1
|
Chen JM, He J, Qiu JM, Yang GG, Wang D, Shen Z. Netrin-1-CD146 and netrin-1-S100A9 are associated with early stage of lymph node metastasis in colorectal cancer. BMC Gastroenterol 2024; 24:308. [PMID: 39261771 PMCID: PMC11389491 DOI: 10.1186/s12876-024-03401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The netrin-1/CD146 pathway regulates colorectal cancer (CRC) liver metastasis, angiogenesis, and vascular development. However, few investigations have yet examined the biological function of netrin-1/CD146 complex in CRC. In this work, we investigated the relationship between the netrin-1/CD146 axis and S100 proteins in sentinel lymph node, and revealed a possible new clue for vascular metastasis of CRC. METHODS The expression levels of netrin-1 and CD146 proteins in CRC, as well as S100A8 and S100A9 proteins in the sentinel lymph nodes were determined by immunohistochemistry. Using GEPIA and UALCAN, we analyzed netrin-1 and CD146 gene expression in CRC, their association with CRC stage, and their expression levels and prognosis in CRC patients. RESULTS The expression level of netrin-1 in N1a+1b (CRC lymphatic metastasis groups, exculded N1c) was positively increased with N0 (p = 0.012). The level of netrin-1 protein was positively correlated with CD146 protein (p < 0.05). The level of S100A9 protein was positively correlated with CD146 protein (r = 0.492, p = 0.007). Moreover, netrin-1 expression was obviously correlated with S100A9 expression in the N1 stage (r = 0.867, p = 0.000). CD146 level was correlated with S100A9 level in the N2 stage (r = 0.731, p = 0.039). CD146 mRNA expression was higher in normal colorectal tissues than in CRC (p < 0.05). Netrin-1 and CD146 expression were not significantly associated with the tumor stages and prognosis of patients with CRC (p > 0.05). CONCLUSIONS The netrin-1/CD146 and netrin-1/S100A9 axis in CRC tissues might related with early stage of lymph node metastasis, thus providing potential novel channels for blocking lymphatic metastasis and guiding biomarker discovery in CRC patients.
Collapse
Affiliation(s)
- Jin-Ming Chen
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China.
| | - Jun He
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Jian-Ming Qiu
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Guan-Gen Yang
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Dong Wang
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Zhong Shen
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Wu Z, Zang Y, Li C, He Z, Liu J, Du Z, Ma X, Jing L, Duan H, Feng J, Yan X. CD146, a therapeutic target involved in cell plasticity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1563-1578. [PMID: 38613742 DOI: 10.1007/s11427-023-2521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 04/15/2024]
Abstract
Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.
Collapse
Affiliation(s)
- Zhenzhen Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuzhe Zang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyi Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Liu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqi Du
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Jing
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| | - Jing Feng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Sharma A, Somasundaram I, Chabaud MB. CD146 as a prognostic marker in breast cancer: A meta-analysis. J Cancer Res Ther 2024; 20:193-198. [PMID: 38554320 DOI: 10.4103/jcrt.jcrt_738_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/15/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND CD146, a cell adhesion molecule, was first discovered in melanoma. Since then, it has been established as a promoter of tumor progression and metastasis. Many recent clinical studies have associated CD146 overexpression with poor prognosis in various cancers. However, clinical relevance of CD146 in prognosis of breast cancer has been poorly studied. METHODS We performed meta-analysis of data of all clinical studies associated with the prognostic value of CD146 expression in breast cancer. Relevant studies were retrieved from PubMed database as per the inclusion and exclusion criteria, data were extracted independently and carefully by two reviewers with the help of standardized form, and meta-analysis was performed to correlate CD146 expression with molecular subtypes, lymph node metastasis, and overall survival in breast cancer. RESULTS Our findings suggest that CD146 expression is predominantly found in triple-negative breast cancer subtype (pooled odds ratio = 2.98, 95% confidence interval [CI] =2.19-4.05, P < .00001) and breast tumors overexpressing CD146 have a higher risk of lymph node metastasis (pooled relative risk = 1.64, 95% CI = 1.44-1.87, P < .00001). Furthermore, high expression of CD146 was associated with poor prognosis in breast cancer (pooled hazard ratio = 1.51, 95% CI = 1.21-1.87, P = .0002). CONCLUSION Overall results suggested that CD146 may be a potential prognostic marker to predict metastatic potential and disease outcomes in breast cancer and can be used as a therapeutic target.
