1
|
Gattoni G, Andrews TGR, Benito-Gutiérrez È. Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Front Neurosci 2022; 16:812223. [PMID: 35401089 PMCID: PMC8987370 DOI: 10.3389/fnins.2022.812223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that, despite apparent morphological simplicity, the amphioxus neural tube is highly regionalised at the molecular level. However, little is known about the morphogenetic mechanisms regulating the spatiotemporal emergence of cell types at distinct sites of the neural axis and how their arrangements contribute to the overall neural architecture. In vertebrates, proliferation is key to provide appropriate cell numbers of specific types to particular areas of the nervous system as development proceeds, but in amphioxus proliferation has never been studied at this level of detail, nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos, and identify specific regions of the nervous system that depend on proliferation of neuronal precursors at precise time-points for their maturation. By labelling proliferating cells in vivo at specific time points in development, and inhibiting cell division during neurulation, we demonstrate that localised proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongation of the caudal floor plate. Between these proliferative domains, we find that trunk nervous system differentiation is independent from cell division, in which proliferation decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight the importance of proliferation as a tightly controlled mechanism for shaping and regionalising the amphioxus neural axis during development, by addition of new cells fated to particular types, or by influencing tissue geometry.
Collapse
|
2
|
Krasovec G, Robine K, Quéinnec E, Karaiskou A, Chambon J. Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis. Dev Biol 2019; 448:237-246. [DOI: 10.1016/j.ydbio.2018.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/20/2023]
|
3
|
Kwak DH, Seo YN, Lee JH, Park SJ, Cho YH, Kim JS, Kim SU, Choo YK. GM1 Induced the inflammatory response related to the Raf-1/MEK1/2/ERK1/2 pathway in co-culture of pig mesenchymal stem cells with RAW264.7. Anim Cells Syst (Seoul) 2018; 22:157-164. [PMID: 30460093 PMCID: PMC6138341 DOI: 10.1080/19768354.2018.1453546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions. MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory proteins such as COX-2, iNOS, p50, p65, pIκBα, and TNF-α. GM1-knockdown pADMSCs co-cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2 were decreased and MEK1/2 and Raf1 were suppressed in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells. However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways. Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Institute of Glycosciences, Wonkwang University, Iksan, Republic of Korea.,Institute of Aribio, Sungnam, Republic of Korea
| | - You Na Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Ju Hyoung Lee
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Young Ho Cho
- Department of Pharmaceutics and Biotechnology, Medical Engineering College, Konyang University, Daejeon, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Republic of Korea.,Institute of Glycosciences, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
4
|
Zhang X, Liu X, Liu C, Wei J, Yu H, Dong B. Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics 2018; 19:168. [PMID: 29490613 PMCID: PMC5831862 DOI: 10.1186/s12864-018-4566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metamorphosis takes place within the life cycle of most marine invertebrates. The marine ascidian is a classical model to study complex cellular processes and underlying molecular mechanisms involved in its larval metamorphosis. The detailed molecular signaling pathways remain elusive, though extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinase (JNK) have been revealed to regulate cell migration, differentiation, and apoptosis in ascidian larval organ regression and juvenile organ development. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level. Large numbers of miRNAs have been demonstrated to be involved in many developmental and metamorphic processes. However, the identification of miRNAs in ascidian larval metamorphosis has not yet been investigated. RESULTS Totally, 106 known and 59 novel miRNAs were screened out through RNA-sequencing of three small RNA libraries from 18 to 21-h post-fertilization (hpf) tailbud embryos as well as from 42 hpf larvae (after tail regression) in Ciona savignyi. Expression profiling of miRNAs was confirmed by quantitative real-time PCR, showing that the expression levels of csa-miR-4040, csa-miR-4086, csa-miR-4055, csa-miR-4060, csa-miR-216a, csa-miR-216b, csa-miR-217, csa-miR-183, and csa-miR-92c were significantly higher in 42 hpf larvae, whereas those of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were higher in 18 and 21 hpf embryos; then, their expression in 42 hpf larvae became significantly low. For these 12 miRNAs, whose expression levels significantly changed, we predicted their target genes through the combination of miRanda and TargetScan. This prediction analysis revealed 332 miRNA-target gene pairs that were associated with the ERK, JNK, and transforming growth factor beta signaling pathways, suggesting that the identified miRNAs are involved in the regulation of C. savignyi larval metamorphosis via controlling the expression of their target genes. Furthermore, we validated the expression of five selected miRNAs by northern blotting. Among the selected miRNAs, the expression patterns of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were further examined by whole-mount in situ hybridization. The results showed that all three miRNAs were specifically expressed in a cell population resembling mesenchymal cells at the head and trunk part in swimming larvae but not in metamorphic larvae. Utilizing the luciferase assay, we also confirmed that miR-4000f targeted Mapk1, suggesting that the csa-miR-4018a/csa-miR-4018b/csa-miR-4000f cluster regulates larval metamorphosis through the Mapk1-mediated signaling pathway. CONCLUSIONS Totally, 165 miRNAs, including 59 novel ones, were identified from the embryos and larvae of C. savignyi. Twelve of them showed significant changes in expression before and during metamorphosis. In situ hybridization and northern blotting results revealed that three miRNAs are potentially involved in the signaling regulatory network for the migration and differentiation of mesenchymal cells in larval metamorphosis. Furthermore, the luciferase reporter assay revealed that Mapk1 is a target of csa-miR-4000f. Our results not only present a list and profile of miRNAs involved in Ciona metamorphosis but also provide informative cues to further understand their function in ascidian larval metamorphosis.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xiaozhuo Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Chengzhang Liu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003 People’s Republic of China
