1
|
Selina PI, Alekseenko IV, Kurtova AI, Pleshkan VV, Voronezhskaya EE, Demidyuk IV, Kostrov SV. Efficiency of Promoters of Human Genes FAP and CTGF at Organism Level in a Danio rerio Model. Int J Mol Sci 2023; 24:ijms24087192. [PMID: 37108352 PMCID: PMC10138699 DOI: 10.3390/ijms24087192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein (FAP) and the connective tissue growth factor (CTGF) can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment. However, the efficiency of these promoters within genetic constructs remains underexplored, particularly, at the organism level. Here, we used the model of Danio rerio embryos to study the efficiency of transient expression of marker genes under the control of promoters of the FAP, CTGF, and immediate early genes of Human cytomegalovirus (CMV). Within 96 h after the injection of vectors, the CTGF and CMV promoters provided similar equal efficiency of reporter protein accumulation. In the case of the FAP promoter, a high level of reporter protein accumulation was observed only in certain zebrafish individuals that were considered developmentally abnormal. Disturbed embryogenesis was the factor of changes in the exogenous FAP promoter function. The data obtained make a significant contribution to understanding the function of the human CTGF and FAP promoters within vectors to assess their potential in gene therapy.
Collapse
Affiliation(s)
- Polina I Selina
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Irina V Alekseenko
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Victor V Pleshkan
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Ilya V Demidyuk
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Sergey V Kostrov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| |
Collapse
|
2
|
Geng H, Su Y, Huang R, Fan M, Li X, Lu X, Sheng H. Specific protein 1 inhibitor mithramycin A protects cardiomyocytes from myocardial infarction via interacting with PARP. In Vitro Cell Dev Biol Anim 2021; 57:315-323. [PMID: 33580416 DOI: 10.1007/s11626-021-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Specific protein 1 (SP1) might act as a critical transcription regulator in myocardial infarction (MI), but little evidence about its function in regulating cardiac apoptosis, a major cause of MI development, has been revealed. This study tried to investigate the role of SP1 in MI and its interaction with poly-ADP-ribose polymerase (PARP)-1 by using SP1 inhibitor, mithramycin A (mithA). Primary mouse cardiomyocytes and commercial mouse cardiomyocytes were subjected to mithA treatment under hypoxia conditions, while cell viability, Nix promoter activity, and its expression were detected correspondingly. PARP overexpression and knockdown were conducted, respectively, in mithA-treated and SP1-overexpressing cells. Co-immunoprecipitation was used to verify the interaction between PARP and SP1. For in vivo experiments, mithA administration was performed after the injections of adenovirus for PARP overexpression, and then, MI introduction was carried out. Infarct size and lactate dehydrogenase level were measured to assess MI injury. SP1 inhibitor mithA attenuated hypoxia-induced decrease of cell viability and Nix transcriptional activation, which could be inhibited by PARP overexpression. Knockdown of PARP prevented SP1-induced transcription of Nix and cell viability change, and PARP showed direct interaction with SP1. Furthermore, mithA administration reduced MI injuries, while PARP overexpression could suppress the improvement. The cardioprotective role of SP1 inhibitor mithA was demonstrated here expanding the role of SP1 in MI development involving hypoxia-induced cardiac apoptosis. Moreover, PARP acted as a transcriptional coactivator in Nix transcription involving its interaction with SP1.
Collapse
Affiliation(s)
- Haihua Geng
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Yamin Su
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Rong Huang
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Mengkang Fan
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Xiaofei Li
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Xiaochen Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Goudy J, Henley T, Méndez HG, Bressan M. Simplified platform for mosaic in vivo analysis of cellular maturation in the developing heart. Sci Rep 2019; 9:10716. [PMID: 31341189 PMCID: PMC6656758 DOI: 10.1038/s41598-019-47009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardiac cells develop within an elaborate electro-mechanical syncytium that continuously generates and reacts to biophysical force. The complexity of the cellular interactions, hemodynamic stresses, and electrical circuitry within the forming heart present significant challenges for mechanistic research into the cellular dynamics of cardiomyocyte maturation. Simply stated, it is prohibitively difficult to replicate the native electro-mechanical cardiac microenvironment in tissue culture systems favorable to high-resolution cellular/subcellular analysis, and current transgenic models of higher vertebrate heart development are limited in their ability to manipulate and assay the behavior of individual cells. As such, cardiac research currently lacks a simple experimental platform for real-time evaluation of cellular function under conditions that replicate native development. Here we report the design and validation of a rapid, low-cost system for stable in vivo somatic transgenesis that allows for individual cells to be genetically manipulated, tracked, and examined at subcellular resolution within the forming four-chambered heart. This experimental platform has several advantages over current technologies, chief among these being that mosaic cellular perturbations can be conducted without globally altering cardiac function. Consequently, direct analysis of cellular behavior can be interrogated in the absence of the organ level adaptions that often confound data interpretation in germline transgenic model organisms.
