1
|
Rebuzzini P, Rustichelli S, Fassina L, Canobbio I, Zuccotti M, Garagna S. BPA Exposure Affects Mouse Gastruloids Axial Elongation by Perturbing the Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:7924. [PMID: 39063166 PMCID: PMC11276681 DOI: 10.3390/ijms25147924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian embryos are very vulnerable to environmental toxicants (ETs) exposure. Bisphenol A (BPA), one of the most diffused ETs, exerts endocrine-disrupting effects through estro-gen-mimicking and hormone-like properties, with detrimental health effects, including on reproduction. However, its impact during the peri-implantation stages is still unclear. This study, using gastruloids as a 3D stem cell-based in vitro model of embryonic development, showed that BPA exposure arrests their axial elongation when present during the Wnt/β-catenin pathway activation period by β-catenin protein reduction. Gastruloid reshaping might have been impeded by the downregulation of Snail, Slug and Twist, known to suppress E-cadherin expression and to activate the N-cadherin gene, and by the low expression of the N-cadherin protein. Also, the lack of gastruloids elongation might be related to altered exit of BPA-exposed cells from the pluripotency condition and their following differentiation. In conclusion, here we show that the inhibition of gastruloids' axial elongation by BPA might be the result of the concomitant Wnt/β-catenin perturbation, reduced N-cadherin expression and Oct4, T/Bra and Cdx2 altered patter expression, which all together concur in the impaired development of mouse gastruloids.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
| | - Serena Rustichelli
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
- University School for Advanced Studies Pavia (IUSS), 27100 Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy;
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ilaria Canobbio
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
2
|
Ogamino S, Yamamichi M, Sato K, Ishitani T. Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate. NPJ AGING 2024; 10:23. [PMID: 38684674 PMCID: PMC11059364 DOI: 10.1038/s41514-024-00149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Wnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.
Collapse
Affiliation(s)
- Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Moeko Yamamichi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Sato
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Khatif H, Bazzi H. Generation and characterization of a Dkk4-Cre knock-in mouse line. Genesis 2024; 62:e23532. [PMID: 37435631 DOI: 10.1002/dvg.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Ectodermal appendages in mammals, such as teeth, mammary glands, sweat glands and hair follicles, are generated during embryogenesis through a series of mesenchymal-epithelial interactions. Canonical Wnt signaling and its inhibitors are implicated in the early steps of ectodermal appendage development and patterning. To study the activation dynamics of the Wnt target and inhibitor Dickkopf4 (Dkk4) in ectodermal appendages, we used CRSIPR/Cas9 to generate a Dkk4-Cre knock-in mouse (Mus musculus) line, where the Cre recombinase cDNA replaces the expression of endogenous Dkk4. Using Cre reporters, the Dkk4-Cre activity was evident at the prospective sites of ectodermal appendages, overlapping with the Dkk4 mRNA expression. Unexpectedly, a predominantly mesenchymal cell population in the embryo posterior also showed Dkk4-Cre activity. Lineage-tracing suggested that these cells are likely derived from a few Dkk4-Cre-expressing cells in the epiblast at early gastrulation. Finally, our analyses of Dkk4-Cre-expressing cells in developing hair follicle epithelial placodes revealed intra- and inter-placodal cellular heterogeneity, supporting emerging data on the positional and transcriptional cellular variability in placodes. Collectively, we propose the new Dkk4-Cre knock-in mouse line as a suitable model to study Wnt and DKK4 inhibitor dynamics in early mouse development and ectodermal appendage morphogenesis.
Collapse
Affiliation(s)
- Houda Khatif
- Department of Dermatology and Venereology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Department of Dermatology and Venereology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Lou Y, Pinel L, Dufort D. Uterine WNTS modulates fibronectin binding activity required for blastocyst attachment through the WNT/CA 2+ signaling pathway in mice. Reprod Biol Endocrinol 2023; 21:85. [PMID: 37715251 PMCID: PMC10503100 DOI: 10.1186/s12958-023-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Adhesion of the implanting blastocyst involves the interaction between integrin proteins expressed by trophoblast cells and components present in the basement membrane of the endometrial luminal epithelium. Although several factors regulating integrins and their adhesion to fibronectin are already known, we showed that Wnt signaling is involved in the regulation of blastocyst adhesion through the trafficking of integrins expressed by trophoblast cells. Localization of Itgα5β1 by immunofluorescence and FN-binding assays were conducted on peri-implantation blastocysts treated with either Wnt5a or Wnt7a proteins. Both Wnt5a and Wnt7a induced a translocation of Itgα5β1 at the surface of the blastocyst and an increase in FN-binding activity. We further demonstrated that uterine fluid is capable of inducing integrin translocation and this activity can be specifically inhibited by the Wnt inhibitor sFRP2. To identify the Wnt signaling pathway involved in this activity, blastocysts were incubated with inhibitors of either p38MAPK, PI3K pathway or CamKII prior to the addition of Wnts. Whereas inhibition of p38MAPK and PI3K had not effect, inhibition of CamKII reduced FN-binding activity induced by Wnts. Finally, we demonstrated that inhibition of Wnts by sFRP2 reduced the binding efficiency of the blastocyst to uterine epithelial cells. Our findings provide new insight into the mechanism that regulates integrin trafficking and FN-binding activity and identifies Wnts as a key player in blastocyst attachment to the uterine epithelium.
Collapse
Affiliation(s)
- Yuefei Lou
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Laurie Pinel
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
- Child Health and Human Development Program, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Daniel Dufort
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
- Child Health and Human Development Program, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Abstract
WNT/CTNNB1 signaling plays a critical role in the development of all multicellular animals. Here, we include both the embryonic stages, during which tissue morphogenesis takes place, and the postnatal stages of development, during which tissue homeostasis occurs. Thus, embryonic development concerns lineage development and cell fate specification, while postnatal development involves tissue maintenance and regeneration. Multiple tools are available to researchers who want to investigate, and ideally visualize, the dynamic and pleiotropic involvement of WNT/CTNNB1 signaling in these processes. Here, we discuss and evaluate the decisions that researchers need to make in identifying the experimental system and appropriate tools for the specific question they want to address, covering different types of WNT/CTNNB1 reporters in cells and mice. At a molecular level, advanced quantitative imaging techniques can provide spatio-temporal information that cannot be provided by traditional biochemical assays. We therefore also highlight some recent studies to show their potential in deciphering the complex and dynamic mechanisms that drive WNT/CTNNB1 signaling.