| |
Collapse
|
5
|
Ryan K, Lu Z, Meinertzhagen IA. The peripheral nervous system of the ascidian tadpole larva: Types of neurons and their synaptic networks. J Comp Neurol 2017; 526:583-608. [PMID: 29124768 DOI: 10.1002/cne.24353] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023]
Abstract
Physical and chemical cues from the environment are used to direct animal behavior through a complex network of connections originating in exteroceptors. In chordates, mechanosensory and chemosensory neurons of the peripheral nervous system (PNS) must signal to the motor circuits of the central nervous system (CNS) through a series of pathways that integrate and regulate the output to motor neurons (MN); ultimately these drive contraction of the tail and limb muscles. We used serial-section electron microscopy to reconstruct PNS neurons and their hitherto unknown synaptic networks in the tadpole larva of a sibling chordate, the ascidian, Ciona intestinalis. The larva has groups of neurons in its apical papillae, epidermal neurons in the rostral and apical trunk, caudal neurons in the dorsal and ventral epidermis, and a single tail tip neuron. The connectome reveals that the PNS input arises from scattered groups of these epidermal neurons, 54 in total, and has three main centers of integration in the CNS: in the anterior brain vesicle (which additionally receives input from photoreceptors of the ocellus), the motor ganglion (which contains five pairs of MN), and the tail, all of which in turn are themselves interconnected through important functional relay neurons. Some neurons have long collaterals that form autapses. Our study reveals interconnections with other sensory systems, and the exact inputs to the motor system required to regulate contractions in the tail that underlie larval swimming, or to the CNS to regulate substrate preference prior to the induction of larval settlement and metamorphosis.
Collapse
Affiliation(s)
- Kerrianne Ryan
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Sasakura Y, Hozumi A. Formation of adult organs through metamorphosis in ascidians. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29105358 DOI: 10.1002/wdev.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
The representative characteristic of ascidians is their vertebrate-like, tadpole shape at the larval stage. Ascidians lose the tadpole shape through metamorphosis to become adults with a nonmotile, sessile body and a shape generally considered distinct from that of vertebrates. Solitary ascidians including Ciona species are extensively studied to understand the developmental mechanisms of ascidians, and to compare these mechanisms with their counterparts in vertebrates. In these ascidian species, the digestive and circulatory systems are not well developed in the larval trunk and the larvae do not take food. This is in contrast with the inner conditions of vertebrate tadpoles, which have functional organs comparable to those of adults. The adult organs and tissues of these ascidians become functional during metamorphosis that is completed quickly, suggesting that the ascidian larvae of solitary species are a transient stage of development. We here discuss how the cells and tissues in the ascidian larval body are converted into those of adults. The hearts of ascidians and vertebrates use closely related cellular and molecular mechanisms that suggest their shared origin. Hox genes of ascidians are essential for forming adult endodermal structures. To fully understand the development and evolution of chordates, a complete elucidation of the mechanisms underlying the adult tissue/organ formation of ascidians will be needed. WIREs Dev Biol 2018, 7:e304. doi: 10.1002/wdev.304 This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
7
|
Moodie LWK, Trepos R, Cervin G, Larsen L, Larsen DS, Pavia H, Hellio C, Cahill P, Svenson J. Probing the Structure-Activity Relationship of the Natural Antifouling Agent Polygodial against both Micro- and Macrofoulers by Semisynthetic Modification. JOURNAL OF NATURAL PRODUCTS 2017; 80:515-525. [PMID: 28170258 DOI: 10.1021/acs.jnatprod.6b01056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The current study represents the first comprehensive investigation into the general antifouling activities of the natural drimane sesquiterpene polygodial. Previous studies have highlighted a high antifouling effect toward macrofoulers, such as ascidians, tubeworms, and mussels, but no reports about the general antifouling effect of polygodial have been communicated before. To probe the structural and chemical basis for antifouling activity, a library of 11 polygodial analogues was prepared by semisynthesis. The library was designed to yield derivatives with ranging polarities and the ability to engage in both covalent and noncovalent interactions, while still remaining within the drimane sesquiterpene scaffold. The prepared compounds were screened against 14 relevant marine micro- and macrofouling species. Several of the polygodial analogues displayed inhibitory activities at sub-microgram/mL concentrations. These antifouling effects were most pronounced against the macrofouling ascidian Ciona savignyi and the barnacle Balanus improvisus, with inhibitory activities observed for selected compounds comparable or superior to several commercial antifouling products. The inhibitory activity against the microfouling bacteria and microalgae was reversible and significantly less pronounced than for the macrofoulers. This study illustrates that the macro- and microfoulers are targeted by the compounds via different mechanisms.
