, Wnt genes and beta-catenin, and BMP4-play as mediators of epithelial-mesenchymal interactions in the developing lung.
Collapse
Affiliation(s)
- John M Shannon
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
41
|
Izvolsky KI, Zhong L, Wei L, Yu Q, Nugent MA, Cardoso WV. Heparan sulfates expressed in the distal lung are required for Fgf10 binding to the epithelium and for airway branching. Am J Physiol Lung Cell Mol Physiol 2003; 285:L838-46. [PMID: 12818887 DOI: 10.1152/ajplung.00081.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor (Fgf) 10 is a critical regulator of bud formation during lung morphogenesis. fgf10 is expressed in distal lung mesenchyme at sites of prospective budding from the earliest developmental stages and signals through its epithelial receptor Fgfr2b. Experiments in intact lung organ cultures demonstrate that Fgf10 is a chemotactic factor for distal, but not for proximal, epithelium. This differential response suggests the involvement of an additional mechanism regulating Fgf10-Fgfr2b interactions, because Fgfr2b is uniformly expressed throughout the respiratory tract. Here we use an immunohistochemistry-based binding assay to show that O-sulfated heparan sulfates (HS) are critical for Fgf10 binding to the distal epithelium. We show that altering endogenous gradients of HS sulfation with sodium chlorate or over-O-sulfated synthetic heparin in lung organ cultures dramatically decreases Fgf10 binding. Moreover, we show that under these conditions epithelial binding is not improved by providing exogenous FGF10. Our data suggest that, not only ligand availability, but also the presence of specific patterns of HS modification in the distal lung epithelium are critical determinants of Fgf10 binding to the epithelium and signaling.
Collapse
Affiliation(s)
- Konstantin I Izvolsky
- Pulmonary Ctr., Boston Univ. School of Medicine, 80 E. Concord St. R-304, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
42
|
Liu Y, Jiang H, Crawford HC, Hogan BLM. Role for ETS domain transcription factors Pea3/Erm in mouse lung development. Dev Biol 2003; 261:10-24. [PMID: 12941618 DOI: 10.1016/s0012-1606(03)00359-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the development of the mouse lung, the expression of a number of genes, including those encoding growth factors and components of their downstream signaling pathways, is enriched in the epithelium and/or mesenchyme of the distal buds. In this location, they regulate processes such as cell proliferation, branching morphogenesis, and the differentiation of specialized cell types. Here, we report that the expression of Pea3 and Erm (or Etv5, Ets variant gene 5), which encode Pea3 subfamily ETS domain transcription factors, is initially restricted to the distal buds of the developing mouse lung. Erm is transcribed exclusively in the epithelium, while Pea3 is expressed in both epithelium and mesenchyme. Erm/Pea3 are downstream of FGF signaling from the mesenchyme, but their responses toward different FGFs are not the same. The functions of the two proteins were investigated by transgenic expression of a repressor form of Erm specifically in the embryonic lung epithelium. When examined at E18.5, the distal epithelium of transgenic lungs is composed predominantly of immature type II cells, while no mature type I cells are observed. In contrast, the differentiation of proximal epithelial cells, including ciliated cells and Clara cells, appears to be unaffected. A model is proposed for the role of Pea3/Erm during the dynamic process of lung bud outgrowth and proximal-distal differentiation, in response to FGF signaling. Our results provide the first functional evidence that Pea3 subfamily members play a role in epithelial-mesenchymal interactions during lung organogenesis.
Collapse
Affiliation(s)
- Yuru Liu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The mechanisms that control proliferation and differentiation of embryonic lung mesenchyme are largely unknown. We describe an explant system in which exogenous recombinant N-Sonic Hedgehog (N-Shh) protein sustains the survival and proliferation of lung mesenchyme in a dose-dependent manner. In addition, Shh upregulates several mesenchymal cell markers, including its target gene Patched (Ptc), intercellular signaling genes Bone Morphogenetic Protein-4 (Bmp4) and Noggin (Nog), and smooth muscle actin and myosin. In explants exposed to N-Shh in the medium, these products are upregulated throughout the mesenchyme, but not in the periphery. This exclusion zone correlates with the presence of an overlying mesothelial layer, which, as in vivo, expresses Fibroblast Growth Factor 9 (Fgf9). Recombinant Fgf9 protein inhibits the differentiation response of the mesenchyme to N-Shh, but does not affect proliferation. We propose a model for how factors made by two epithelial cell populations, the inner endoderm and the outer jacket of mesothelium, coordinately regulate the proliferation and differentiation of the lung mesoderm.
Collapse
Affiliation(s)
- Molly Weaver
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2175, USA
| | | | | |
Collapse
|