Collapse
|
6
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
7
|
Chang YC, Manent J, Schroeder J, Wong SFL, Hauswirth GM, Shylo NA, Moore EL, Achilleos A, Garside V, Polo JM, Trainor P, McGlinn E. Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development. Nat Commun 2022; 13:7766. [PMID: 36522318 PMCID: PMC9755267 DOI: 10.1038/s41467-022-35303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Manent
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Schroeder
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Siew Fen Lisa Wong
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Gabriel M. Hauswirth
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Natalia A. Shylo
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Emma L. Moore
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Annita Achilleos
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.413056.50000 0004 0383 4764University of Nicosia, Nicosia, Cyprus
| | - Victoria Garside
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Paul Trainor
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas USA
| | - Edwina McGlinn
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
8
|
Olbertová K, Hrčkulák D, Kříž V, Jesionek W, Kubovčiak J, Ešner M, Kořínek V, Buchtová M. Role of LGR5-positive mesenchymal cells in craniofacial development. Front Cell Dev Biol 2022; 10:810527. [PMID: 36133922 PMCID: PMC9484000 DOI: 10.3389/fcell.2022.810527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), a Wnt pathway member, has been previously recognised as a stem cell marker in numerous epithelial tissues. In this study, we used Lgr5-EGFP-CreERT2 mice to analyse the distribution of LGR5-positive cells during craniofacial development. LGR5 expressing cells were primarily located in the mesenchyme adjacent to the craniofacial epithelial structures undergoing folding, such as the nasopharyngeal duct, lingual groove, and vomeronasal organ. To follow the fate of LGR5-positive cells, we performed lineage tracing using an inducible Cre knock-in allele in combination with Rosa26-tdTomato reporter mice. The slight expansion of LGR5-positive cells was found around the vomeronasal organ, in the nasal cavity, and around the epithelium in the lingual groove. However, most LGR5 expressing cells remained in their original location, possibly supporting their signalling function for adjacent epithelium rather than exerting their role as progenitor cells for the craniofacial structures. Moreover, Lgr5 knockout mice displayed distinct defects in LGR5-positive areas, especially in the reduction of the nasopharyngeal duct, the alteration of the palatal shelves shape, abnormal epithelial folding in the lingual groove area, and the disruption of salivary gland development. The latter defect manifested as an atypical number and localisation of the glandular ducts. The gene expression of several Wnt pathway members (Rspo1-3, Axin2) was altered in Lgr5-deficient animals. However, the difference was not found in sorted EGFP-positive cells obtained from Lgr5 +/+ and Lgr5 -/- animals. Expression profiling of LGR5-positive cells revealed the expression of several markers of mesenchymal cells, antagonists, as well as agonists, of Wnt signalling, and molecules associated with the basal membrane. Therefore, LGR5-positive cells in the craniofacial area represent a very specific population of mesenchymal cells adjacent to the epithelium undergoing folding or groove formation. Our results indicate a possible novel role of LGR5 in the regulation of morphogenetic processes during the formation of complex epithelial structures in the craniofacial areas, a role which is not related to the stem cell properties of LGR5-positive cells as was previously defined for various epithelial tissues.
Collapse
Affiliation(s)
- Kristýna Olbertová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dušan Hrčkulák
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Vítězslav Kříž
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Wojciech Jesionek
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Milan Ešner
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Jia Z, Jia J, Yao L, Li Z. Crosstalk of Exosomal Non-Coding RNAs in The Tumor Microenvironment: Novel Frontiers. Front Immunol 2022; 13:900155. [PMID: 35663957 PMCID: PMC9162146 DOI: 10.3389/fimmu.2022.900155] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) is defined as a complex and dynamic tissue entity composed of endothelial, stromal, immune cells, and the blood system. The homeostasis and evolution of the TME are governed by intimate interactions among cellular compartments. The malignant behavior of cancer cells, such as infiltrating growth, proliferation, invasion, and metastasis, is predominantly dependent on the bidirectional communication between tumor cells and the TME. And such dialogue mainly involves the transfer of multifunctional regulatory molecules from tumor cells and/or stromal cells within the TME. Interestingly, increasing evidence has confirmed that exosomes carrying regulatory molecules, proteins, and nucleic acids act as an active link in cellular crosstalk in the TME. Notably, extensive studies have identified non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), that could be encapsulated by exosomes, which regulate the coordinated function within the TME and thus participate in cancer development and progression. In this review, we summarize recent literature around the topic of the functions and mechanisms of exosomal ncRNAs in the TME and highlight their clinical significance.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinlin Jia
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Lihui Yao
- Department of Otolaryngology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhihan Li
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Dinh TTH, Iseki H, Mizuno S, Iijima-Mizuno S, Tanimoto Y, Daitoku Y, Kato K, Hamada Y, Hasan ASH, Suzuki H, Murata K, Muratani M, Ema M, Kim JD, Ishida J, Fukamizu A, Kato M, Takahashi S, Yagami KI, Wilson V, Arkell RM, Sugiyama F. Disruption of entire Cables2 locus leads to embryonic lethality by diminished Rps21 gene expression and enhanced p53 pathway. eLife 2021; 10:50346. [PMID: 33949947 PMCID: PMC8099427 DOI: 10.7554/elife.50346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.
Collapse
Affiliation(s)
- Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.,Department of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyoshi Iseki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Iijima-Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ammar Shaker Hamed Hasan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,Division of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, Toyama, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Mitsuyasu Kato
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Experimental Pathology, Faculty of. Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Hammer GD, Basham KJ. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol Cell Endocrinol 2021; 519:111043. [PMID: 33058950 PMCID: PMC7736543 DOI: 10.1016/j.mce.2020.111043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
The adrenal cortex functions to produce steroid hormones necessary for life. To maintain its functional capacity throughout life, the adrenal cortex must be continually replenished and rapidly repaired following injury. Moreover, the adrenal responds to endocrine-mediated organismal needs, which are highly dynamic and necessitate a precise steroidogenic response. To meet these diverse needs, the adrenal employs multiple cell populations with stem cell function. Here, we discuss the literature on adrenocortical stem cells using hematopoietic stem cells as a benchmark to examine the functional capacity of particular cell populations, including those located in the capsule and peripheral cortex. These populations are coordinately regulated by paracrine and endocrine signaling mechanisms, and display remarkable plasticity to adapt to different physiological and pathological conditions. Some populations also exhibit sex-specific activity, which contributes to highly divergent proliferation rates between sexes. Understanding mechanisms that govern adrenocortical renewal has broad implications for both regenerative medicine and cancer.
Collapse
Affiliation(s)
- Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Elkenani M, Nyamsuren G, Toischer K, Adham IM, Mohamed BA. Perturbed differentiation of murine embryonic stem cells upon Pelota deletion due to dysregulated FOXO1/β-catenin signaling. FEBS J 2020; 288:3317-3329. [PMID: 33245852 DOI: 10.1111/febs.15643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 11/28/2022]
Abstract
Differentiation of the embryonic stem cells (ESCs) is regulated by a variety of different signaling pathways. Genetic depletion of murine Pelota gene (Pelo) leads to early embryonic lethality. Here, we aimed at determining the embryonic stage and deciphering the dysregulated signaling pathways affected upon Pelo deletion. We found that development of PELO-null embryos is perturbed between the embryonic days E4.5 and E5.5, at which first differentiation process of ESCs takes place. Molecular analysis revealed enhanced activity of phosphoinositide 3-kinase-protein kinase B/ AKT (PI3K-PKB/AKT) signaling, but nuclear accumulation of forkhead box O1 (FOXO1), and upregulation of the pluripotency-related gene, Oct4, in mutant ESCs cultured under differentiation condition. Despite increased levels of nuclear β-catenin in PELO-null ESCs as a result of decreased activity of glycogen synthase kinase-3β, the activity of the canonical wingless (Wnt)/β-catenin/T-cell factor (TCF) was significantly attenuated as judged by the promoter reporter assay, downregulated Wnt/β-catenin target genes, and impaired cell proliferation. Interestingly, we demonstrated an increased binding of β-catenin to FOXO1 in PELO-mutant ESCs cultured under differentiation condition that could explain, on one side, the nuclear accumulation of FOXO1 protein and hence persistent pluripotency of PELO-mutant ESCs, and on the other side, the dysregulated transcriptional activity of β-catenin/TCF and therefore attenuated PELO-null ESC self-renewal. Taken together, our results strongly suggest that PELO deletion averts ESC differentiation through promoting FOXO1/β-catenin binding with subsequent dysregulation of FOXO1 and canonical β-catenin/TCF signaling pathways.