Collapse
Affiliation(s)
- Lindon W K Moodie
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037, Tromsø, Norway
| | - Rozenn Trepos
- Biodimar LEMAR UMR 6539, Université de Bretagne Occidentale , 6 Avenue le Gorgeu, 29200 Brest, France
| | - Gunnar Cervin
- Department of Marine Sciences - Tjärnö, University of Gothenburg , SE-452 96 Strömstad, Sweden
| | - Lesley Larsen
- Department of Chemistry, University of Otago , P.O. Box 56, Dunedin, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago , P.O. Box 56, Dunedin, New Zealand
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg , SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Biodimar LEMAR UMR 6539, Université de Bretagne Occidentale , 6 Avenue le Gorgeu, 29200 Brest, France
| | - Patrick Cahill
- Cawthron Institute , 98 Halifax Street East, Nelson 7010, New Zealand
| | - Johan Svenson
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037, Tromsø, Norway
- Department of Chemistry, Material and Surfaces, SP Technical Research Institute of Sweden , Box 857, SE-501 15 Borås, Sweden
| |
Collapse
|
8
|
Franchi N, Ballin F, Manni L, Schiavon F, Basso G, Ballarin L. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:8-16. [PMID: 27106705 DOI: 10.1016/j.dci.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Colonies of the marine, filter-feeding ascidian Botryllus schlosseri undergo cyclical generation changes or takeovers. These events are characterised by the progressive resorption of adult zooids and their replacement by their buds that grow to adult size, open their siphons and start filtering. During the take-over, tissues of adult zooids undergo extensive apoptosis; circulating, spreading phagocytes enter the effete tissues, ingest dying cells acquiring a giant size and a round morphology. Then, phagocytes re-enter the circulation where they represent a considerable fraction (more than 20%) of circulating haemocytes. In this study, we evidence that most of these circulating phagocytes show morphological and biochemical signs of apoptosis. Accordingly, these phagocytes express transcripts of orthologues of the apoptosis-related genes Bax, AIF1 and PARP1. Electron microscopy shows that giant phagocytes contain apoptotic phagocytes inside their own phagocytic vacuole. The transcript of the orthologues of the anti-apoptotic gene IAP7 was detected only in spreading phagocytes, mostly abundant in phases far from the take-over. Therefore, the presented data suggest that, at take-over, phagocytes undergo phagocytosis-induced apoptosis (PIA). In mammals, PIA is assumed to be a process assuring the killing and the complete elimination of microbes, by promoting the disposal of terminally differentiated phagocytes and the resolution of infection. In B. schlosseri, PIA assumes a so far undescribed role, being required for the control of asexual development and colony homeostasis.
Collapse
Affiliation(s)
| | | | - Lucia Manni
- Department of Biology, University of Padova, Italy.
| | | | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| | | |
Collapse
|
9
|
Kwak DH, Heo SY, Kim CH, Kim JS, Kim SU, Chang KT, Choo YK. Anti-inflammatory actions of plant-derived multiple monoclonal antibody CO17-1A × BR55 related with anti-cancer effects in AOM/DSS-induced colorectal cancer mouse via down-regulating of ERK1/2. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1211176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
10
|
Matsunobu S, Sasakura Y. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis. Dev Biol 2015; 405:71-81. [PMID: 26102482 DOI: 10.1016/j.ydbio.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/27/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022]
Abstract
In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated.
Collapse
Affiliation(s)
- Shohei Matsunobu
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan.