Collapse
Affiliation(s)
- Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA. .,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
4
|
Naraballobh W, Trakooljul N, Muráni E, Brunner R, Krischek C, Janisch S, Wicke M, Ponsuksili S, Wimmers K. Immediate and long-term transcriptional response of hind muscle tissue to transient variation of incubation temperature in broilers. BMC Genomics 2016; 17:323. [PMID: 27142659 PMCID: PMC4855815 DOI: 10.1186/s12864-016-2671-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
Background In oviparous species accidental variation of incubation temperatures may occur under natural conditions and mechanisms may have evolved by natural selection that facilitate coping with these stressors. However, under controlled artificial incubation modification of egg incubation temperature has been shown to have a wide-ranging impact on post-hatch development in several poultry species. Because developmental changes initiated in-ovo can affect poultry production, understanding the molecular routes and epigenetic alterations induced by incubation temperature differences may allow targeted modification of phenotypes. Results In order to identify molecular pathways responsive to variable incubation temperature, broiler eggs were incubated at a lower or higher temperature (36.8 °C, 38.8 °C) relative to control (37.8 °C) over two developmental intervals, embryonic days (E) 7–10 and 10–13. Global gene expression of M. gastrocnemius was assayed at E10, E13, and slaughter age [post-hatch day (D) 35] (6 groups; 3 time points; 8 animals each) by microarray analysis and treated samples were compared to controls within each time point. Transcript abundance differed for between 113 and 738 genes, depending on treatment group, compared to the respective control. In particular, higher incubation temperature during E7-10 immediately affected pathways involved in energy and lipid metabolism, cell signaling, and muscle development more so than did other conditions. But lower incubation temperature during E10-13 affected pathways related to cellular function and growth, and development of organ, tissue, and muscle as well as nutrient metabolism pathways at D35. Conclusion Shifts in incubation temperature provoke specific immediate and long-term transcriptional responses. Further, the transcriptional response to lower incubation temperature, which did not affect the phenotypes, mediates compensatory effects reflecting adaptability. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype, reflecting considerable phenotypic plasticity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2671-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Watcharapong Naraballobh
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Ronald Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, D-30173, Hannover, Germany
| | - Sabine Janisch
- Department of Animal Science, Quality of Food of Animal Origin, Georg-August-University Goettingen, D-37075, Goettingen, Germany
| | - Michael Wicke
- Department of Animal Science, Quality of Food of Animal Origin, Georg-August-University Goettingen, D-37075, Goettingen, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany.
| |
Collapse
|
5
|
Abstract
Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.
Collapse
|
6
|
Harlan SM, Reiter RS, Sigmund CD, Lin JLC, Lin JJC. Requirement of TCTG(G/C) Direct Repeats and Overlapping GATA Site for Maintaining the Cardiac-Specific Expression of Cardiac troponin T in Developing and Adult Mice. Anat Rec (Hoboken) 2008; 291:1574-86. [PMID: 18951515 PMCID: PMC2592506 DOI: 10.1002/ar.20772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cardiac-specific -497 bp promoter of rat cardiac troponin T (cTnT) contains two similar modules, D and F, each of which possesses TCTG(G/C) direct repeats and A/T-rich sites. To identify cis-elements critical for cardiac specificity, a -249 bp promoter containing only module F and its site-directed mutations were used to generate transgenic mice. Transgene expression of the -249 bp promoter remained cardiac-specific, despite low and nonuniform expression. The nonuniform expression pattern of the transgene coincided with differential expression of HMGB1, which appeared to be the predominant form of HMGB family proteins in the heart. The HMGB1 binds to the A/T-rich/MEF2-like sites of the cTnT promoter, as determined by chromatin immunoprecipitation assays. Mice carrying the -249 bp promoter with point mutations disrupting the direct repeats expressed transgene at lower levels in the heart and ectopically in the brain. Ectopic expression of transgene was also observed in developing limbs and head. These results suggest an important role for the direct repeat in determining the cardiac specificity. Furthermore, mice carrying a mutant promoter simultaneously disrupting the direct repeats and overlapping GATA site failed to express the transgene in any tissues tested. Therefore, the direct repeat and overlapping GATA site are critical for the expression level and cardiac specificity. The F module controls one level of cardiac specificity. For a uniform and high level of cardiac-specific expression, the upstream element (-497 to -250 bp) is further required, possibly through the D enhancer module and the combination of Nkx2.5 and GATA sites.
