1
|
Sur A, Wang Y, Capar P, Margolin G, Prochaska MK, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev Cell 2023; 58:3028-3047.e12. [PMID: 37995681 PMCID: PMC11181902 DOI: 10.1016/j.devcel.2023.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 h post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and identify unexpected long-term cycling populations. Focused clustering and transcriptional trajectory analyses of non-skeletal muscle and endoderm identified transcriptional profiles and candidate transcriptional regulators of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and recently discovered best4+ cells. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Morgan Kathleen Prochaska
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
2
|
Thottacherry JJ, Chen J, Johnston DS. Apical-basal polarity in the gut. Semin Cell Dev Biol 2023; 150-151:15-22. [PMID: 36670034 DOI: 10.1016/j.semcdb.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Apical-Basal polarity is a fundamental property of all epithelial cells that underlies both their form and function. The gut is made up of a single layer of intestinal epithelial cells, with distinct apical, lateral and basal domains. Occluding junctions at the apical side of the lateral domains create a barrier between the gut lumen and the body, which is crucial for tissue homeostasis, protection against gastrointestinal pathogens and for the maintenance of the immune response. Apical-basal polarity in most epithelia is established by conserved polarity factors, but recent evidence suggests that the gut epithelium in at least some organisms polarises by novel mechanisms. In this review, we discuss the recent advances in understanding polarity factors by focussing on work in C. elegans, Drosophila, Zebrafish and Mouse.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
3
|
Cattaneo N, Zarantoniello M, Conti F, Frontini A, Chemello G, Dimichino B, Marongiu F, Cardinaletti G, Gioacchini G, Olivotto I. Dietary Microplastic Administration during Zebrafish ( Danio rerio) Development: A Comprehensive and Comparative Study between Larval and Juvenile Stages. Animals (Basel) 2023; 13:2256. [PMID: 37508033 PMCID: PMC10376277 DOI: 10.3390/ani13142256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.
Collapse
Affiliation(s)
- Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Beniamino Dimichino
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Fabio Marongiu
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
4
|
Wei X, Tan X, Chen Q, Jiang Y, Wu G, Ma X, Fu J, Li Y, Gang K, Yang Q, Ni R, He J, Luo L. Extensive jejunal injury is repaired by migration and transdifferentiation of ileal enterocytes in zebrafish. Cell Rep 2023; 42:112660. [PMID: 37342912 DOI: 10.1016/j.celrep.2023.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
A major cause of intestinal failure (IF) is intestinal epithelium necrosis and massive loss of enterocytes, especially in the jejunum, the major intestinal segment in charge of nutrient absorption. However, mechanisms underlying jejunal epithelial regeneration after extensive loss of enterocytes remain elusive. Here, we apply a genetic ablation system to induce extensive damage to jejunal enterocytes in zebrafish, mimicking the jejunal epithelium necrosis that causes IF. In response to injury, proliferation and filopodia/lamellipodia drive anterior migration of the ileal enterocytes into the injured jejunum. The migrated fabp6+ ileal enterocytes transdifferentiate into fabp2+ jejunal enterocytes to fulfill the regeneration, consisting of dedifferentiation to precursor status followed by redifferentiation. The dedifferentiation is activated by the IL1β-NFκB axis, whose agonist promotes regeneration. Extensive jejunal epithelial damage is repaired by the migration and transdifferentiation of ileal enterocytes, revealing an intersegmental migration mechanism of intestinal regeneration and providing potential therapeutic targets for IF caused by jejunal epithelium necrosis.