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan
| |
Collapse
|
11
|
Gline S, Kaplan N, Bernadskaya Y, Abdu Y, Christiaen L. Surrounding tissues canalize motile cardiopharyngeal progenitors towards collective polarity and directed migration. Development 2015; 142:544-54. [PMID: 25564651 DOI: 10.1242/dev.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collectively migrating cells maintain group polarity and interpret external cues to reach their destination. The cardiogenic progenitors (also known as trunk ventral cells, TVCs) of the ascidian Ciona intestinalis provide a simple chordate model with which to study collective migration. Bilateral pairs of associated TVCs undergo a stereotyped polarized migration away from the tail towards the ventral trunk, arguably constituting the simplest possible example of directed collective migration. To identify tissues contributing to TVC polarity and migration, we quantified the contact between TVCs and surrounding tissues, and blocked the secretory pathway in a tissue-specific manner. Even though TVCs normally migrate as an invariably determined leader-trailer polarized pair of adherent cells, they are capable of migrating individually, albeit a shorter distance and with altered morphology. The mesenchyme contacts newborn TVCs and contributes to robust specification of the trailer but appears to have only minor effects on directed migration. The notochord does not contact the TVCs but contributes to the onset of migration. The trunk endoderm first contacts the leader TVC, then 'encases' both migrating cells and provides the inputs maintaining leader-trailer polarity. Migrating TVCs adhere to the epidermis and need this contact for their cohesion. These phenomenological studies reveal that inherently motile cardiopharyngeal progenitors are channeled into stereotyped behaviors by interactions with surrounding tissues.
Collapse
Affiliation(s)
- Stephanie Gline
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yelena Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yusuff Abdu
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| |
Collapse
|
12
|
Karaiskou A, Swalla BJ, Sasakura Y, Chambon JP. Metamorphosis in solitary ascidians. Genesis 2014; 53:34-47. [PMID: 25250532 DOI: 10.1002/dvg.22824] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/19/2022]
Abstract
Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed. This review aims to present a thorough view of this crucial developmental step by combining recent molecular data to the already established cellular events.
Collapse
Affiliation(s)
- Anthi Karaiskou
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
| | | | | | | |
Collapse
|
13
|
Idris MM, Thorndyke MC, Brown ER. Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis. INVERTEBRATE NEUROSCIENCE 2014; 13:151-65. [PMID: 23797324 DOI: 10.1007/s10158-013-0158-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
Although mutations in the huntingtin gene (HTT) due to poly-Q expansion cause neuropathology in humans (Huntington’s disease; HD), the normal function(s) of the gene and its protein (HTT) remain obscure. With new information from recently sequenced invertebrate genomes, the study of new animal models opens the possibility of a better understanding of HTT function and its evolution. To these ends, we studied huntingtin expression pattern and dynamics in the invertebrate chordate Ciona intestinalis. Ciona huntingtin (Ci-HTT) shows a biphasic expression pattern during larval development and prior to metamorphosis. A single form of huntingtin protein is present until the early larval stages, at which time two different mass proteins become evident in the metamorphically competent larva. An antibody against Ci-HTT labeled 50 cells in the trunk mesenchyme regions in pre-hatching and hatched larvae and probably represents the distribution of the light form of the protein. Dual labeling with anti-Ci-HTT and anti-aldoketoreductase confirmed the presence of Ci-HTT in mesenchyme cells. Suppression of Ci-HTT RNA by a morpholino oligonucleotide reduced the number and apparent mobility of Ci-HTT positive cells. In Ciona, HTT expression has a dynamic temporal and spatial expression pattern that in ontogeny precedes metamorphosis. Although our results may reflect a derived function for the protein in pre- and post-metamorphic events in Ciona, we also note that as in vertebrates, there is evidence for multiple differential temporal expression, indicating that this protein probably has multiple roles in ontogeny and cell migration.
Collapse
|
14
|
Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis. PLoS One 2014; 9:e102907. [PMID: 25058405 PMCID: PMC4109947 DOI: 10.1371/journal.pone.0102907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023] Open
Abstract
In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.
Collapse
|
15
|
Sasakura Y, Mita K, Ogura Y, Horie T. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev Growth Differ 2012; 54:420-37. [DOI: 10.1111/j.1440-169x.2012.01343.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Kaoru Mita
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Yosuke Ogura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | | |
Collapse
|
16
|
Protein nitration as footprint of oxidative stress-related nitric oxide signaling pathways in developing Ciona intestinalis. Nitric Oxide 2012; 27:18-24. [PMID: 22498777 DOI: 10.1016/j.niox.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 02/08/2023]
Abstract
Developmental processes in the ascidian Ciona intestinalis depend on a complex interplay of events including, during metamorphosis, a caspase-dependent apoptosis which is regulated by the nitric oxide (NO)-cGMP signaling pathway. Herein we disclose an alternate NO-mediated signaling pathway during Ciona development which appears to be critically dependent on local redox control. Evidence in support of this conclusion includes: (a) inhibitors of NO synthase (NOS) and scavengers of NO-derived nitrating agents markedly decrease the rate of Ciona metamorphosis; (b) an NO donor or peroxynitrite caused an opposite effect; (c) increased protein nitration is observed at larva stage. Integrated proteomic and immunochemical methodologies identified nitrated tyrosine residues in ERK and snail. Overall, these results point to protein nitration as a hitherto overlooked NO-dependent regulatory mechanism in Ciona which is specifically triggered by elevated ROS production during developmental processes.