Collapse
Affiliation(s)
- Akshita Sharma
- Department of Stem Cell and Regenerative Medicine, Centre for Inter Disciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, Centre for Inter Disciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Marcel Blot Chabaud
- INSERM U1263, Centre for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille University Marseille, France
| |
Collapse
|
4
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
6
|
Zaw ZCT, Kawashima N, Kaneko T, Okiji T. Angiogenesis during coronal pulp regeneration using rat dental pulp cells: Neovascularization in rat molars in vivo and proangiogenic dental pulp cell-endothelial cell interactions in vitro. J Dent Sci 2022; 17:1160-1168. [PMID: 35784152 PMCID: PMC9236944 DOI: 10.1016/j.jds.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Background/purpose Angiogenesis is considered a crucial event for dental pulp regeneration. The purpose of this study was to demonstrate neovascularization during coronal pulp regeneration in rat molars using rat dental pulp cells (rDPCs) and to examine whether rDPC-endothelial cell interactions promote proangiogenic capacity in vitro. Materials and methods Maxillary first molars of Wistar rats (n = 42) were pulpotomized and rDPCs isolated from incisors were implanted with a porous poly (l-lactic acid) (PLLA) scaffold and hydrogel (Matrigel). After 3, 7, and 14 days, coronal pulp tissues were examined histologically and by nestin and CD146 immunohistochemistry. rDPCs and rat dermal microvascular endothelial cells (rDMECs) were cocultured for 4 days and vascular endothelial growth factor (VEGF) synthesis and angiogenic factor gene expression were determined by enzyme-linked immunosorbent assays and real-time polymerase chain reaction, respectively. Effects of cocultured medium on tube formation by rDMECs were also evaluated. Results Implantation of rDPC/PLLA/Matrigel induced coronal pulp regeneration with dentin bridge formation and arrangement of nestin-positive odontoblast-like cells at 14 days. PLLA/Matrigel without rDPCs did not induce pulp regeneration. CD146-positive blood vessels increased in density in the remaining pulp tissues at 3 and 7 days, and in the regenerated pulp tissue at 14 days. rDPC/DMEC coculture significantly promoted VEGF secretion and mRNA expression of nuclear factor-kappa B, angiogenic chemokine CXCL1, and chemokine receptor CXCR1. Cocultured medium significantly promoted tube formation. Conclusion Coronal pulp regeneration with rDPC/PLLA/Matrigel was accompanied by neovascularization. rDPC-rDMEC interactions may promote angiogenic activity represented by proangiogenic factor upregulation and tube formation in vitro.
Collapse
Affiliation(s)
- Zar Chi Thein Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Pediatric Dentistry, University of Dental Medicine, Yangon, Myanmar
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Corresponding author. Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan. Fax: +81 3 5803 5494.
| | - Tomoatsu Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
Abed A, Leroyer AS, Kavvadas P, Authier F, Bachelier R, Foucault-Bertaud A, Bardin N, Cohen CD, Lindenmeyer MT, Genest M, Joshkon A, Jourde-Chiche N, Burtey S, Blot-Chabaud M, Dignat-George F, Chadjichristos CE. Endothelial-Specific Deletion of CD146 Protects Against Experimental Glomerulonephritis in Mice. Hypertension 2021; 77:1260-1272. [PMID: 33689459 DOI: 10.1161/hypertensionaha.119.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ahmed Abed
- From the INSERM UMR-S1155, Tenon Hospital, Paris, France (A.A., P.K., F.A., M.G., C.E.C.).,Sorbonne Université, Paris, France (A.A., C.E.C.)
| | - Aurélie S Leroyer
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Panagiotis Kavvadas
- From the INSERM UMR-S1155, Tenon Hospital, Paris, France (A.A., P.K., F.A., M.G., C.E.C.)
| | - Florence Authier
- From the INSERM UMR-S1155, Tenon Hospital, Paris, France (A.A., P.K., F.A., M.G., C.E.C.)
| | - Richard Bachelier
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Alexandrine Foucault-Bertaud
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Nathalie Bardin
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Germany (C.D.C.)
| | - Maja T Lindenmeyer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany (M.T.L.)
| | - Magali Genest
- From the INSERM UMR-S1155, Tenon Hospital, Paris, France (A.A., P.K., F.A., M.G., C.E.C.)
| | - Ahmad Joshkon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Noémie Jourde-Chiche
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.).,Department of Nephrology, Aix-Marseille University, AP-HM Hôpital de la Conception, Marseille, France (N.J.-C., S.B.)
| | - Stéphane Burtey
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.).,Department of Nephrology, Aix-Marseille University, AP-HM Hôpital de la Conception, Marseille, France (N.J.-C., S.B.)
| | - Marcel Blot-Chabaud
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Françoise Dignat-George
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, France (A.S.L., R.B., A.F.-B., N.B., A.J., N.J.-C., S.B., M.B.-C., F.D.-G.)
| | - Christos E Chadjichristos
- From the INSERM UMR-S1155, Tenon Hospital, Paris, France (A.A., P.K., F.A., M.G., C.E.C.).,Sorbonne Université, Paris, France (A.A., C.E.C.)
| |
Collapse
|
8
|
Joshkon A, Heim X, Dubrou C, Bachelier R, Traboulsi W, Stalin J, Fayyad-Kazan H, Badran B, Foucault-Bertaud A, Leroyer AS, Bardin N, Blot-Chabaud M. Role of CD146 (MCAM) in Physiological and Pathological Angiogenesis-Contribution of New Antibodies for Therapy. Biomedicines 2020; 8:biomedicines8120633. [PMID: 33352759 PMCID: PMC7767164 DOI: 10.3390/biomedicines8120633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The fundamental role of cell adhesion molecules in mediating various biological processes as angiogenesis has been well-documented. CD146, an adhesion molecule of the immunoglobulin superfamily, and its soluble form, constitute major players in both physiological and pathological angiogenesis. A growing body of evidence shows soluble CD146 to be significantly elevated in the serum or interstitial fluid of patients with pathologies related to deregulated angiogenesis, as autoimmune diseases, obstetric and ocular pathologies, and cancers. To block the undesirable effects of this molecule, therapeutic antibodies have been developed. Herein, we review the multifaceted functions of CD146 in physiological and pathological angiogenesis and summarize the interest of using monoclonal antibodies for therapeutic purposes.