Collapse
Affiliation(s)
- Manar Elkenani
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.,Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Germany.,Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Gunsmaa Nyamsuren
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.,Department of Nephrology and Rheumatology, University Medical Centre Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Belal A Mohamed
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.,Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| |
Collapse
|
13
|
de Roo JJ, Staal FJ. Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells 2020; 9:E2264. [PMID: 33050292 PMCID: PMC7599984 DOI: 10.3390/cells9102264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSCs) develop at several anatomical locations and are thought to undergo different niche regulatory cues originating from highly conserved cell signaling pathways, such as Wnt, Notch, TGF-β family, and Hedgehog signaling. Most insight into these pathways has been obtained by reporter models and loss- or gain of function experiments, yet results differ in many cases according to the approach. In this review, we discuss existing murine reporter models regarding these pathways, considering the genetic constructs and reporter proteins in the context of HSC studies; yet these models are relevant for all other stem cell systems. Lastly, we describe a multi-reporter model to properly study and understand the cross-pathway interaction and how reporter models are highly valuable tools to understand complex signaling dynamics in stem cells.
Collapse
Affiliation(s)
| | - Frank. J.T. Staal
- Department of Immunology, L3-Q, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
14
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun Signal 2020; 18:108. [PMID: 32650795 PMCID: PMC7353806 DOI: 10.1186/s12964-020-00562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background The pre-implantation embryo in a competent status and post-implantation fully differentiation of the inner cell mass (ICM) and trophectoderm (TE) are prerequisites of successful implantation. Type I embryonic epithelial-mesenchymal transition (EMT) involves in these processes. A high level of the mir-let-7 family was found in the dormant mouse embryo of implantation failure in our previous study. Besides, its natural inhibitor lin28a was found to function in maintained stem cell pluripotency and involved in early embryo nucleolus construction. Until now, few studies got involved in the exact molecular mechanism that affects embryo implantation potential. In this study, the possible function of Wnt/β-catenin-lin28a/let-7 pathway in mouse embryo implantation was studied. Methods ICR mouse, Lin28a/Let-7 g transgenic mice (Lin28a-TG/Let-7 g-TG), and implanting dormant mice models were used for the study. Results Wnt/β-catenin signaling is essential in embryo implantation, which promotes embryo implantation through directly trigger lin28a expression, thus represses the mir-let-7 family. Lin28a and mir-let-7 both participate in implantation via an inverse function. Lin28a and mir-let-7 participate in embryo implantation through embryonic EMT. Conclusions Wnt/β-catenin signaling promotes embryo implantation and accompanying embryonic EMT, which is mediated by directly activate lin28a/let-7 axis. Video abstract
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.,Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Juanzi Shi
- Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
16
|
Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells 2020; 9:cells9061419. [PMID: 32517366 PMCID: PMC7349410 DOI: 10.3390/cells9061419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are essential for several tumor progression-related processes, including the epithelial–mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive role of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470. Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Our findings indicate that exosome-derived LINC00960 and LINC02470 from high-grade bladder cancer cells promote the malignant behaviors of recipient low-grade bladder cancer cells and induce EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.
Collapse
|
17
|
Vyas B, Nandkishore N, Sambasivan R. Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin. Cell Mol Life Sci 2020; 77:1933-1945. [PMID: 31722070 PMCID: PMC11105048 DOI: 10.1007/s00018-019-03373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Vertebrate cranial mesoderm is a discrete developmental unit compared to the mesoderm below the developing neck. An extraordinary feature of the cranial mesoderm is that it includes a common progenitor pool contributing to the chambered heart and the craniofacial skeletal muscles. This striking developmental potential and the excitement it generated led to advances in our understanding of cranial mesoderm developmental mechanism. Remarkably, recent findings have begun to unravel the origin of its distinct developmental characteristics. Here, we take a detailed view of the ontogenetic trajectory of cranial mesoderm and its regulatory network. Based on the emerging evidence, we propose that cranial and posterior mesoderm diverge at the earliest step of the process that patterns the mesoderm germ layer along the anterior-posterior body axis. Further, we discuss the latest evidence and their impact on our current understanding of the evolutionary origin of cranial mesoderm. Overall, the review highlights the findings from contemporary research, which lays the foundation to probe the molecular basis of unique developmental potential and evolutionary origin of cranial mesoderm.
Collapse
Affiliation(s)
- Bhakti Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitya Nandkishore
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus, Karakambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
18
|
Li X, Ortiz MA, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med (Maywood) 2020; 245:411-426. [PMID: 31996036 PMCID: PMC7082880 DOI: 10.1177/1535370220901683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the decades, many studies have illustrated the critical roles of Wnt signaling pathways in both developmental processes as well as tumorigenesis. Due to the complexity of Wnt signaling regulation, there are still questions to be addressed about ways cells are able to manipulate different types of Wnt pathways in order to fulfill the requirements for normal or cancer development. In this review, we will describe different types of Wnt signaling pathways and their roles in both normal developmental processes and their role in cancer development and progression. Additionally, we will briefly introduce new strategies currently in clinical trials targeting Wnt signaling pathway components for cancer therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Maria A Ortiz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
19
|
Bhansali P, Cvekl A, Liu W. A distal enhancer that directs Otx2 expression in the retinal pigment epithelium and neuroretina. Dev Dyn 2020; 249:209-221. [PMID: 31658410 PMCID: PMC10518783 DOI: 10.1002/dvdy.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Homeodomain transcription factor Otx2 is essential for embryonic development of multiple head tissues, including retinal pigment epithelium (RPE) and neuroretina. Temporospatial regulation of Otx2 expression is critical for its functions. Molecular dissection of the cis-acting enhancers will help elucidate how Otx2 expression is regulated. RESULTS We comprehensively characterized distal enhancer hs1150 that was previously identified in a high throughput study. We established multiple transgenic mouse lines in which human hs1150, corresponding mouse hs1150, and two highly conserved sub-fragments in the mouse hs1150 were individually fused to a minimal hsp68 promoter to drive reporter expression. We found that hs1150 enhancer directed reporter expression in the RPE, neuroretina, and brain in a developmentally regulated manner. Human hs1150-directed reporter expression largely recapitulated Otx2 expression in the RPE, in the early neuroretina, and to a lesser degree in the early brain. Mouse hs1150, although shorter than human hs1150, exhibited similar enhancer activity, indicating functional conservation of hs1150 enhancer across species. Both of the highly conserved subfragments in mouse hs1150 enhancer directed reporter expression in the early neuroretina, indicating that the hs1150 enhancer has two functional components. CONCLUSIONS Our findings provide insight into the molecular mechanisms underlying the regulation of Otx2 retinal expression.
Collapse
Affiliation(s)
- Punita Bhansali
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
20
|
Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep 2019; 25:2457-2469.e8. [PMID: 30485812 DOI: 10.1016/j.celrep.2018.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models.