Collapse
Affiliation(s)
- Xiangyong Wei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinmiao Tan
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qi Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Guozhen Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xue Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Gang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
5
|
Zhao X, Liu Y, Xie J, Zhang L, Zhu Q, Su L, Guo C, Li H, Wang G, Zhang W, Cheng Y, Wu N, Xia XQ. The manipulation of cell suspensions from zebrafish intestinal mucosa contributes to understanding enteritis. Front Immunol 2023; 14:1193977. [PMID: 37251394 PMCID: PMC10213505 DOI: 10.3389/fimmu.2023.1193977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background Although zebrafish are commonly used to study intestinal mucosal immunity, no dedicated procedure for isolating immune cells from zebrafish intestines is currently available. A speedy and simple operating approach for preparing cell suspension from mucosa has been devised to better understanding of intestinal cellular immunity in zebrafish. Methods and results The mucosal villi were separated away from the muscle layer by repeated blows. The complete deprivation of mucosa was done and evidenced by HE and qPCR results. Higher expression of both innate (mpeg1, mpx, and lck) and adaptive immune genes (zap70, blnk, foxp3a, and foxp3b) was revealed compared to cells obtained by typical mesh rubbing. The cytometric results also revealed that the tested operation group had a higher concentration and viability. Further, fluorescent-labelled immune cells from 3mo Tg(lyz:DsRED2), Tg(mpeg1:EGFP), Tg(Rag2:DsRED), and Tg(lck:EGFP), were isolated and evaluated for the proportion, and immune cells' type could be inferred from the expression of marker genes. The transcriptomic data demonstrated that the intestinal immune cell suspension made using the new technique was enriched in immune-related genes and pathways, including il17a/f, il22, cd59, and zap70, as well as pattern recognition receptor signaling and cytokine-cytokine receptor interaction. In addition, the low expression of DEG for the adherent and close junctions indicated less muscular contamination. Also, lower expression of gel-forming mucus-associated genes in the mucosal cell suspension was consistent with the current less viscous cell suspension. To apply and validate the developed manipulation, enteritis was induced by soybean meal diet, and immune cell suspensions were analyzed by flow cytometry and qPCR. The finding that in enteritis samples, there was inflammatory increase of neutrophils and macrophages, was in line with upregulated cytokines (il8 and il10) and cell markers (mpeg1 and mpx). Conclusion As a result, the current work created a realistic technique for studying intestinal immune cells in zebrafish. The immune cells acquired may aid in further research and knowledge of intestinal illness at the cellular level.
Collapse
Affiliation(s)
- Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Lian Su
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guangxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Sur A, Wang Y, Capar P, Margolin G, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533545. [PMID: 36993555 PMCID: PMC10055256 DOI: 10.1101/2023.03.20.533545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 hours post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and suggest new long-term cycling populations. Focused analyses of non-skeletal muscle and the endoderm identified transcriptional profiles of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and homologs of recently discovered human best4+ enterocytes. The transcriptional regulators of these populations remain unknown, so we reconstructed gene expression trajectories to suggest candidates. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20814
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| |
Collapse
|
7
|
Zhang W, Jiang A, Yu H, Dong B. Comparative Transcriptomic Analysis Reveals the Functionally Segmented Intestine in Tunicate Ascidian. Int J Mol Sci 2023; 24:6270. [PMID: 37047242 PMCID: PMC10094616 DOI: 10.3390/ijms24076270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The vertebrate intestinal system consists of separate segments that remarkably differ in morphology and function. However, the origin of intestinal segmentation remains unclear. In this study, we investigated the segmentation of the intestine in a tunicate ascidian species, Ciona savignyi, by performing RNA sequencing. The gene expression profiles showed that the whole intestine was separated into three segments. Digestion, ion transport and signal transduction, and immune-related pathway genes were enriched in the proximal, middle, and distal parts of the intestine, respectively, implying that digestion, absorption, and immune function appear to be regional specializations in the ascidian intestine. We further performed a multi-species comparison analysis and found that the Ciona intestine showed a similar gene expression pattern to vertebrates, indicating tunicates and vertebrates might share the conserved intestinal functions. Intriguingly, vertebrate pancreatic homologous genes were expressed in the digestive segment of the Ciona intestine, suggesting that the proximal intestine might play the part of pancreatic functions in C. savignyi. Our results demonstrate that the tunicate intestine can be functionally separated into three distinct segments, which are comparable to the corresponding regions of the vertebrate intestinal system, offering insights into the functional evolution of the digestive system in chordates.