Collapse
|
17
|
Weill M, Philips A, Chourrout D, Fort P. The caspase family in urochordates: distinct evolutionary fates in ascidians and larvaceans. Biol Cell 2012; 97:857-66. [PMID: 15826240 DOI: 10.1042/bc20050018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Caspases are cysteine proteases that mediate apoptosis (programmed cell death) initiation and execution. Apoptosis is a conserved mechanism shared by all metazoans, although its physiological function and complexity show considerable taxon-dependent variations. To gain insight into the caspase repertoire of putative ancestors to vertebrates, we performed exhaustive genomic searches in urochordates, a sister taxon to vertebrates in which ascidians and appendicularians display chordate characters at early stages of their development. RESULTS We identified the complete caspase families of two ascidians (Ciona intestinalis and C. savignyi) and one larvacean (Oikopleura dioica). We found in ascidian species an extremely high number of caspase genes (17 for C. intestinalis and 22 for C. savignyi), deriving from five founder gene orthologues to human pro-inflammatory, initiator and executioner caspases. Although considered to be sibling species, C. intestinalis and C. savignyi only share 11 orthologues, most of the additional genes resulting from recent mass duplications. A sharply contrasted picture was found in O. dioica, which displayed only three caspase genes deriving from a single founder gene distantly related to caspase 3/7. The difference between ascidian and larvacean caspase repertoires is discussed in the light of their developmental patterns and life cycles. CONCLUSIONS The identification of caspase members in two ascidian species delineates five founder genes that bridge the gap between vertebrates and Ecdysozoa (arthropods and nematodes). Given the amazing diversity among urochordates, determination and comparison of the caspase repertoires in species from orders additional to Enterogona (ascidians) and Oikopleuridae might be highly informative on the evolution of caspase-dependent physiological processes.
Collapse
Affiliation(s)
- Mylène Weill
- Institut des Sciences de l'Evolution (UMR 5554), C.C. 065, Univ. Montpellier II, 34095 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
18
|
Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 2011; 138:577-87. [DOI: 10.1242/dev.053132] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.
Collapse
Affiliation(s)
- Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Masashi Nakagawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Uruma, Okinawa 904-2234, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
19
|
Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 2011; 469:525-8. [PMID: 21196932 DOI: 10.1038/nature09631] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/27/2010] [Indexed: 12/27/2022]
Abstract
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.
Collapse
|
20
|
Parrinello N, Vizzini A, Salerno G, Sanfratello MA, Cammarata M, Arizza V, Vazzana M, Parrinello D. Inflamed adult pharynx tissues and swimming larva of Ciona intestinalis share CiTNFα-producing cells. Cell Tissue Res 2010; 341:299-311. [DOI: 10.1007/s00441-010-0993-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/06/2010] [Indexed: 12/14/2022]
|
21
|
Caicci F, Zaniolo G, Burighel P, Degasperi V, Gasparini F, Manni L. Differentiation of papillae and rostral sensory neurons in the larva of the ascidian Botryllus schlosseri (Tunicata). J Comp Neurol 2010; 518:547-66. [PMID: 20020541 DOI: 10.1002/cne.22222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the metamorphosis of tunicate ascidians, the swimming larva uses its three anterior papillae to detect the substrate for settlement, reabsorbs its chordate-like tail, and becomes a sessile oozooid. In view of the crucial role played by the anterior structures and their nerve relations, we applied electron microscopy and immunocytochemistry to study the larva of the colonial ascidian Botryllus schlosseri, following differentiation of the anterior epidermis during late embryogenesis, the larval stage, and the onset of metamorphosis. Rudiments of the papillae appear in the early tail-bud stage as ectodermic protrusions, the apexes of which differentiate into central and peripheral bipolar neurons. Axons fasciculate into two nerves direct to the brain. Distally, the long, rod-like dendritic terminations extend during the larval stage, becoming exposed to sea water. After the larva selects and adheres to the substrate, these neurons retract and regress. Adjacent to the papillae, other scattered neurons insinuate dendrites into the tunic and form the net of rostral trunk epidermal neurons (RTENs) which fasciculate together with the papillary neurons. Our data indicate that the papillae are simple and coniform, the papillary neurons are mechanoreceptors, and the RTENs are chemoreceptors. The interpapillary epidermal area, by means of an apocrine secretion, provides sticky material for temporary adhesion of the larva to the substrate.