Collapse
|
21
|
Chong A, Teo JX, Ban KHK. Distinct epigenetic signatures elucidate enhancer-gene relationships that delineate CIMP and non-CIMP colorectal cancers. Oncotarget 2018; 7:28027-39. [PMID: 27049830 PMCID: PMC5053707 DOI: 10.18632/oncotarget.8473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype (“CIMP”) has significantly higher levels of DNA methylation at so-called “Type C loci” within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype. Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of <0.01) differentially methylated regions (DMRs) (1000bp) in a study of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets. We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.
Collapse
Affiliation(s)
- Allen Chong
- Department of Pathology, National University of Singapore, 119074 Singapore.,Present address: Shanxi Guoxin Caregeno Medical Laboratories, Taiyuan, Shanxi Province, 030006 China
| | - Jing Xian Teo
- Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Kenneth H K Ban
- Department of Biochemistry, National University of Singapore, 117596 Singapore.,Institute of Molecular and Cell Biology, 138673 Singapore
| |
Collapse
|
22
|
Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:181-207. [PMID: 29389516 PMCID: PMC6008255 DOI: 10.1016/bs.pmbts.2017.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.
Collapse
Affiliation(s)
- Yongping Wang
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chengji J Zhou
- University of California Davis, Sacramento, CA, United States
| | - Youhua Liu
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
McCord M, Mukouyama YS, Gilbert MR, Jackson S. Targeting WNT Signaling for Multifaceted Glioblastoma Therapy. Front Cell Neurosci 2017; 11:318. [PMID: 29081735 PMCID: PMC5645527 DOI: 10.3389/fncel.2017.00318] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 01/17/2023] Open
Abstract
The WNT signaling pathway has been of great interest to developmental biologists for decades and has more recently become a central topic for study in cancer biology. It is vital for cell growth and regulation of embryogenesis in many organ systems, particularly the CNS and its associated vasculature. We summarize the role of WNT in CNS development and describe how WNT signaling makes key contributions to malignant glioma stemness, invasiveness, therapeutic resistance, and angiogenesis. The role of WNT in these mechanisms, along with creation and maintainance of the blood-brain barrier (BBB), points to the potential of WNT as a multi-faceted target in malignant glioma therapy.
Collapse
Affiliation(s)
- Matthew McCord
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetic and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Sadhana Jackson
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
24
|
Leonard JL, Leonard DM, Wolfe SA, Liu J, Rivera J, Yang M, Leonard RT, Johnson JPS, Kumar P, Liebmann KL, Tutto AA, Mou Z, Simin KJ. The Dkk3 gene encodes a vital intracellular regulator of cell proliferation. PLoS One 2017; 12:e0181724. [PMID: 28738084 PMCID: PMC5524345 DOI: 10.1371/journal.pone.0181724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Members of the Dickkopf (Dkk) family of Wnt antagonists interrupt Wnt-induced receptor assembly and participate in axial patterning and cell fate determination. One family member, DKK3, does not block Wnt receptor activation. Loss of Dkk3 expression in cancer is associated with hyperproliferation and dysregulated ß-catenin signaling, and ectopic expression of Dkk3 halts cancer growth. The molecular events mediating the DKK3-dependent arrest of ß-catenin-driven cell proliferation in cancer cells are unknown. Here we report the identification of a new intracellular gene product originating from the Dkk3 locus. This Dkk3b transcript originates from a second transcriptional start site located in intron 2 of the Dkk3 gene. It is essential for early mouse development and is a newly recognized regulator of ß-catenin signaling and cell proliferation. Dkk3b interrupts nuclear translocation ß-catenin by capturing cytoplasmic, unphosphorylated ß-catenin in an extra-nuclear complex with ß-TrCP. These data reveal a new regulator of one of the most studied signal transduction pathways in metazoans and provides a novel, completely untapped therapeutic target for silencing the aberrant ß-catenin signaling that drives hyperproliferation in many cancers.
Collapse
Affiliation(s)
- Jack L. Leonard
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Deborah M. Leonard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Scot A. Wolfe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jilin Liu
- Department of Cell and Molecular Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jaime Rivera
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michelle Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ryan T. Leonard
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jacob P. S. Johnson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Prashant Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kate L. Liebmann
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amanda A. Tutto
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zhongming Mou
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karl J. Simin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
25
|
Morrow KA, Das S, Meng E, Menezes ME, Bailey SK, Metge BJ, Buchsbaum DJ, Samant RS, Shevde LA. Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer. Oncotarget 2017; 7:17991-8005. [PMID: 26908451 PMCID: PMC4951266 DOI: 10.18632/oncotarget.7494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
The expression of the tumor suppressor Merlin is compromised in nervous system malignancies due to genomic aberrations. We demonstrated for the first time, that in breast cancer, Merlin protein expression is lost due to proteasome-mediated elimination. Immunohistochemical analysis of tumor tissues from patients with metastatic breast cancer revealed characteristically reduced Merlin expression. Importantly, we identified a functional role for Merlin in impeding breast tumor xenograft growth and reducing invasive characteristics. We sought to determine a possible mechanism by which Merlin accomplishes this reduction in malignant activity. We observed that breast and pancreatic cancer cells with loss of Merlin show an aberrant increase in the activity of β-catenin concomitant with nuclear localization of β-catenin. We discovered that Merlin physically interacts with β-catenin, alters the sub-cellular localization of β-catenin, and significantly reduces the protein levels of β-catenin by targeting it for degradation through the upregulation of Axin1. Consequently, restoration of Merlin inhibited β-catenin-mediated transcriptional activity in breast and pancreatic cancer cells. We also present evidence that loss of Merlin sensitizes tumor cells to inhibition by compounds that target β-catenin-mediated activity. Thus, this study provides compelling evidence that Merlin reduces the malignant activity of pancreatic and breast cancer, in part by suppressing the Wnt/β-catenin pathway. Given the potent role of Wnt/β-catenin signaling in breast and pancreatic cancer and the flurry of activity to test β-catenin inhibitors in the clinic, our findings are opportune and provide evidence for Merlin in restraining aberrant activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- K Adam Morrow
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shamik Das
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erhong Meng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sarah K Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
27
|
Epiblast-specific loss of HCF-1 leads to failure in anterior-posterior axis specification. Dev Biol 2016; 418:75-88. [PMID: 27521049 DOI: 10.1016/j.ydbio.2016.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Mammalian Host-Cell Factor 1 (HCF-1), a transcriptional co-regulator, plays important roles during the cell-division cycle in cell culture, embryogenesis as well as adult tissue. In mice, HCF-1 is encoded by the X-chromosome-linked Hcfc1 gene. Induced Hcfc1(cKO/+) heterozygosity with a conditional knockout (cKO) allele in the epiblast of female embryos leads to a mixture of HCF-1-positive and -deficient cells owing to random X-chromosome inactivation. These embryos survive owing to the replacement of all HCF-1-deficient cells by HCF-1-positive cells during E5.5 to E8.5 of development. In contrast, complete epiblast-specific loss of HCF-1 in male embryos, Hcfc1(epiKO/Y), leads to embryonic lethality. Here, we characterize this lethality. We show that male epiblast-specific loss of Hcfc1 leads to a developmental arrest at E6.5 with a rapid progressive cell-cycle exit and an associated failure of anterior visceral endoderm migration and primitive streak formation. Subsequently, gastrulation does not take place. We note that the pattern of Hcfc1(epiKO/Y) lethality displays many similarities to loss of β-catenin function. These results reveal essential new roles for HCF-1 in early embryonic cell proliferation and development.