Collapse
Affiliation(s)
- Ahmad Joshkon
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
- Correspondence:
| | - Xavier Heim
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Service d’immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Cléa Dubrou
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Richard Bachelier
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Wael Traboulsi
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Jimmy Stalin
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
| | - Alexandrine Foucault-Bertaud
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Aurelie S. Leroyer
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Nathalie Bardin
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Service d’immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Marcel Blot-Chabaud
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| |
Collapse
|
9
|
Cigliola V, Becker CJ, Poss KD. Building bridges, not walls: spinal cord regeneration in zebrafish. Dis Model Mech 2020; 13:13/5/dmm044131. [PMID: 32461216 PMCID: PMC7272344 DOI: 10.1242/dmm.044131] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury is a devastating condition in which massive cell death and disruption of neural circuitry lead to long-term chronic functional impairment and paralysis. In mammals, spinal cord tissue has minimal capacity to regenerate after injury. In stark contrast, the regeneration of a completely transected spinal cord and accompanying reversal of paralysis in adult zebrafish is arguably one of the most spectacular biological phenomena in nature. Here, we review reports from the last decade that dissect the mechanisms of spinal cord regeneration in zebrafish. We highlight recent progress as well as areas requiring emphasis in a line of study that has great potential to uncover strategies for human spinal cord repair. Summary: Unlike mammals, teleost fish are capable of efficient, spontaneous recovery after a paralyzing spinal cord injury. Here, we highlight the major events through which laboratory model zebrafish regenerate spinal cord tissue.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Clayton J Becker
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA .,Regeneration Next, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Leroyer AS, Blin MG, Bachelier R, Bardin N, Blot-Chabaud M, Dignat-George F. CD146 (Cluster of Differentiation 146). Arterioscler Thromb Vasc Biol 2020; 39:1026-1033. [PMID: 31070478 DOI: 10.1161/atvbaha.119.312653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD146 (cluster of differentiation 146) is an adhesion molecule that is expressed by different cells constituting vessels, particularly endothelial cells. The last 30 years of research in this field have shown that CD146 plays a key role in the control of several vessel functions. Three forms of CD146 have been described, including 2 transmembrane isoforms and a soluble protein that is detectable in the plasma. These CD146 forms mediate pleiotropic functions through homophilic and heterophilic interactions with proteins present on surrounding partners. Several studies used neutralizing antibodies, siRNA, or genetically modified mice to demonstrate the involvement of CD146 in the regulation of angiogenesis, vascular permeability, and leukocyte transmigration. In this review, we will focus on the current knowledge of the roles of CD146 in vascular homeostasis and diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Aurélie S Leroyer
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Muriel G Blin
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Richard Bachelier
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Nathalie Bardin
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.).,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, France (N.B., F.D.-G.)
| | - Marcel Blot-Chabaud
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Françoise Dignat-George
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.).,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, France (N.B., F.D.-G.)
| |
Collapse
|
11
|
Zhou J, Hu P, Si Z, Tan H, Qiu L, Zhang H, Fu Z, Mao W, Cheng D, Shi H. Treatment of Hepatocellular Carcinoma by Intratumoral Injection of 125I-AA98 mAb and Its Efficacy Assessments by Molecular Imaging. Front Bioeng Biotechnol 2019; 7:319. [PMID: 31799244 PMCID: PMC6868101 DOI: 10.3389/fbioe.2019.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate the therapeutic efficacy of intratumoral injection of 125I-AA98 mAb for hepatocellular carcinoma (HCC) and its therapy efficacy assessment by 99mTc-HYNIC-duramycin and 99mTc-HYNIC-3PRGD2 SPECT/CT imaging. Methods: HCC xenograft tumor mice models were injected intratumorally with a single dose of normal saline, 10 microcurie (μCi) 125I-AA98 mAb, free 125I, AA98 mAb, 80 μCi 125I-AA98 mAb, and 200 μCi 125I-AA98 mAb. 99mTc-HYNIC-duramycin and 99mTc-HYNIC-3PRGD2 micro-SPECT/CT imaging were performed on days 3 and 7, respectively. The T/M ratio for each imaging was compared with the corresponding immunohistochemical staining at each time point. The relative tumor inhibition rates were documented. Results: In terms of apoptosis, the 200 μCi group demonstrated the highest apoptotic index (11.8 ± 3.8%), and its T/M ratio achieved by 99mTc-HYNIC-duramycin imaging on day 3 was higher than that of the normal saline group, 80 μCi group, 10 μCi group and free 125I group on day 3, respectively (all P < 0.05). On day 3, there was a markedly positive correlation between T/M ratio from 99mTc-HYNIC-duramycin imaging and apoptotic index by TUNEL staining (r = 0.6981; P < 0.05). Moreover, the 200 μCi group showed the lowest T/M ratio on 99mTc-HYNIC-3PRGD2 imaging (1.0 ± 0.5) on day 7 (all P < 0.05) comparing to other groups. The T/M ratio on day 7 was not correlated with integrin ανβ3 staining (P > 0.05). The relative inhibitory rates of tumor on day 14 in the AA98 mAb, 10 μCi, 80 μCi, free 125I, and 200 μCi groups were 26.3, 55.3, 60.5, 66.3, and 69.5%, respectively. Conclusion:125I-AA98 mAb showed more effective apoptosis induced ability for CD146 high expression Hep G2 HCC cells and hold the potential for HCC treatment. Moreover, 99mTc-HYNIC-Duramycin (apoptosis-targeted) imaging and 99mTc-HYNIC-3PRGD2 (angiogenesis-targeted) imaging are reliable non-invasive methods to evaluate the efficacy of targeted treatment of HCC.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Xuhui District Central Hospital of Shanghai, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - He Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
12
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Barbieri A, Carra S, De Blasio P, Cotelli F, Biunno I. Sel1l knockdown negatively influences zebrafish embryos endothelium. J Cell Physiol 2018; 233:5396-5404. [PMID: 29215726 DOI: 10.1002/jcp.26366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
SEL1L (suppressor/enhancer of Lin-12-like) is a highly conserved gene associated with the endoplasmic reticulum-associated degradation (ERAD) pathway and involved in mediating the balance between stem cells self-renewal and differentiation of neural progenitors. It has been recently shown that SEL1L KO mice are embryonic lethal and display altered organogenesis. To better characterize the function of SEL1L in the early stages of embryonic development, we turned to the zebrafish model (Danio rerio). After exploring sel1l expression by RT-PCR and in situ hybridization, we employed a morpholino-mediated down-regulation approach. Results showed extensive impairments in the vasculature, which supports the mice knock-out findings.