Collapse
Affiliation(s)
- Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Cima F, Ballarin L. Apoptosis and pattern of Bcl‐2 and Bax expression in the alimentary tract during the colonial blastogenetic cycle ofBotryllus schlosseri(Urochordata, Ascidiacea). ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250000802030142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Martinand-Mari C, Maury B, Rousset F, Sahuquet A, Mennessier G, Rochal S, Lorman V, Mangeat P, Baghdiguian S. Topological control of life and death in non-proliferative epithelia. PLoS One 2009; 4:e4202. [PMID: 19145253 PMCID: PMC2625397 DOI: 10.1371/journal.pone.0004202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/08/2008] [Indexed: 11/26/2022] Open
Abstract
Programmed cell death is one of the most fascinating demonstrations of the plasticity of biological systems. It is classically described to act upstream of and govern major developmental patterning processes (e.g. inter-digitations in vertebrates, ommatidia in Drosophila). We show here the first evidence that massive apoptosis can also be controlled and coordinated by a pre-established pattern of a specific ‘master cell’ population. This new concept is supported by the development and validation of an original model of cell patterning. Ciona intestinalis eggs are surrounded by a three-layered follicular organization composed of 60 elongated floating extensions made of as many outer and inner cells, and indirectly spread through an extracellular matrix over 1200 test cells. Experimental and selective ablation of outer and inner cells results in the abrogation of apoptosis in respective remaining neighbouring test cells. In addition incubation of outer/inner follicular cell-depleted eggs with a soluble extract of apoptotic outer/inner cells partially restores apoptosis to apoptotic-defective test cells. The 60 inner follicular cells were thus identified as ‘apoptotic master’ cells which collectively are induction sites for programmed cell death of the underlying test cells. The position of apoptotic master cells is controlled by topological constraints exhibiting a tetrahedral symmetry, and each cell spreads over and can control the destiny of 20 smaller test cells, which leads to optimized apoptosis signalling.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - Benoit Maury
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - François Rousset
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - Alain Sahuquet
- Université Montpellier 2, CRBM UMR CNRS 5237, Montpellier, France
| | | | - Sergei Rochal
- South Federal University, Faculty of Physics, Rostov na Donu, Russia
| | - Vladimir Lorman
- Université Montpellier 2, UMR CNRS 5207-LPTA, Montpellier, France
| | - Paul Mangeat
- Université Montpellier 2, CRBM UMR CNRS 5237, Montpellier, France
| | - Stephen Baghdiguian
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
- * E-mail:
| |
Collapse
|
24
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|
25
|
Søviknes AM, Glover JC. Spatiotemporal patterns of neurogenesis in the appendicularian Oikopleura dioica. Dev Biol 2007; 311:264-75. [PMID: 17915207 DOI: 10.1016/j.ydbio.2007.08.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 12/31/2022]
Abstract
Incorporation of the thymidine analog bromodeoxyuridine (BrdU) was used to assess cytogenesis in the central nervous system (CNS) of the appendicularian Oikopleura dioica. A series of timed cumulative labelings carried out from 45 minutes (min) to 8 hours (h) after fertilization provided labeling patterns that showed when neurons and support cells residing at specific sites within the 9 h CNS became postmitotic. Throughout the CNS, which includes the cerebral ganglion, caudal ganglion and caudal nerve cord, neurogenesis occurs during an earlier time window than the genesis of support cells. Neurons are first generated at about 45 min to 1 h after fertilization in all 3 CNS regions, starting in the cerebral ganglion. Support cells are generated starting at about 2 h after fertilization. In both the cerebral ganglion and the caudal ganglion, neurons born during different time epochs settle in a specific spatial pattern, following a caudal to rostral gradient in the caudal ganglion and a more complex pattern in the cerebral ganglion. No such regional pattern was seen in the caudal nerve cord, where neurons born during different epochs were evenly distributed along the length of the cord. In the cerebral ganglion a small subpopulation of cells continued to incorporate BrdU from 8 h to at least 15 h and may represent a reserve of stem cells or progenitor cells that generate additional cells seen in the adult. The results show that this simple urochordate exhibits several vertebrate features of CNS cytogenesis, including a different timing of neurogenesis and gliogenesis (support cells being the likely candidates for glial cells in Oikopleura), gradients of neuron position according to birthdate, and a maintenance of neural cell precursors beyond embryonic and larval stages.
Collapse
Affiliation(s)
- Anne Mette Søviknes
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
26
|
Chambon JP, Nakayama A, Takamura K, McDougall A, Satoh N. ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development 2007; 134:1203-19. [PMID: 17332536 DOI: 10.1242/dev.002220] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ascidian tadpoles, metamorphosis is triggered by a polarized wave of apoptosis, via mechanisms that are largely unknown. We demonstrate that the MAP kinases ERK and JNK are both required for the wave of apoptosis and metamorphosis. By employing a gene-profiling-based approach, we identified the network of genes controlled by either ERK or JNK activity that stimulate the onset of apoptosis. This approach identified a gene network involved in hormonal signalling, in innate immunity, in cell-cell communication and in the extracellular matrix. Through gene silencing, we show that Ci-sushi, a cell-cell communication protein controlled by JNK activity, is required for the wave of apoptosis that precedes tail regression. These observations lead us to propose a model of metamorphosis whereby JNK activity in the CNS induces apoptosis in several adjacent tissues that compose the tail by inducing the expression of genes such as Ci-sushi.