Collapse
Affiliation(s)
- Wei Zhang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - An Jiang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory for Marine Science and Technology, Qingdao 266237, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
9
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
10
|
Heppert JK, Lickwar CR, Tillman MC, Davis BR, Davison JM, Lu HY, Chen W, Busch-Nentwich EM, Corcoran DL, Rawls JF. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022; 222:iyac133. [PMID: 36218393 PMCID: PMC9713462 DOI: 10.1093/genetics/iyac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew C Tillman
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Briana R Davis
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Chen
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - David L Corcoran
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Tavakoli S, Zhu S, Matsudaira P. Cell clusters containing intestinal stem cells line, the zebrafish intestine intervillus pocket. iScience 2022; 25:104280. [PMID: 35586068 PMCID: PMC9108511 DOI: 10.1016/j.isci.2022.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
In the mammalian intestine, stem cells (ISCs) replicate in basal crypts, translocate along the villus, and undergo cell death. This pattern of renewal occurs in the zebrafish intestine in which villi are elongated into villar ridges (VR) separated by intervillus pockets (IVP) but lack the infolded crypts. To understand how epithelial dynamics is maintained without crypts, we investigated the origin of epithelial lineage patterns derived from ISCs in the IVP of chimeric and zebrabow recombinant intestines. We found that the VR epithelium and IVP express the same recombinant colors when expression is under the control of ISC marker promoter prmt1. The expression originates from cell clusters that line the IVP and contain epithelial cells including Prmt1-labeled cells. Our data suggest that Prmt1 is a zebrafish ISC marker and the ISCs reside within basal cell clusters that are functionally analogous to crypts. Prmt1 is an intestinal stem cell marker in zebrafish Zebrafish intestinal stem cells reside within cell clusters lining the intervillus pocket Stripes of newly reproduced epithelial cells originate from the cell clusters
Collapse
Affiliation(s)
- Sahar Tavakoli
- Center for BioImaging Sciences, Department of Biological Sciences, Mechanobiology Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiwen Zhu
- Center for BioImaging Sciences, Department of Biological Sciences, Mechanobiology Institute, National University of Singapore, Singapore 119077, Singapore
| | - Paul Matsudaira
- Center for BioImaging Sciences, Department of Biological Sciences, Mechanobiology Institute, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
12
|
Jin X, Liu J, Wang S, Shi J, Zhao C, Xie H, Kang Y. E2f4 is required for intestinal and otolith development in zebrafish. J Cell Physiol 2022; 237:2690-2702. [DOI: 10.1002/jcp.30734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolin Jin
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
| | - Junjun Liu
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
| | - Jiale Shi
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences Ocean University of China Qingdao China
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences Ocean University of China Qingdao China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences Ocean University of China Qingdao China
| |
Collapse
|
13
|
A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Rep 2022; 38:110311. [PMID: 35108531 DOI: 10.1016/j.celrep.2022.110311] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Gut microbial products direct growth, differentiation, and development in animal hosts. However, we lack system-wide understanding of cell-specific responses to the microbiome. We profiled cell transcriptomes from the intestine, and associated tissue, of zebrafish larvae raised in the presence or absence of a microbiome. We uncovered extensive cellular heterogeneity in the conventional zebrafish intestinal epithelium, including previously undescribed cell types with known mammalian homologs. By comparing conventional to germ-free profiles, we mapped microbial impacts on transcriptional activity in each cell population. We revealed intricate degrees of cellular specificity in host responses to the microbiome that included regulatory effects on patterning and on metabolic and immune activity. For example, we showed that the absence of microbes hindered pro-angiogenic signals in the developing vasculature, causing impaired intestinal vascularization. Our work provides a high-resolution atlas of intestinal cellular composition in the developing fish gut and details the effects of the microbiome on each cell type.