Collapse
|
28
|
Takemoto T, Abe T, Kiyonari H, Nakao K, Furuta Y, Suzuki H, Takada S, Fujimori T, Kondoh H. R26-WntVis reporter mice showing graded response to Wnt signal levels. Genes Cells 2016; 21:661-9. [PMID: 27030109 DOI: 10.1111/gtc.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and organogenesis, where signal strength-dependent cellular responses are of particular importance. To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal promoter to confer a graded response to the reporter depending on Wnt signal strengths. The histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into Wnt3a(-/-) and Wnt3a(vt/-) mutant mouse embryos and compared with wild-type embryos to assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues and responded in a graded fashion to signal intensity. This analysis also indicated that the major Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes.
Collapse
Affiliation(s)
- Tatsuya Takemoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kazuki Nakao
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhide Furuta
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hitomi Suzuki
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Toshihiko Fujimori
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, 444-8787, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| |
Collapse
|
29
|
Hoepfner J, Kleinsorge M, Papp O, Ackermann M, Alfken S, Rinas U, Solodenko W, Kirschning A, Sgodda M, Cantz T. Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells. Cell Biol Int 2016; 40:534-48. [DOI: 10.1002/cbin.10590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/07/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Jeannine Hoepfner
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Mandy Kleinsorge
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Oliver Papp
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Mania Ackermann
- iPSC Based Gene Therapy; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
| | - Susanne Alfken
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Ursula Rinas
- Institute of Technical Chemistry; Leibniz University Hannover; Hannover Germany
| | - Wladimir Solodenko
- Institute of Organic Chemistry; Leibniz University Hannover; Hannover Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry; Leibniz University Hannover; Hannover Germany
| | - Malte Sgodda
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
- Cell and Developmental Biology; Max Planck Institute for Molecular Biomedicine; Münster Germany
| |
Collapse
|
30
|
Abstract
Wnt signaling through β-catenin plays a crucial role in skin development and homeostasis. Disruption or hyperactivation of this pathway results in skin defects and diseases (Lim and Nusse, Cold Spring Harb Perspect Biol 5(2), 2013). Monitoring Wnt signaling in skin under normal and abnormal conditions is therefore critical to understand the role of this pathway in development and homeostasis.In this chapter, we provide methods to detect Wnt/β-catenin (canonical) signaling in the skin. We present a comprehensive list of Wnt reporter mice and detail the processing of skin tissue to detect reporter genes. From this list, we focus on the three most recent lines that, according to reports, are the most sensitive in skin. Additionally, we describe a protocol to detect nuclear β-catenin, a hallmark of active Wnt signaling, although this technique should be used with caution due to its limited sensitivity. The techniques outlined below will be useful for detecting active Wnt signaling in skin.
Collapse
Affiliation(s)
- Amy T Ku
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, One Baylor Plaza, BCM 505, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qi Miao
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, One Baylor Plaza, BCM 505, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hoang Nguyen
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, One Baylor Plaza, BCM 505, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Dermatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Wright KD, Mahoney Rogers AA, Zhang J, Shim K. Cooperative and independent functions of FGF and Wnt signaling during early inner ear development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:33. [PMID: 26443994 PMCID: PMC4594887 DOI: 10.1186/s12861-015-0083-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022]
Abstract
Background In multiple vertebrate organisms, including chick, Xenopus, and zebrafish, Fibroblast Growth Factor (FGF) and Wnt signaling cooperate during formation of the otic placode. However, in the mouse, although FGF signaling induces Wnt8a expression during induction of the otic placode, it is unclear whether these two signaling pathways functionally cooperate. Sprouty (Spry) genes encode intracellular antagonists of receptor tyrosine kinase signaling, including FGF signaling. We previously demonstrated that the Sprouty1 (Spry1) and Sprouty2 (Spry2) genes antagonize FGF signaling during induction of the otic placode. Here, we investigate cross talk between FGF/SPRY and Wnt signaling during otic placode induction and assess whether these two signaling pathways functionally cooperate during early inner ear development in the mouse. Methods Embryos were generated carrying combinations of a Spry1 null allele, Spry2 null allele, β-catenin null allele, or a Wnt reporter transgene. Otic phenotypes were assessed by in situ hybridization, semi-quantitative reverse transcriptase PCR, immunohistochemistry, and morphometric analysis of sectioned tissue. Results Comparison of Spry1, Spry2, and Wnt reporter expression in pre-otic and otic placode cells indicates that FGF signaling precedes and is active in more cells than Wnt signaling. We provide in vivo evidence that FGF signaling activates the Wnt signaling pathway upstream of TCF/Lef transcriptional activation. FGF regulation of Wnt signaling is functional, since early inner ear defects in Spry1 and Spry2 compound mutant embryos can be genetically rescued by reducing the activity of the Wnt signaling pathway. Interestingly, we find that although the entire otic placode increases in size in Spry1 and Spry2 compound mutant embryos, the size of the Wnt-reporter-positive domain does not increase to the same extent as the Wnt-reporter-negative domain. Conclusions This study provides genetic evidence that FGF and Wnt signaling cooperate during early inner ear development in the mouse. Furthermore, our data suggest that although specification of the otic placode may be globally regulated by FGF signaling, otic specification of cells in which both FGF and Wnt signaling are active may be more tightly regulated. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0083-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin D Wright
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Amanda A Mahoney Rogers
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Jian Zhang
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Katherine Shim
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
32
|
Christ A, Christa A, Klippert J, Eule JC, Bachmann S, Wallace VA, Hammes A, Willnow TE. LRP2 Acts as SHH Clearance Receptor to Protect the Retinal Margin from Mitogenic Stimuli. Dev Cell 2015; 35:36-48. [PMID: 26439398 DOI: 10.1016/j.devcel.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 01/17/2023]
Abstract
During forebrain development, LRP2 promotes morphogen signaling as an auxiliary SHH receptor. However, in the developing retina, LRP2 assumes the opposing function, mediating endocytic clearance of SHH and antagonizing morphogen action. LRP2-mediated clearance prevents spread of SHH activity from the central retina into the retinal margin to protect quiescent progenitor cells in this niche from mitogenic stimuli. Loss of LRP2 in mice increases the sensitivity of the retinal margin for SHH, causing expansion of the retinal progenitor cell pool and hyperproliferation of this tissue. Our findings document the ability of LRP2 to act, in a context-dependent manner, as activator or inhibitor of the SHH pathway. Our current findings uncovered LRP2 activity as the molecular mechanism imposing quiescence of the retinal margin in the mammalian eye and suggest SHH-induced proliferation of the retinal margin as cause of the large eye phenotype observed in mouse models and patients with LRP2 defects.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| | - Anna Christa
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Klippert
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - J Corinna Eule
- Small Animal Clinic, Free University Berlin, 14163 Berlin, Germany
| | - Sebastian Bachmann
- Institute for Vegetative Anatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Valerie A Wallace
- Toronto Western Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Annette Hammes
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
33
|
Smeeton J, Dhir P, Hu D, Feeney MM, Chen L, Rosenblum ND. Integrin-linked Kinase Controls Renal Branching Morphogenesis via Dual Specificity Phosphatase 8. J Am Soc Nephrol 2015; 27:1465-77. [PMID: 26407593 DOI: 10.1681/asn.2015020139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/11/2015] [Indexed: 11/03/2022] Open
Abstract
Integrin-linked kinase (ILK) is an intracellular scaffold protein with critical cell-specific functions in the embryonic and mature mammalian kidney. Previously, we demonstrated a requirement for Ilk during ureteric branching and cell cycle regulation in collecting duct cells in vivo Although in vitro data indicate that ILK controls p38 mitogen-activated protein kinase (p38MAPK) activity, the contribution of ILK-p38MAPK signaling to branching morphogenesis in vivo is not defined. Here, we identified genes that are regulated by Ilk in ureteric cells using a whole-genome expression analysis of whole-kidney mRNA in mice with Ilk deficiency in the ureteric cell lineage. Six genes with expression in ureteric tip cells, including Wnt11, were downregulated, whereas the expression of dual-specificity phosphatase 8 (DUSP8) was upregulated. Phosphorylation of p38MAPK was decreased in kidney tissue with Ilk deficiency, but no significant decrease in the phosphorylation of other intracellular effectors previously shown to control renal morphogenesis was observed. Pharmacologic inhibition of p38MAPK activity in murine inner medullary collecting duct 3 (mIMCD3) cells decreased expression of Wnt11, Krt23, and Slo4c1 DUSP8 overexpression in mIMCD3 cells significantly inhibited p38MAPK activation and the expression of Wnt11 and Slo4c1. Adenovirus-mediated overexpression of DUSP8 in cultured embryonic murine kidneys decreased ureteric branching and p38MAPK activation. Together, these data demonstrate that Ilk controls branching morphogenesis by regulating the expression of DUSP8, which inhibits p38MAPK activity and decreases branching morphogenesis.