Collapse
MESH Headings
- Animals
- Base Sequence/genetics
- Body Patterning/genetics
- Calcium Signaling/genetics
- Cell Differentiation/genetics
- Enhancer Elements, Genetic/genetics
- GATA Transcription Factors/genetics
- Gene Expression Regulation, Developmental/genetics
- Heart/embryology
- Mice
- Mice, Transgenic
- Muscle Contraction/genetics
- Mutagenesis, Site-Directed
- Myocardium/metabolism
- Myocardium/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Point Mutation/genetics
- Promoter Regions, Genetic/genetics
- Regulatory Elements, Transcriptional/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Transcription, Genetic/genetics
- Transgenes/genetics
- Troponin T/biosynthesis
- Troponin T/genetics
Collapse
Affiliation(s)
- Shannon M. Harlan
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324
| | - Rebecca S. Reiter
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324
| | - Curt D. Sigmund
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242-1324
| | - Jenny Li-Chun Lin
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324
| | | |
Collapse
|
7
|
Pasquet S, Naye F, Faucheux C, Bronchain O, Chesneau A, Thiébaud P, Thézé N. Transcription Enhancer Factor-1-dependent Expression of the α-Tropomyosin Gene in the Three Muscle Cell Types. J Biol Chem 2006; 281:34406-20. [PMID: 16959782 DOI: 10.1074/jbc.m602282200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In vertebrates, the actin-binding proteins tropomyosins are encoded by four distinct genes that are expressed in a complex pattern during development and muscle differentiation. In this study, we have characterized the transcriptional machinery of the alpha-tropomyosin (alpha-Tm) gene in muscle cells. Promoter analysis revealed that a 284-bp proximal promoter region of the Xenopus laevis alpha-Tm gene is sufficient for maximal activity in the three muscle cell types. The transcriptional activity of this promoter in the three muscle cell types depends on both distinct and common cis-regulatory sequences. We have identified a 30-bp conserved sequence unique to all vertebrate alpha-Tm genes that contains an MCAT site that is critical for expression of the gene in all muscle cell types. This site can bind transcription enhancer factor-1 (TEF-1) present in muscle cells both in vitro and in vivo. In serum-deprived differentiated smooth muscle cells, TEF-1 was redistributed to the nucleus, and this correlated with increased activity of the alpha-Tm promoter. Overexpression of TEF-1 mRNA in Xenopus embryonic cells led to activation of both the endogenous alpha-Tm gene and the exogenous 284-bp promoter. Finally, we show that, in transgenic embryos and juveniles, an intact MCAT sequence is required for correct temporal and spatial expression of the 284-bp gene promoter. This study represents the first analysis of the transcriptional regulation of the alpha-Tm gene in vivo and highlights a common TEF-1-dependent regulatory mechanism necessary for expression of the gene in the three muscle lineages.