Collapse
|
14
|
Rehman S, Gora AH, Siriyappagouder P, Brugman S, Fernandes JMO, Dias J, Kiron V. Zebrafish intestinal transcriptome highlights subdued inflammatory responses to dietary soya bean and efficacy of yeast β-glucan. JOURNAL OF FISH DISEASES 2021; 44:1619-1637. [PMID: 34237181 DOI: 10.1111/jfd.13484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Anti-nutritional factors in dietary components can have a negative impact on the intestinal barrier. Here, we present soya bean-induced changes in the intestine of juvenile zebrafish and the effect of yeast β-glucan through a transcriptomic approach. The inclusion of soya bean meal affected the expression of several intestinal barrier function-related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, elovl6, slc51a, gpat2 and ATP-dependent peptidase activity (lonrf, clpxb) were altered in the intestinal tissue. The expression of immune-related genes like nlrc3, nlrp12, gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA repair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean fed group. Furthermore, our study suggests the plausible effect of yeast β-glucan through the modulation of several genes that regulate immune responses and barrier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed soya bean meal and the efficacy of β-glucan to counter these subtle inflammatory responses.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Sylvia Brugman
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
15
|
Blitz E, Matsuda H, Guenther S, Morikawa T, Kubota Y, Zada D, Lerer-Goldshtein T, Stainier DYR, Appelbaum L. Thyroid Hormones Regulate Goblet Cell Differentiation and Fgf19-Fgfr4 Signaling. Endocrinology 2021; 162:6155754. [PMID: 33675223 DOI: 10.1210/endocr/bqab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Hypothyroidism is a common pathological condition characterized by insufficient activity of the thyroid hormones (THs), thyroxine (T4), and 3,5,3'-triiodothyronine (T3), in the whole body or in specific tissues. Hypothyroidism is associated with inadequate development of the intestine as well as gastrointestinal diseases. We used a zebrafish model of hypothyroidism to identify and characterize TH-modulated genes and cellular pathways controlling intestine development. In the intestine of hypothyroid juveniles and adults, the number of mucus-secreting goblet cells was reduced, and this phenotype could be rescued by T3 treatment. Transcriptome profiling revealed dozens of differentially expressed genes in the intestine of hypothyroid adults compared to controls. Notably, the expression of genes encoding to Fgf19 and its receptor Fgfr4 was markedly increased in the intestine of hypothyroid adults, and treatment with T3 normalized it. Blocking fibroblast growth factor (FGF) signaling, using an inducible dominant-negative Fgfr transgenic line, rescued the number of goblet cells in hypothyroid adults. These results show that THs inhibit the Fgf19-Fgfr4 signaling pathway, which is associated with inhibition of goblet cell differentiation in hypothyroidism. Both the TH and Fgf19-Fgfr4 signaling pathways can be pharmaceutical targets for the treatment of TH-related gastrointestinal diseases.
Collapse
Affiliation(s)
- Einat Blitz
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Stefan Guenther
- Cardio-Pulmonary Institute (CPI)-DNA & RNA Technologies, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Takuto Morikawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
16
|
Verdile N, Pasquariello R, Brevini TAL, Gandolfi F. The 3D Pattern of the Rainbow Trout ( Oncorhynchus mykiss) Enterocytes and Intestinal Stem Cells. Int J Mol Sci 2020; 21:E9192. [PMID: 33276531 PMCID: PMC7730110 DOI: 10.3390/ijms21239192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
We previously showed that, according to the frequency and distribution of specific cell types, the rainbow trout (RT) intestinal mucosa can be divided in two regions that form a complex nonlinear three-dimensional (3D) pattern and have a different renewal rate. This work had two aims. First, we investigated whether the unusual distribution of cell populations reflects a similar distribution of functional activities. To this end, we determined the protein expression pattern of three well-defined enterocytes functional markers: peptide transporter 1 (PepT1), sodium-glucose/galactose transporter 1 (SGLT-1), and fatty-acid-binding protein 2 (Fabp2). Second, we characterized the structure of RT intestinal stem-cell (ISC) niche and determined whether the different proliferative is accompanied by a different organization and/or extension of the stem-cell population. We studied the expression and localization of well-characterized mammal ISC markers: LGR5, HOPX, SOX9, NOTCH1, DLL1, and WNT3A. Our results indicate that morphological similarity is associated with similar function only between the first portion of the mid-intestine and the apical part of the complex folds in the second portion. Mammal ISC markers are all expressed in RT, but their localization is completely different, suggesting also substantial functional differences. Lastly, higher renewal rates are supported by a more abundant ISC population.
Collapse
Affiliation(s)
- Nicole Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (N.V.); (R.P.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (N.V.); (R.P.)
| | - Tiziana A. L. Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milano, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (N.V.); (R.P.)