Collapse
Affiliation(s)
- Joanna Smeeton
- Program in Developmental and Stem Cell Biology, and Departments of Paediatrics, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Priya Dhir
- Program in Developmental and Stem Cell Biology, and
| | - Di Hu
- Program in Developmental and Stem Cell Biology, and
| | | | - Lin Chen
- Program in Developmental and Stem Cell Biology, and
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, and Departments of Paediatrics, and Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
34
|
Edwards N, Farookhi R, Clarke HJ. Identification of a β-galactosidase transgene that provides a live-cell marker of transcriptional activity in growing oocytes and embryos. Mol Hum Reprod 2015; 21:583-93. [PMID: 25882542 PMCID: PMC4487448 DOI: 10.1093/molehr/gav020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
Identifying the events and molecular mechanisms that regulate oocyte growth has emerged as a key objective of research in human fertility, fuelled by evidence from human and animal studies indicating that disease and environmental factors can act on oocytes to affect the health of the resulting individual and by efforts to grow oocytes in vitro to enable fertility preservation of cancer survivors. Techniques that monitor the development of growing oocytes would be valuable tools to assess the progression of growth under different conditions. Most methods used to assess oocytes grown in vitro are indirect, however, relying on characteristics of the somatic compartment of the follicle, or compromise the oocyte, preventing its subsequent culture or fertilization. We investigated the utility of T-cell factor/lymphoid enhancer-binding factor (TCF/Lef)-LacZ transgene expression as a predictor of global transcriptional activity in oocytes and early embryos. Using a fluorescent β-galactosidase substrate combined with live-cell imaging, we show that TCF/Lef-LacZ transgene expression is detectable in growing oocytes, lost in fully grown oocytes and resumes in late two-cell embryos. Transgene expression is likely regulated by a Wnt-independent mechanism. Using chromatin analysis, LacZ expression and methods to monitor and inhibit transcription, we show that TCF/Lef-LacZ expression mirrors transcriptional activity in oocytes and preimplantation embryos. Oocytes and preimplantation embryos that undergo live-cell imaging for TCF/Lef-LacZ expression are able to continue development in vitro. TCF/Lef-LacZ reporter expression in living oocytes and early embryos is thus a sensitive and faithful marker of transcriptional activity that can be used to monitor and optimize conditions for oocyte growth.
Collapse
Affiliation(s)
- Nicole Edwards
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Riaz Farookhi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS One 2015; 10:e0118670. [PMID: 25706534 PMCID: PMC4338295 DOI: 10.1371/journal.pone.0118670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The use of human pluripotent cell progeny for cardiac disease modeling, drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success, recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR, which in turn induces the Activin-A and Bmp pathways, is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis, and to ultimately promote myocyte maturation, we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction. As indicated by RNA-seq, induction with CHIR during Day 1 (Days 0-1) was followed by immediate expression of Nodal ligands and receptors, followed later by Bmp ligands and receptors. Co-induction with CHIR and high levels of the Nodal mimetic Activin-A (50-100 ng/ml) during Day 0-1 efficiently induced definitive endoderm, whereas CHIR supplemented with Activin-A at low levels (10 ng/ml) consistently improved cardiomyogenic efficiency, even when CHIR alone was ineffective. Moreover, co-induction using CHIR and low levels of Activin-A apparently increased the rate of cardiomyogenesis, as indicated by the initial appearance of rhythmically beating cells by Day 6 instead of Day 8. By contrast, co-induction with CHIR plus low levels (3-10 ng/ml) of Bmp4 during Day 0-1 consistently and strongly inhibited cardiomyogenesis. These findings, which demonstrate that cardiomyogenic efficacy is improved by optimizing levels of CHIR-induced growth factors when applied in accord with their sequence of endogenous expression, are consistent with the idea that Nodal (Activin-A) levels toggle the entry of cells into the endodermal or mesodermal lineages, while Bmp levels regulate subsequent allocation into mesodermal cell types.
Collapse
|
36
|
Kurek D, Neagu A, Tastemel M, Tüysüz N, Lehmann J, van de Werken HJG, Philipsen S, van der Linden R, Maas A, van IJcken WFJ, Drukker M, Ten Berge D. Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem Cell Reports 2014; 4:114-128. [PMID: 25544567 PMCID: PMC4297870 DOI: 10.1016/j.stemcr.2014.11.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022] Open
Abstract
Therapeutic application of human embryonic stem cells (hESCs) requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs). WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs. BMP induces WNT-dependent and -independent differentiation pathways in hESCs Modulating WNT and BMP directs differentiation toward mesoderm or trophoblast WNT inhibition returns epiblast stem cells to a chimera-competent pregastrula state WNT inhibition prevents spontaneous differentiation of hESCs and epiblast stem cells
Collapse
Affiliation(s)
- Dorota Kurek
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Alex Neagu
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Melodi Tastemel
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Nesrin Tüysüz
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Johannes Lehmann
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Reinier van der Linden
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC Center for Biomics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Micha Drukker
- Institute of Stem Cell Research, German Research Center for Environmental Health, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Derk Ten Berge
- Erasmus MC Stem Cell Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Abstract
The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis.