Collapse
Affiliation(s)
| | - Silvia Carra
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Ida Biunno
- IRGB-CNR, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| |
Collapse
|
14
|
Liu D, Du L, Chen D, Ye Z, Duan H, Tu T, Feng J, Yang Y, Chen Q, Yan X. Reduced CD146 expression promotes tumorigenesis and cancer stemness in colorectal cancer through activating Wnt/β-catenin signaling. Oncotarget 2018; 7:40704-40718. [PMID: 27302922 PMCID: PMC5130037 DOI: 10.18632/oncotarget.9930] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/18/2016] [Indexed: 01/05/2023] Open
Abstract
Cancer stemness drives tumor progression and drug resistance, representing a challenge to cancer eradication. Compelling evidence indicates that cancer cells can reenter the stem cell state due to the reprogramming of self-renewal machinery. Here, we show that CD146 knockdown induces stem cell properties in colorectal cancer (CRC) cells through activating canonical Wnt signaling. shRNA-mediated CD146 knockdown in CRC cells facilitates tumor initiation in serial xenotransplantation experiments. Moreover, upon CD146 knockdown, CRC cells show elevated expression of specific cancer stem cell (CSC) markers, increased sphere and clone formation as well as drug resistance in vitro. Mechanistically, our findings provide evidence that CD146 expression negatively correlates with canonical Wnt/β-catenin activity in CRC cell lines and primary CRC specimens. Knockdown of CD146 results in inhibition of NF-κB/p65-initiated GSK-3β expression, subsequently promoting nuclear translocation and activation of β-catenin, and as a consequence restoring stem cell phenotypes in differentiated CRC cells. Together, our data strongly suggest that CD146 functions as a suppressor of tumorigenesis and cancer stemness in CRC through inactivating the canonical Wnt/β-catenin cascade. Our findings provide important insights into stem cell plasticity and the multifunctional role of CD146 in CRC progression.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Du
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Chen
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhongde Ye
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yili Yang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Moreno-Fortuny A, Bragg L, Cossu G, Roostalu U. MCAM contributes to the establishment of cell autonomous polarity in myogenic and chondrogenic differentiation. Biol Open 2017; 6:1592-1601. [PMID: 28923978 PMCID: PMC5703611 DOI: 10.1242/bio.027771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell polarity has a fundamental role in shaping the morphology of cells and growing tissues. Polarity is commonly thought to be established in response to extracellular signals. Here we used a minimal in vitro assay that enabled us to monitor the determination of cell polarity in myogenic and chondrogenic differentiation in the absence of external signalling gradients. We demonstrate that the initiation of cell polarity is regulated by melanoma cell adhesion molecule (MCAM). We found highly polarized localization of MCAM, Moesin (MSN), Scribble (SCRIB) and Van-Gogh-like 2 (VANGL2) at the distal end of elongating myotubes. Knockout of MCAM or elimination of its endocytosis motif does not impair the initiation of myogenesis or myoblast fusion, but prevents myotube elongation. MSN, SCRIB and VANGL2 remain uniformly distributed in MCAM knockout cells. We show that MCAM is also required at early stages of chondrogenic differentiation. In both myogenic and chondrogenic differentiation MCAM knockout leads to transcriptional downregulation of Scrib and enhanced MAP kinase activity. Our data demonstrates the importance of cell autonomous polarity in differentiation. Summary: CD146/MCAM regulates cell autonomous polarization and asymmetric localization of Scribble, Van-Gogh-like 2 and Moesin, which is required in skeletal muscle myotube elongation and chondrocyte differentiation.