Collapse
Affiliation(s)
- Jean-Philippe Chambon
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
27
|
Roberts B, Davidson B, MacMaster G, Lockhart V, Ma E, Wallace SS, Swalla BJ. A complement response may activate metamorphosis in the ascidian Boltenia villosa. Dev Genes Evol 2007; 217:449-58. [PMID: 17497166 DOI: 10.1007/s00427-007-0157-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 04/09/2007] [Indexed: 12/11/2022]
Abstract
Ascidian metamorphosis transforms a free-swimming larval chordate ascidian into a sessile adult through a distinct series of metamorphic events. Initially, larvae must become competent to respond to settlement cues. Settlement is then marked by dramatic body plan remodeling and may be accompanied by attachment to the substrate. Subtractive hybridization has revealed that many innate immunity transcripts are upregulated during metamorphosis in the ascidian Boltenia villosa. Several of these genes have well-known roles in the mannose-binding lectin (MBL)-complement pathway of innate immunity, including MBL and MBL-activated serine protease (MASP). MBL recognizes and binds to bacterial pathogens, activates MASP, and triggers the complement cascade. In B. villosa, larvae upregulate BvMASP at the time of competency to initiate settlement. We show that several bacterial strains can induce settlement and that the timing of BvMASP expression in the papillae-associated tissue (PAT) cells is tightly correlated with larval competency. We further demonstrate that serine protease inhibitors used to block the complement response also block metamorphosis, allowing tail resorption, but preventing further morphological changes. Based on these experiments, we propose that the MBL-complement pathway may be important for competency, bacterial substrate detection and body plan remodeling during metamorphosis.
Collapse
Affiliation(s)
- Brock Roberts
- Biology Department and Center for Developmental Biology, 24 Kincaid Hall, University of Washington, P.O. Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Comes S, Locascio A, Silvestre F, d'Ischia M, Russo GL, Tosti E, Branno M, Palumbo A. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 2007; 306:772-84. [PMID: 17499701 DOI: 10.1016/j.ydbio.2007.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 01/30/2023]
Abstract
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.
Collapse
Affiliation(s)
- Stefania Comes
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Baghdiguian S, Martinand-Mari C, Mangeat P. Using Ciona to study developmental programmed cell death. Semin Cancer Biol 2007; 17:147-53. [PMID: 17197195 DOI: 10.1016/j.semcancer.2006.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/25/2006] [Indexed: 11/22/2022]
Abstract
Ciona intestinalis, a member of Tunicates, the closest group to vertebrates, has emerged as an appropriate organism for the study of developmentally regulated programmed cell death. First, because massive phases of apoptosis occur all along embryogenesis. Second, because the lecithotrophic mode of development is associated with autophagic process occurring during juvenile formation. Third, because the biochemical cell death machinery is close to that found in mammals. Altogether, the Ciona system contributes to identify new specific regulatory pathways and to explain how molecular mechanisms of programmed cell death evolved from invertebrates to vertebrates.
Collapse
Affiliation(s)
- Stephen Baghdiguian
- UMR CNRS 5554, Institut des Sciences de l'Evolution, Case Courrier No. 065, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France.
| | | | | |
Collapse
|
30
|
Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2006; 24:203-16. [PMID: 17035353 PMCID: PMC2665304 DOI: 10.1093/molbev/msl145] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GTPases of the Rho family are molecular switches that play important roles in converting and amplifying external signals into cellular effects. Originally demonstrated to control the dynamics of the F-actin cytoskeleton, Rho GTPases have been implicated in many basic cellular processes that influence cell proliferation, differentiation, motility, adhesion, survival, or secretion. To elucidate the evolutionary history of the Rho family, we have analyzed over 20 species covering major eukaryotic clades from unicellular organisms to mammals, including platypus and opossum, and have reconstructed the ontogeny and the chronology of emergence of the different subfamilies. Our data establish that the 20 mammalian Rho members are structured into 8 subfamilies, among which Rac is the founder of the whole family. Rho, Cdc42, RhoUV, and RhoBTB subfamilies appeared before Coelomates and RhoJQ, Cdc42 isoforms, RhoDF, and Rnd emerged in chordates. In vertebrates, gene duplications and retrotranspositions increased the size of each chordate Rho subfamily, whereas RhoH, the last subfamily, arose probably by horizontal gene transfer. Rac1b, a Rac1 isoform generated by alternative splicing, emerged in amniotes, and RhoD, only in therians. Analysis of Rho mRNA expression patterns in mouse tissues shows that recent subfamilies have tissue-specific and low-level expression that supports their implication only in narrow time windows or in differentiated metabolic functions. These findings give a comprehensive view of the evolutionary canvas of the Rho family and provide guides for future structure and evolution studies of other components of Rho signaling pathways, in particular regulators of the RhoGEF family.