Collapse
Affiliation(s)
- David M Gonzalez
- Departments of Orthopaedics and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Center for Regenerative Medicine, Rhode Island Hospital, Providence, RI 02903, USA. Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
| | - Damian Medici
- Departments of Orthopaedics and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Center for Regenerative Medicine, Rhode Island Hospital, Providence, RI 02903, USA. Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
38
|
Li M, Wang X, Zhu J, Zhu S, Hu X, Zhu C, Guo X, Yu Z, Han S. Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Mol Biol Rep 2014; 41:7973-83. [PMID: 25163633 DOI: 10.1007/s11033-014-3692-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that may pose significant health-risks to various organisms including humans. Although the mixed PCB Aroclor 1254 is widespread in the environment, its potential toxic effect on heart development and the mechanism underlying its developmental toxicity have not been previously studied. Here, we used the zebrafish as a toxicogenomic model to examine the effects of Aroclor 1254 on heart development. We found that PCB exposure during zebrafish development induced heart abnormalities including pericardial edema and cardiac looping defects. Further malformations of the zebrafish embryo were observed and death of the larvae occurred in a time- and dose-dependent manner. Our mechanistic studies revealed that abnormalities in the arylhydrocarbon receptor, Wnt and retinoic acid signaling pathways may underlie the effects of PCBs on zebrafish heart development. Interestingly, co-administration of Aroclor 1254 and diethylaminobenzaldehyde, an inhibitor of retinaldehyde dehydrogenase, partially rescued the toxic effects of PCBs on zebrafish heart development. In conclusion, PCBs can induce developmental defects in the zebrafish heart, which may be mediated by abnormal RA signaling.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rivera-Pérez JA, Hadjantonakis AK. The Dynamics of Morphogenesis in the Early Mouse Embryo. Cold Spring Harb Perspect Biol 2014; 7:cshperspect.a015867. [PMID: 24968703 DOI: 10.1101/cshperspect.a015867] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARYOver the past two decades, our understanding of mouse development from implantation to gastrulation has grown exponentially with an upsurge of genetic, molecular, cellular, and morphogenetic information. New discoveries have exalted the role of extraembryonic tissues in orchestrating embryonic patterning and axial specification. At the same time, the identification of unexpected morphogenetic processes occurring during mouse gastrulation has challenged established dogmas and brought new insights into the mechanisms driving germ layer formation. In this article, we summarize the key findings that have reinvigorated the contemporary view of early postimplantation mammalian development.
Collapse
Affiliation(s)
- Jaime A Rivera-Pérez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
40
|
Balenci L, Wonders C, Coles BLK, Clarke L, van der Kooy D. Bone morphogenetic proteins and secreted frizzled related protein 2 maintain the quiescence of adult mammalian retinal stem cells. Stem Cells 2014; 31:2218-30. [PMID: 23843349 DOI: 10.1002/stem.1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Rare retinal stem cells (RSCs) within the ciliary epithelium at the retinal margin of the adult mouse and human eyes can divide in vitro in the absence of growth factors to generate clonal, self-renewing spheres which can generate all the retinal cell types. Since no regenerative properties are seen in situ in the adult mammalian eye, we sought to determine the factors that are involved in the repression of endogenous RSCs. We discovered that factors secreted by the adult lens and cornea block the proliferation of adult RSCs in vitro. Bone morphogenetic protein (BMP)2, BMP4, and secreted frizzled related protein 2 were identified as principal effectors of the anti-proliferative effects on RSCs. As a similar induced quiescence was observed in vitro on both mouse and human RSCs, targeting these molecules in vivo may reactivate RSCs directly in situ in the eyes of the blind.
Collapse
Affiliation(s)
- Laurent Balenci
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
41
|
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, Economou C, Karagianni E, Zhao S, Lowell S, Wilson V. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 2014; 141:1209-21. [PMID: 24595287 PMCID: PMC3943179 DOI: 10.1242/dev.101014] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Halt K, Vainio S. Coordination of kidney organogenesis by Wnt signaling. Pediatr Nephrol 2014; 29:737-44. [PMID: 24445433 PMCID: PMC3928513 DOI: 10.1007/s00467-013-2733-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/25/2013] [Accepted: 12/12/2013] [Indexed: 11/28/2022]
Abstract
Several Wnt proteins are expressed in the embryonic kidney during various stages of development. Gene knockout models and ex vivo studies have provided strong evidence that Wnt-mediated signals are essential in renal ontogeny. Perhaps the most critical factors, Wnt9b and Wnt4, function during the early phase when the cap mesenchyme is induced to undergo morphogenesis into a nephron. Wnt11 controls early ureteric bud branching and contributes to the final kidney size. In addition to its inductive role, later on Wnt9b plays a significant role in the convergent extension of the tubular epithelial cells, while Wnt4 signaling controls smooth muscle cell fates in the medulla. Wnt7b has a specific function together with its likely antagonist Dkk1 in controlling the morphogenesis of the renal medulla. The signal-transduction mechanisms of the Wnts in kidney ontogeny have not been resolved, but studies characterizing the downstream signaling pathways are emerging. Aberrant Wnt signaling may lead to kidney diseases ranging from fatal kidney agenesis to more benign phenotypes. Wnt-mediated signaling regulates several critical aspects of kidney development from the early inductive stages to later steps of tubular epithelial maturation.
Collapse
Affiliation(s)
- Kimmo Halt
- The Centre of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Oulu, PO Box 5000, 90014 Oulu, Finland
| | - Seppo Vainio
- The Centre of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Oulu, PO Box 5000, 90014 Oulu, Finland
| |
Collapse
|
43
|
Abstract
The three-layered piriform cortex, an integral part of the olfactory system, processes odor information relayed by olfactory bulb mitral cells. Specifically, mitral cell axons form the lateral olfactory tract (LOT) by targeting lateral olfactory tract (lot) guidepost cells in the piriform cortex. While lot cells and other piriform cortical neurons share a pallial origin, the factors that specify their precise phenotypes are poorly understood. Here we show that in mouse, the proneural genes Neurog1 and Neurog2 are coexpressed in the ventral pallium, a progenitor pool that first gives rise to Cajal-Retzius (CR) cells, which populate layer I of all cortical domains, and later to layer II/III neurons of the piriform cortex. Using loss-of-function and gain-of-function approaches, we find that Neurog1 has a unique early role in reducing CR cell neurogenesis by tempering Neurog2's proneural activity. In addition, Neurog1 and Neurog2 have redundant functions in the ventral pallium, acting in two phases to first specify a CR cell fate and later to specify layer II/III piriform cortex neuronal identities. In the early phase, Neurog1 and Neurog2 are also required for lot cell differentiation, which we reveal are a subset of CR neurons, the loss of which prevents mitral cell axon innervation and LOT formation. Consequently, mutation of Trp73, a CR-specific cortical gene, results in lot cell and LOT axon displacement. Neurog1 and Neurog2 thus have unique and redundant functions in the piriform cortex, controlling the timing of differentiation of early-born CR/lot cells and specifying the identities of later-born layer II/III neurons.