Collapse
Affiliation(s)
- Artal Moreno-Fortuny
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Laricia Bragg
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Giulio Cossu
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Different Angiogenic Potentials of Mesenchymal Stem Cells Derived from Umbilical Artery, Umbilical Vein, and Wharton's Jelly. Stem Cells Int 2017; 2017:3175748. [PMID: 28874910 PMCID: PMC5569878 DOI: 10.1155/2017/3175748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
Abstract
Human mesenchymal stem cells derived from the umbilical cord (UC) are a favorable source for allogeneic cell therapy. Here, we successfully isolated the stem cells derived from three different compartments of the human UC, including perivascular stem cells derived from umbilical arteries (UCA-PSCs), perivascular stem cells derived from umbilical vein (UCV-PSCs), and mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs). These cells had the similar phenotype and differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. However, UCA-PSCs and UCV-PSCs had more CD146+ cells than WJ-MSCs (P < 0.05). Tube formation assay in vitro showed the largest number of tube-like structures and branch points in UCA-PSCs among the three stem cells. Additionally, the total tube length in UCA-PSCs and UCV-PSCs was significantly longer than in WJ-MSCs (P < 0.01). Microarray, qRT-PCR, and Western blot analysis showed that UCA-PSCs had the highest expression of the Notch ligand Jagged1 (JAG1), which is crucial for blood vessel maturation. Knockdown of Jagged1 significantly impaired the angiogenesis in UCA-PSCs. In summary, UCA-PSCs are promising cell populations for clinical use in ischemic diseases.
Collapse
|
17
|
Prognostic value of CD146 in solid tumor: A Systematic Review and Meta-analysis. Sci Rep 2017; 7:4223. [PMID: 28652617 PMCID: PMC5484668 DOI: 10.1038/s41598-017-01061-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
CD146, also known as melanoma cell adhesion molecule, was initially identified as a marker of melanoma progression and metastasis. Recently many clinical studies investigated overexpression of CD146 predict poor prognosis of solid tumor, however, the results was inconclusive, partly due to small numbers of patients included. This present meta-analysis was therefore performed utilizing the results of all clinical studies concerned to determine the prognostic value of CD146 expression in solid tumors. Relevant articles were identified through searching the PubMed, Web of Science and Embase database. In this meta-analysis, 12 studies involving 2,694 participants were included, and we drew the conclusion that strong significant associations between CD146 expression and all endpoints: overall survival (OS) [hazard ratio (HR) = 2.496, 95% confidence interval (95% CI) 2.115–2.946], time to progression (TTP) (HR = 2.445, 95% CI 1.975–3.027). Furthermore, the subgroup analysis revealed that the associations between CD146 overexpression and the outcome endpoints (OS or TTP) were significant in Mongoloid patients and Caucasian patients, as well in patients with lung cancer and digestive system cancer. In conclusion, these results showed that high CD146 was associated with poor survival in human solid tumors. CD146 may be a valuable prognosis predictive biomarker; nevertheless, whether CD146 could be a potential therapeutic target in human solid tumors needs to be further studied.
Collapse
|
18
|
Gao Q, Zhang J, Wang X, Liu Y, He R, Liu X, Wang F, Feng J, Yang D, Wang Z, Meng A, Yan X. The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis. Nat Commun 2017; 8:15279. [PMID: 28589943 PMCID: PMC5467231 DOI: 10.1038/ncomms15279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
The apical-basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingfeng Liu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Liu CJ, Xie L, Cui C, Chu M, Zhao HD, Yao L, Li YH, Schachner M, Shen YQ. Beneficial roles of melanoma cell adhesion molecule in spinal cord transection recovery in adult zebrafish. J Neurochem 2016; 139:187-196. [PMID: 27318029 DOI: 10.1111/jnc.13707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 02/05/2023]
Abstract
Melanoma cell adhesion molecule (MCAM) is a multifunctional protein involved in miscellaneous processes, including development and tumor angiogenesis. Here, spinal cord transection in adult zebrafish was used to investigate the effects of MCAM on spinal cord injury (SCI) and subsequent recovery. Expression of MCAM mRNA increased and co-localized with motoneurons in the spinal cord after SCI. With MCAM morpholino treatment, inhibition of MCAM retarded both axon regrowth and locomotor recovery in the spinal cord injured zebrafish. Furthermore, MCAM mRNA expression was also observed in fli1a:EGFP transgenic zebrafish, which specifically show labeled blood vessels. Inhibition of MCAM down-regulated the expression of angiogenesis-related factors, such as VEGFR-2, p-p38 and p-AKT, and the inflammatory factors TNF-α, IL-1β and IL-8. Taken together, these data suggest that MCAM may have a beneficial role in the recovery from SCI, via the promotion of neurogenesis and angiogenesis. In the context of adult zebrafish spinal cord injury, we proved that Melanoma cell adhesion molecule (MCAM) is beneficial to the recovery, possibly via mechanisms of angiogenensis and inflammation. MCAM promotes angiogenesis by adjusting VEGFR-2, p-p38 and p-AKT. MCAM affects inflammatory factors such as TNF-α, IL-1β and IL-8. Our results extend the beneficial role of MCAM in the regeneration of central nervous system.
Collapse
Affiliation(s)
- Chun-Jie Liu
- Jiangnan University Medical School, Wuxi, China
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Lin Xie
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Chun Cui
- Jiangnan University Medical School, Wuxi, China
| | - Min Chu
- Jiangnan University Medical School, Wuxi, China
| | - Hou-De Zhao
- Jiangnan University Medical School, Wuxi, China
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Li Yao
- Jiangnan University Medical School, Wuxi, China
| | - Yu-Hong Li
- Jiangnan University Medical School, Wuxi, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Yan-Qin Shen
- Jiangnan University Medical School, Wuxi, China.