Collapse
Affiliation(s)
| | | | | | - Philippe Fort
- * Correspondence should be adressed to: Philippe Fort
| |
Collapse
|
31
|
Abstract
The programmed cell death (PCD) of developing cells is considered an essential adaptive process that evolved to serve diverse roles. We review the putative adaptive functions of PCD in the animal kingdom with a major focus on PCD in the developing nervous system. Considerable evidence is consistent with the role of PCD in events ranging from neurulation and synaptogenesis to the elimination of adult-generated CNS cells. The remarkable recent progress in our understanding of the genetic regulation of PCD has made it possible to perturb (inhibit) PCD and determine the possible repercussions for nervous system development and function. Although still in their infancy, these studies have so far revealed few striking behavioral or functional phenotypes.
Collapse
Affiliation(s)
- Robert R Buss
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
32
|
Tiozzo S, Ballarin L, Burighel P, Zaniolo G. Programmed cell death in vegetative development: Apoptosis during the colonial life cycle of the ascidian Botryllus schlosseri. Tissue Cell 2006; 38:193-201. [PMID: 16631832 DOI: 10.1016/j.tice.2006.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/17/2006] [Accepted: 02/24/2006] [Indexed: 11/25/2022]
Abstract
Programmed cell death (PCD) by apoptosis is a physiological mechanism by which cells are eliminated during embryonic and post-embryonic stages of animal life cycle. During asexual reproduction, the zooids of colonial ascidians originate from an assorted cell population instead of a single zygote, so that we assume that regulation of the equilibrium among proliferation, differentiation and cell death may follow different pathways in comparison to the embryonic development. Here we investigate the presence of apoptotic events throughout the blastogenetic life cycle of the colonial ascidian Botryllus schlosseri, by means of terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) coupled with histochemical and electron microscopy techniques. The occurrence of low levels of morphogenetic cell death suggests that, in contrast to what happens during sexual development (embryogenesis and metamorphosis), apoptosis does not play a pivotal role during asexual propagation in botryllid ascidian. Nevertheless, PCD emerges as a key force to regulate homeostasis in adult zooids and to shape and modulate the growth of the whole colony.
Collapse
Affiliation(s)
- S Tiozzo
- University of Padova, Department of Biology, via U. Bassi 58/B, 35121 Padova, Italy
| | | | | | | |
Collapse
|
33
|
Manni L, Agnoletto A, Zaniolo G, Burighel P. Stomodeal and neurohypophysial placodes in Ciona intestinalis: insights into the origin of the pituitary gland. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:324-39. [PMID: 15887241 DOI: 10.1002/jez.b.21039] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ascidian larva has a central nervous system which shares basic characteristics with craniates, such as tripartite organisation and many developmental genes. One difference, at metamorphosis, is that this chordate-like nervous system regresses and the adult's neural complex, composed of the cerebral ganglion and associated neural gland, forms. It is known that neural complex differentiation involves two ectodermal structures, the neurohypophysial duct, derived from the embryonic neural tube, and the stomodeum, i.e. the rudiment of the oral siphon; nevertheless, their precise role remains to be clarified. We have shown that in Ciona intestinalis, the neural complex primordium is the neurohypophysial duct, which in the early larva is a short tube, blind anteriorly, with its lumen in continuity with that of the central nervous system, i.e. the sensory vesicle. The tube grows forwards and fuses with the posterior wall of the stomodeum, a dorsal ectodermal invagination of the larva. The duct then loses posterior communication with the sensory vesicle and begins to grow on the roof of the vesicle itself. The neurohypophysial duct differentiates into the neural gland rudiment; its dorsal wall begins to proliferate neuroblasts, which migrate and converge to build up the cerebral ganglion. The most anterior part of the neural gland organizes into the ciliated duct and funnel, whereas the most posterior part elongates and gives rise to the dorsal strand. The hypothesis that the neurohypophysial duct/stomodeum complex possesses cell populations homologous to the craniate olfactory and adenohypophysial placodes and hypothalamus is discussed.
Collapse
Affiliation(s)
- Lucia Manni
- Dipartimento di Biologia, Università di Padova, Italy.
| | | | | | | |
Collapse
|
34
|
Nakayama A, Satoh N, Sasakura Y. Tissue-Specific Profile of DNA Replication in the Swimming Larvae of Ciona intestinalis. Zoolog Sci 2005; 22:301-9. [PMID: 15795492 DOI: 10.2108/zsj.22.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.
Collapse
Affiliation(s)
- Akie Nakayama
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | | | | |
Collapse
|