Collapse
|
44
|
|
45
|
Zhi X, Tao J, Xie K, Zhu Y, Li Z, Tang J, Wang W, Xu H, Zhang J, Xu Z. MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett 2013; 346:104-13. [PMID: 24374017 DOI: 10.1016/j.canlet.2013.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
Abstract
The membrane mucin MUC4 is aberrantly expressed in multiple cancers and is of clinical significance to diagnosis and prognosis in pancreatic cancer. However, the role of MUC4 in angiogenesis and the potential association among these malignant capabilities have not been explored. In this study, we investigated the collective signaling mechanisms associated with MUC4-induced growth, metastasis and angiogenesis in pancreatic cancer. Knockdown of MUC4 in two pancreatic cancer cell lines led to downregulation of lysosomal degradation of E-cadherin by Src kinase through downregulation of pFAK and pSrc pathway. The downregulation of lysosomal degradation of E-cadherin in turn induced the formation of E-cadherin/β-catenin complex and membrane translocation of β-catenin, resulting in the downregulation of Wnt/β-catenin signaling pathway. Thus, the Wnt/β-catenin target genes c-Myc, Cyclin D1, CD44 and VEGF were down-regulated and their malignant functions proliferation, metastasis and angiogenesis were reduced. Taken together, MUC4-induced nuclear translocation of β-catenin is a novel mechanism for growth, metastasis and angiogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofei Zhi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinqiu Tao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kunling Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
46
|
The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19:1438-49. [PMID: 24202396 DOI: 10.1038/nm.3336] [Citation(s) in RCA: 910] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Abstract
During the course of malignant cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, the extremes of which are defined by the expression of epithelial and mesenchymal phenotypes. This plasticity is enabled by underlying shifts in epigenetic regulation. A small cohort of pleiotropically acting transcription factors is widely recognized to effect these shifts by controlling the expression of a constituency of key target genes. These master regulators depend on complex epigenetic regulatory mechanisms, notably the induction of changes in the modifications of chromatin-associated histones, in order to achieve the widespread changes in gene expression observed during epithelial-mesenchymal transitions (EMTs). These associations indicate that an understanding of the functional interactions between such EMT-inducing transcription factors and the modulators of chromatin configuration will provide crucial insights into the fundamental mechanisms underlying cancer progression and may, in the longer term, generate new diagnostic and therapeutic modalities for treating high-grade malignancies.
Collapse
|
47
|
Byrum CA, Wikramanayake AH. Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva. EvoDevo 2013; 4:31. [PMID: 24180614 PMCID: PMC3835408 DOI: 10.1186/2041-9139-4-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In many bilaterians, asymmetric activation of canonical Wnt (cWnt) signaling at the posterior pole is critical for anterior-posterior (AP) body axis formation. In 16-cell stage sea urchins, nuclearization of β-catenin in micromeres activates a gene regulatory network that defines body axes and induces endomesoderm. Transplanting micromeres to the animal pole of a host embryo induces ectopic endomesoderm in the mesomeres (ectoderm precursors) whereas inhibiting cWnt signaling blocks their endomesoderm-inducing activity and the micromeres become ectoderm-like. We have tested whether ectopic activation of cWnt signaling in mesomeres is sufficient to impart the cells with organizer-like abilities, allowing them to pattern normal embryonic body axes when recombined with a field of mesomeres. RESULTS Fertilized eggs were microinjected with constitutively active Xenopus β-catenin (actβ-cat) mRNA and allowed to develop until the 16-cell stage. Two mesomeres from injected embryos were then recombined with isolated animal halves (AH) from uninjected 16-cell stage embryos. Control chimeras produced animalized phenotypes (hollow balls of ectoderm) and rarely formed skeletogenic mesoderm (SM)-derived spicules, endoderm or pigment cells, a type of non-skeletogenic mesoderm (NSM). In contrast, over half of the 0.5 pg/pL actβ-cat mesomere/AH chimeras formed a partial or complete gut (exhibiting AP polarity), contained mesenchyme-like cells similar to SM, and produced pigment cells. At three days, chimeras formed plutei with normal embryonic body axes. When fates of the actβ-cat mRNA-injected mesomeres were tracked, we found that injected mesomeres formed mesenchyme-like and pigment cells, but endoderm was induced. Higher concentrations of actβ-cat mRNA were less likely to induce endoderm or pigment cells, but had similar mesenchyme-like cell production to 0.5 pg/pL actβ-cat mesomere/AH chimeras. CONCLUSIONS Our results show that nuclear β-catenin is sufficient to endow naïve cells with the ability to act as an organizing center and that β-catenin has both cell-autonomous and non-autonomous effects on cell fate specification in a concentration-dependent manner. These results are consistent with the hypothesis that a shift in the site of early cWnt signaling in cleaving embryos could have modified polarity of the main body axes during metazoan evolution.
Collapse
Affiliation(s)
- Christine A Byrum
- Department of Biology, College of Charleston, 58 Coming Street, Room 214, Charleston, SC 29401, USA
- Department of Biology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Athula H Wikramanayake
- Department of Biology, The University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
- Department of Biology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
48
|
Sugiyama Y, Shelley EJ, Wen L, Stump RJW, Shimono A, Lovicu FJ, McAvoy JW. Sfrp1 and Sfrp2 are not involved in Wnt/β-catenin signal silencing during lens induction but are required for maintenance of Wnt/β-catenin signaling in lens epithelial cells. Dev Biol 2013; 384:181-93. [PMID: 24140542 DOI: 10.1016/j.ydbio.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023]
Abstract
During eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/β-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/β-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/β-catenin signaling in lens epithelial cells.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Save Sight Institute, The University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube. PLoS Genet 2013; 9:e1003811. [PMID: 24098141 PMCID: PMC3789833 DOI: 10.1371/journal.pgen.1003811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023] Open
Abstract
Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation. The complex organization of tissues is established precisely and reproducibly during development. In the vertebrate neural tube, as in many other tissues, the interplay between extrinsic morphogens and intrinsic transcription factors produces spatial patterns of gene expression that delineate precursors for specific cell types. One such transcription factor, Pax3, defines the precursors of all sensory neuron subtypes and distinguishes them from precursors fated to give rise to the motor circuits. To gain insight into the molecular mechanisms by which the spinal cord is segregated into these two functional domains, we analysed the genomic regulatory sequences responsible for controlling Pax3 activity. We identified two regions of the genome, the coordinated activity of which establishes and refines Pax3 activity. We showed that the combination of activating signals from secreted Wnt factors together with Nkx family homeodomain repressors restrict Pax3 activity to the presumptive sensory region of the neural tissue. Subsequently, Pax3 acts to directly potentiate its own transcription and this autoregulation sustains Pax3 expression at later developmental stages. Together, our study reveals the way in which intrinsic and extrinsic signals are integrated by cells and converted into a sustained pattern of gene activity in the developing nervous system.
Collapse
|
50
|
Bräutigam C, Raggioli A, Winter J. The Wnt/β-catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One 2013; 8:e75315. [PMID: 24040406 PMCID: PMC3769259 DOI: 10.1371/journal.pone.0075315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/12/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs of the miR-302 cluster are involved in early embryonic development and somatic cell reprogramming. Expression of the miR-302 gene is regulated by the binding of the pluripotency factors Oct4, Sox2 and Nanog to the miR-302 promoter. The specific expression pattern of the miR-302 gene suggested that additional transcription factors might be involved in its regulation. Here, we show that the miR-302 promoter is a direct target of the Wnt/β-catenin signaling pathway. We found that the miR-302 promoter contains three different functional Tcf/Lef binding sites. Two of the three sites were located within the cluster of Oct4/Sox2/Nanog binding sites and were essential for Wnt/β-catenin-mediated regulation of the miR-302 gene. Tcf3, the only Tcf/Lef factor that bound to the miR-302 promoter, acted as a repressor of miR-302 transcription. Interestingly, mutations in the two Tcf/Lef binding sites and the Oct4/Nanog binding sites abolished miR-302 promoter responsiveness to Wnt signaling, suggesting that the Tcf/Lef and the Oct4/Nanog sites interact genetically.
Collapse
Affiliation(s)
- Christien Bräutigam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- University of Freiburg Faculty of Biology, Freiburg, Germany
| | - Angelo Raggioli
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- University of Freiburg Faculty of Biology, Freiburg, Germany
| | - Jennifer Winter
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|