- Center for Neuroscience, Shantou University Medical College, Shantou, China.
| |
Collapse
|
20
|
von Burstin J, Bachhuber F, Paul M, Schmid RM, Rustgi AK. The TALE homeodomain transcription factor MEIS1 activates the pro-metastatic melanoma cell adhesion moleculeMcamto promote migration of pancreatic cancer cells. Mol Carcinog 2016; 56:936-944. [DOI: 10.1002/mc.22547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/12/2016] [Accepted: 08/29/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Johannes von Burstin
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center; University of Pennsylvania; Philadelphia Pennsylvania
- I. Medizinische Klinik; Technische Universität München; Munich Germany
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | | | - Mariel Paul
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | - Roland M. Schmid
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
21
|
Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I, Journot L, Pontarotti P, Klopp C, Postlethwait JH, Guiguen Y, Bobe J. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 2016; 17:368. [PMID: 27189481 PMCID: PMC4870732 DOI: 10.1186/s12864-016-2709-z] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/05/2016] [Indexed: 12/25/2022] Open
Abstract
With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.
Collapse
Affiliation(s)
- Jeremy Pasquier
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Cédric Cabau
- INRA, SIGENAE, GenPhySE, F-31326, Castanet-Tolosan, France
| | - Thaovi Nguyen
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Elodie Jouanno
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Dany Severac
- CNRS, MGX-Montpellier GenomiX, Montpellier, France
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254, OR, USA.,Department of Integrative Biology, Michigan State University, East Lansing, 48824, MI, USA
| | | | - Pierre Pontarotti
- Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR7373, FR 4213 - FR, Eccorev 3098, équipe EBM, 13331, Marseille, France
| | | | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254, OR, USA
| | - Yann Guiguen
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Julien Bobe
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France.
| |
Collapse
|
22
|
Jiang G, Zhang L, Zhu Q, Bai D, Zhang C, Wang X. CD146 promotes metastasis and predicts poor prognosis of hepatocellular carcinoma. J Exp Clin Cancer Res 2016; 35:38. [PMID: 26928402 PMCID: PMC4772456 DOI: 10.1186/s13046-016-0313-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recurrence and metastasis after curative resection remain critical obstacles in HCC treatment. CD146 predicted poor prognosis of a variety of cancers including melanoma, breast tumors, prostate cancer, and gastric cancer. However, the role of CD146 in HCC has not yet been systematically explored. METHODS To investigate the role of CD146 in HCC, we evaluated its expression in HCC tissues and HCC cell lines using real-time PCR and western blotting (WB). Second, we established HCC cell lines that stably overexpressed and interfered CD146 and explored the function of CD146 in HCC in vitro and in vivo. Third, we conducted microarray analysis to investigate the potential mechanism by identifying differentially expressed genes. Last, follow ups were conducted to help uncover the connection of CD146 expression and the prognosis of HCC patients. RESULTS We found that CD146 was overexpressed in HCC tissues and that high CD146 expression predicted poor overall survival time and shorter recurrence period in HCC patients. In vitro and in vivo experiments indicated that CD146 promoted migration and invasion of HCC cell lines. Further study indicated that CD146 promoted epithelial mesenchymal transition (EMT), IL-8 upregulation, and STAT1 downregulation. CD146 was upregulated in HCC tissues and cell lines. CONCLUSIONS CD146 promoted metastasis of HCC cells and predicted poor prognosis of HCC patients. CD146 induced EMT, and IL-8 upregulation and STAT1 downregulation may be the potential underlying mechanism. The exact mechanism still needs further investigation.
Collapse
Affiliation(s)
- Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, P.R. China.
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Long Zhang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Qin Zhu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, P.R. China.
| | - Chuanyong Zhang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
23
|
Tu T, Zhang C, Yan H, Luo Y, Kong R, Wen P, Ye Z, Chen J, Feng J, Liu F, Wu JY, Yan X. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res 2015; 25:275-87. [PMID: 25656845 PMCID: PMC4349246 DOI: 10.1038/cr.2015.15] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis, a process that newly-formed blood vessels sprout from pre-existing ones, is vital for vertebrate development and adult homeostasis. Previous studies have demonstrated that the neuronal guidance molecule netrin-1 participates in angiogenesis and morphogenesis of the vascular system. Netrin-1 exhibits dual activities in angiogenesis: either promoting or inhibiting angiogenesis. The anti-angiogenic activity of netrin-1 is mediated by UNC5B receptor. However, how netrin-1 promotes angiogenesis remained unclear. Here we report that CD146, an endothelial transmembrane protein of the immunoglobulin superfamily, is a receptor for netrin-1. Netrin-1 binds to CD146 with high affinity, inducing endothelial cell activation and downstream signaling in a CD146-dependent manner. Conditional knockout of the cd146 gene in the murine endothelium or disruption of netrin-CD146 interaction by a specific anti-CD146 antibody blocks or reduces netrin-1-induced angiogenesis. In zebrafish embryos, downregulating either netrin-1a or CD146 results in vascular defects with striking similarity. Moreover, knocking down CD146 blocks ectopic vascular sprouting induced by netrin-1 overexpression. Together, our data uncover CD146 as a previously unknown receptor for netrin-1 and also reveal a functional ligand for CD146 in angiogenesis, demonstrating the involvement of netrin-CD146 signaling in angiogenesis during vertebrate development.