Collapse
|
8
|
Azakie A, Fineman JR, He Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 2006; 291:H600-11. [PMID: 16617124 DOI: 10.1152/ajpheart.01305.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combinatorial interactions between cis elements and trans-acting factors are required for regulation of cardiac gene expression during normal cardiac development and pathological cardiac hypertrophy. Sp factors bind GC boxes and are implicated in recruitment and assembly of the basal transcriptional complex. In this study, we show that the cardiac troponin T (cTnT) promoter contains a GC box that is necessary for basal and cAMP-mediated activity of cTnT promoter constructs transfected in embryonic cardiomyocytes. Cardiac nuclear proteins bind the cTnT GC box in a sequence-specific fashion and consist of Sp1, Sp2, and Sp3 protein factors. By chromatin immunoprecipitation, Sp1 binds the cTnT promoter "in vivo." Cotransfected Sp1 trans-activates the cTnT promoter in cardiomyocytes in culture. Sp3 represses Sp1-mediated transcriptional activation of the cTnT gene in embryonic cardiomyocytes. Sp3 repression of Sp1-mediated cTnT promoter activation is dose dependent, inferring a mechanism of competitive binding/inhibition. To evaluate the role of Sp factors in cardiac gene expression in vivo, we have established a clinically relevant animal model of pathological cardiac hypertrophy where the fetal cardiac program is activated. In this animal model, cardiac hypertrophy results from increased left-right shunting, volume loading of the left ventricle, and pressure loading of the right ventricle. Sp1 expression is increased in all four hypertrophied cardiac chambers, whereas Sp3 expression is diminished. This observation is consistent with the in vitro activating function of Sp1 and inhibitory effects of Sp3 on activity of cTnT promoter constructs. Sp factor levels are modulated during the hypertrophic cardiac program in vivo.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
9
|
Azakie A, Lamont L, Fineman JR, He Y. Divergent transcriptional enhancer factor-1 regulates the cardiac troponin T promoter. Am J Physiol Cell Physiol 2005; 289:C1522-34. [PMID: 16049055 DOI: 10.1152/ajpcell.00126.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MCAT elements are essential for cardiac gene expression during development. Avian transcriptional enhancer factor-1 (TEF-1) proteins are muscle-enriched and contribute to MCAT binding activities. However, direct activation of MCAT-driven promoters by TEF-1-related proteins has not been uniformly achieved. Divergent TEF (DTEF)-1 is a unique member of the TEF-1 multigene family with abundant transcripts in the heart but not in skeletal muscle. Herein we show that DTEF-1 proteins are highly expressed in the heart. Protein expression is activated at very early stages of chick embryogenesis (Hamburger-Hamilton stage 4, 16–18 h), after which DTEF-1 becomes abundant in the sinus venosus and is expressed in the trabeculated ventricular myocardium and ventricular outflow tracts. By chromatin immunoprecipitation, DTEF-1 interacts with the cardiac troponin T (cTnT) promoter in vivo. DTEF-1 also interacts with MEF- 2 by coimmunoprecipitation and independently or cooperatively (with MEF-2) trans-activates the cTnT promoter. DTEF-1 isoforms do not activate the cTnT promoter in fibroblasts or skeletal muscle. DTEF-1 expression occurs very early in chick embryogenesis (16–18 h), preceding sarcomeric protein expression, and it activates cardiac promoters. As such, DTEF-1 may be an early marker of the myocardial phenotype. DTEF-1 trans-activates the cTnT promoter in a tissue-specific fashion independent of AT-rich, MEF-2, or GATA sites. The observed spatial pattern suggests decreasing levels of expression from the cardiac inlet to the ventricular outflow tracts, which may mark a cardiogenic or differentiation pathway that parallels the direction of flow through the developing chick heart.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
10
|
Shin JT, Priest JR, Ovcharenko I, Ronco A, Moore RK, Burns CG, MacRae CA. Human-zebrafish non-coding conserved elements act in vivo to regulate transcription. Nucleic Acids Res 2005; 33:5437-45. [PMID: 16179648 PMCID: PMC1236720 DOI: 10.1093/nar/gki853] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Whole genome comparisons of distantly related species effectively predict biologically important sequences--core genes and cis-acting regulatory elements (REs)--but require experimentation to verify biological activity. To examine the efficacy of comparative genomics in identification of active REs from anonymous, non-coding (NC) sequences, we generated a novel alignment of the human and draft zebrafish genomes, and contrasted this set to existing human and fugu datasets. We tested the transcriptional regulatory potential of candidate sequences using two in vivo assays. Strict selection of non-genic elements which are deeply conserved in vertebrate evolution identifies 1744 core vertebrate REs in human and two fish genomes. We tested 16 elements in vivo for cis-acting gene regulatory properties using zebrafish transient transgenesis and found that 10 (63%) strongly modulate tissue-specific expression of a green fluorescent protein reporter vector. We also report a novel quantitative enhancer assay with potential for increased throughput based on normalized luciferase activity in vivo. This complementary system identified 11 (69%; including 9 of 10 GFP-confirmed elements) with cis-acting function. Together, these data support the utility of comparative genomics of distantly related vertebrate species to identify REs and provide a scaleable, in vivo quantitative assay to define functional activity of candidate REs.
Collapse
Affiliation(s)
- Jordan T Shin
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|