| |
Collapse
|
17
|
The E. coli transcription factor GrlA is regulated by subcellular compartmentalization and activated in response to mechanical stimuli. Proc Natl Acad Sci U S A 2020; 117:9519-9528. [PMID: 32277032 DOI: 10.1073/pnas.1917500117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that colonizes the gastrointestinal tract and has evolved intricate mechanisms to sense and respond to the host environment. Upon the sensation of chemical and physical cues specific to the host's intestinal environment, locus of enterocyte effacement (LEE)-encoded virulence genes are activated and promote intestinal colonization. The LEE transcriptional activator GrlA mediates EHEC's response to mechanical cues characteristic of the intestinal niche, including adhesive force that results from bacterial adherence to epithelial cells and fluid shear that results from intestinal motility and transit. GrlA expression and release from its inhibitor GrlR was not sufficient to induce virulence gene transcription; mechanical stimuli were required for GrlA activation. The exact mechanism of GrlA activation, however, remained unknown. We isolated GrlA mutants that activate LEE transcription, independent of applied mechanical stimuli. In nonstimulated EHEC, wild-type GrlA associates with cardiolipin membrane domains via a patch of basic C-terminal residues, and this membrane sequestration is disrupted in EHEC that expresses constitutively active GrlA mutants. GrlA transitions from an inactive, membrane-associated state and relocalizes to the cytoplasm in response to mechanical stimuli, allowing GrlA to bind and activate the LEE1 promoter. GrlA expression and its relocalization in response to mechanical stimuli are required for optimal virulence regulation and colonization of the host intestinal tract during infection. These data suggest a posttranslational regulatory mechanism of the mechanosensor GrlA, whereby virulence gene expression can be rapidly fine-tuned in response to the highly dynamic spatiotemporal mechanical profile of the gastrointestinal tract.
Collapse
|
18
|
Li C, Barton C, Henke K, Daane J, Treaster S, Caetano-Lopes J, Tanguay RL, Harris MP. celsr1a is essential for tissue homeostasis and onset of aging phenotypes in the zebrafish. eLife 2020; 9:50523. [PMID: 31985398 PMCID: PMC7010407 DOI: 10.7554/elife.50523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
The use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages. We find that the phenotypes are due to loss-of-function in the non-classical cadherin celsr1a. The premature aging is not associated with increased cellular senescence or telomere length but is a result of a failure to maintain progenitor cell populations. We show that celsr1a is essential for maintenance of stem cell progenitors in late stages. Caloric restriction can ameliorate celsr1a aging phenotypes. These data suggest that celsr1a function helps to mediate stem cell maintenance during maturation and homeostasis of tissues and thus regulates the onset or expressivity of aging phenotypes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Carrie Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Jake Daane
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Joana Caetano-Lopes
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| |
Collapse
|
19
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
20
|
Li J, Dedloff MR, Stevens K, Maney L, Prochaska M, Hongay CF, Wallace KN. A novel group of secretory cells regulates development of the immature intestinal stem cell niche through repression of the main signaling pathways driving proliferation. Dev Biol 2019; 456:47-62. [PMID: 31398318 DOI: 10.1016/j.ydbio.2019.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has constant turnover throughout the life of the organ, with apoptosis of cells at the tips of folds or villi releasing cells into the lumen. Due to constant turnover, epithelial cells need to be constantly replaced. Epithelial cells are supplied by stem cell niches that form at the base of the interfold space (zebrafish) and crypts (birds and mammals). Within the adult stem cell niche of mammals, secretory cells such as Paneth and goblet cells play a role in modulation of proliferation and stem cell activity, producing asymmetric divisions. Progeny of asymmetric divisions move up the fold or villi, giving rise to all of the epithelial cell types. Although much is known about function and organization of the adult intestinal stem cell niche, less is understood about regulation within the immature stem cell compartment. Following smooth muscle formation, the intestinal epithelium folds and proliferation becomes restricted to the interfold base. Symmetric divisions continue in the developing interfold niche until stem cell progeny begin asymmetric divisions, producing progeny that migrate up the developing folds. Proliferative progeny from the developing stem cell niche begin migrating out of the niche during the third week post-embryogenesis (zebrafish) or during the postnatal period (mammals). Regulation and organization of epithelial proliferation in the immature stem cell niche may be regulated by signals comparable to the adult niche. Here we identify a novel subset of secretory cells associated with the developing stem cell niche that receive Notch signaling (referred to as NRSCs). Inhibition of the embryonic NRSCs between 74 hpf to 120 hpf increases epithelial proliferation as well as EGF and IGF signaling. Inhibition of post-embryonic NRSCs (6 hpf to 12 dpf) also increases epithelial proliferation and expression level of Wnt target genes. We conclude that NRSCs play a role in modulation of epithelial proliferation through repression of signaling pathways that drive proliferation during both embryogenesis and the post embryonic period.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Katrina Stevens
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Lea Maney
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Cintia F Hongay
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | |
Collapse
|