Collapse
Affiliation(s)
- Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunxia Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongde Ye
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jane Y Wu
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Zeng Q, Wu Z, Duan H, Jiang X, Tu T, Lu D, Luo Y, Wang P, Song L, Feng J, Yang D, Yan X. Impaired tumor angiogenesis and VEGF-induced pathway in endothelial CD146 knockout mice. Protein Cell 2014; 5:445-56. [PMID: 24756564 PMCID: PMC4026419 DOI: 10.1007/s13238-014-0047-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/23/2013] [Indexed: 11/04/2022] Open
Abstract
CD146 is a newly identified endothelial biomarker that has been implicated in angiogenesis. Though in vitro angiogenic function of CD146 has been extensively reported, in vivo evidence is still lacking. To address this issue, we generated endothelial-specific CD146 knockout (CD146EC-KO) mice using the Tg(Tek-cre) system. Surprisingly, these mice did not exhibit any apparent morphological defects in the development of normal retinal vasculature. To evaluate the role of CD146 in pathological angiogenesis, a xenograft tumor model was used. We found that both tumor volume and vascular density were significantly lower in CD146EC-KO mice when compared to WT littermates. Additionally, the ability for sprouting, migration and tube formation in response to VEGF treatment was impaired in endothelial cells (ECs) of CD146EC-KO mice. Mechanistic studies further confirmed that VEGF-induced VEGFR-2 phosphorylation and AKT/p38 MAPKs/NF-κB activation were inhibited in these CD146-null ECs, which might present the underlying cause for the observed inhibition of tumor angiogenesis in CD146EC-KO mice. These results suggest that CD146 plays a redundant role in physiological angiogenic processes, but becomes essential during pathological angiogenesis as observed in tumorigenesis.
Collapse
Affiliation(s)
- Qiqun Zeng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Crisan M, Corselli M, Chen WCW, Péault B. Perivascular cells for regenerative medicine. J Cell Mol Med 2014; 16:2851-60. [PMID: 22882758 PMCID: PMC4393715 DOI: 10.1111/j.1582-4934.2012.01617.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 08/02/2012] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We and others recently described that MSC originate from two types of perivascular cells, namely pericytes and adventitial cells and contain the in situ counterpart of MSC in developing and adult human organs, which can be prospectively purified using well defined cell surface markers. Pericytes encircle endothelial cells of capillaries and microvessels and express the adhesion molecule CD146 and the PDGFRβ, but lack endothelial and haematopoietic markers such as CD34, CD31, vWF (von Willebrand factor), the ligand for Ulex europaeus 1 (UEA1) and CD45 respectively. The proteoglycan NG2 is a pericyte marker exclusively associated with the arterial system. Besides its expression in smooth muscle cells, smooth muscle actin (αSMA) is also detected in subsets of pericytes. Adventitial cells surround the largest vessels and, opposite to pericytes, are not closely associated to endothelial cells. Adventitial cells express CD34 and lack αSMA and all endothelial and haematopoietic cell markers, as for pericytes. Altogether, pericytes and adventitial perivascular cells express in situ and in culture markers of MSC and display capacities to differentiate towards osteogenic, adipogenic and chondrogenic cell lineages. Importantly, adventitial cells can differentiate into pericyte-like cells under inductive conditions in vitro. Altogether, using purified perivascular cells instead of MSC may bring higher benefits to regenerative medicine, including the possibility, for the first time, to use these cells uncultured.
Collapse
Affiliation(s)
- Mihaela Crisan
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
CD146, a multi-functional molecule beyond adhesion. Cancer Lett 2012; 330:150-62. [PMID: 23266426 DOI: 10.1016/j.canlet.2012.11.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
CD146 is a cell adhesion molecule (CAM) that is primarily expressed at the intercellular junction of endothelial cells. CD146 was originally identified as a tumor marker for melanoma (MCAM) due to its existence only in melanoma but not in the corresponding normal counterpart. However CD146 is not just a CAM for the inter-cellular and cell-matrix adhesion. Recent evidence indicates that CD146 is actively involved in miscellaneous processes, such as development, signaling transduction, cell migration, mesenchymal stem cells differentiation, angiogenesis and immune response. CD146 has increasingly become an important molecule, especially identified as a novel bio-marker for angiogenesis and for cancer. Here we have reviewed the dynamic research of CD146, particularly newly identified functions and the underlying mechanisms of CD146.
Collapse
|
27
|
Jouve N, Despoix N, Espeli M, Gauthier L, Cypowyj S, Fallague K, Schiff C, Dignat-George F, Vély F, Leroyer AS. The involvement of CD146 and its novel ligand Galectin-1 in apoptotic regulation of endothelial cells. J Biol Chem 2012; 288:2571-9. [PMID: 23223580 DOI: 10.1074/jbc.m112.418848] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD146 is a highly glycosylated junctional adhesion molecule, expressed on human vascular endothelial cells and involved in the control of vessel integrity. Galectin-1 is a lectin produced by vascular cells that can binds N- and O-linked oligosaccharides of cell membrane glycoproteins. Because both CD146 and Galectin-1 are involved in modulation of cell apoptosis, we hypothesized that Galectin-1 could interact with CD146, leading to functional consequences in endothelial cell apoptosis. We first characterized CD146 glycosylations and showed that it is mainly composed of N-glycans able to establish interactions with Galectin-1. We demonstrated a sugar-dependent binding of recombinant CD146 to Galectin-1 using both ELISA and Biacore assays. This interaction is direct, with a K(D) of 3.10(-7) M, and specific as CD146 binds to Galectin-1 and not to Galectin-2. Moreover, co-immunoprecipitation experiments showed that Galectin-1 interacts with endogenous CD146 that is highly expressed by HUVEC. We observed a Galectin-1-induced HUVEC apoptosis in a dose-dependent manner as demonstrated by Annexin-V/7AAD staining. Interestingly, both down-regulation of CD146 cell surface expression using siRNA and antibody-mediated blockade of CD146 increase this apoptosis. Altogether, our results identify Galectin-1 as a novel ligand for CD146 and this interaction protects, in vitro, endothelial cells against apoptosis induced by Galectin-1.
Collapse
Affiliation(s)
- Nathalie Jouve
- Aix-Marseille Université, INSERM, UMR-S 1076, 13385 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Imbert AM, Garulli C, Choquet E, Koubi M, Aurrand-Lions M, Chabannon C. CD146 expression in human breast cancer cell lines induces phenotypic and functional changes observed in Epithelial to Mesenchymal Transition. PLoS One 2012; 7:e43752. [PMID: 22952755 PMCID: PMC3431364 DOI: 10.1371/journal.pone.0043752] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Metastasis is an important step in tumor progression leading to a disseminated and often incurable disease. First steps of metastasis include down-regulation of cell adhesion molecules, alteration of cell polarity and reorganization of cytoskeleton, modifications associated with enhanced migratory properties and resistance of tumor cells to anoikis. Such modifications resemble Epithelial to Mesenchymal Transition (EMT). In breast cancer CD146 expression is associated with poor prognosis and enhanced motility. METHODOLOGY/PRINCIPAL FINDINGS On 4 different human breast cancer cell lines, we modified CD146 expression either with shRNA technology in CD146 positive cells or with stable transfection of CD146 in negative cells. Modifications in morphology, growth and migration were evaluated. Using Q-RT-PCR, we analyzed the expression of different EMT markers. We demonstrate that high levels of CD146 are associated with loss of cell-cell contacts, expression of EMT markers, increased cell motility and increased resistance to doxorubicin or docetaxel. Experimental modulation of CD146 expression induces changes consistent with the above described characteristics: morphology, motility, growth in anchorage independent conditions and Slug mRNA variations are strictly correlated with CD146 expression. These changes are associated with modifications of ER (estrogen receptor) and Erb receptors and are enhanced by simultaneous and opposite modulation of JAM-A, or exposure to heregulin, an erb-B4 ligand. CONCLUSIONS CD146 expression is associated with an EMT phenotype. Several molecules are affected by CD146 expression: direct or indirect signaling contributes to EMT by increasing Slug expression. CD146 may also interact with Erb signaling by modifying cell surface expression of ErbB3 and ErbB4 and increased resistance to chemotherapy. Antagonistic effects of JAM-A, a tight junction-associated protein, on CD146 promigratory effects underline the complexity of the adhesion molecules network in tumor cell migration and metastasis.
Collapse
Affiliation(s)
- Anne-Marie Imbert
- Institut Paoli-Calmettes, Centre de Ressources Biologiques en Oncologie, Centre de Thérapie Cellulaire, Marseille, France.
| | | | | | | | | | | |
Collapse
|
29
|
Prakash S, LeMaire SA, Bray M, Milewicz DM, Belmont JW. Large deletions and uniparental disomy detected by SNP arrays in adults with thoracic aortic aneurysms and dissections. Am J Med Genet A 2010; 152A:2399-405. [PMID: 20683997 DOI: 10.1002/ajmg.a.33571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Siddharth Prakash
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Chen W, Cao G, Zhang SL. Is CD146 pivotal in neoplasm invasion and blastocyst embedding? Med Hypotheses 2010; 76:378-80. [PMID: 21095067 DOI: 10.1016/j.mehy.2010.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/25/2010] [Accepted: 10/28/2010] [Indexed: 12/31/2022]
Abstract
Blastocyst embedding is very similar to neoplasm invasion. Blastocyst embedding is seeding the young plant of life, while neoplasm invasion is knocking at the door of death. Overexpression of melanoma cell adhesion molecule (CD146 or MCAM), a novel member of the immunoglobulingene superfamily, promotes invasion, metastasis, growth and survival of malignant cells, and implantation of blastocyst embedding in placenta. We hypothesize that CD146 may be a key gene both in neoplasm invasion and blastocyst embedding because of its ability in regulating cell invasion. The regulation of CD146 expression may be a control switch in the progress of the neoplasm invasion and blastocyst embedding. If the hypothesis is correct, the inhibition of CD146 can be used to prevent and/or treat tumor invasion. Current treatment modalities of tumor invasion include different therapies: surgical resection, radiotherapy, chemotherapy, etc. These treatments are all non-specific to tumor cells. If further studies proof our hypothesis, CD146 may be a candidate target gene in gene therapy of tumor invasion and in regulation of blastocyst embedding.
Collapse
Affiliation(s)
- Wei Chen
- Department of Stomatology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, PR China.
| | | | | |
Collapse
|
31
|
So JH, Hong SK, Kim HT, Jung SH, Lee MS, Choi JH, Bae YK, Kudoh T, Kim JH, Kim CH. Gicerin/Cd146 is involved in zebrafish cardiovascular development and tumor angiogenesis. Genes Cells 2010; 15:1099-110. [PMID: 20977546 DOI: 10.1111/j.1365-2443.2010.01448.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiogenesis plays an important role in vertebrate development and tumor growth. In this process, gicerin, which is known as a kind of cell adhesion molecule, has recently been reported to play an important role but its in vivo function is still unclear in developing vasculature. To address this issue, we used gain-of-function and loss-of-function analyses of gicerin in zebrafish. In the gain of function experiments using enforced expression of various domains of gicerin constructs, extracellular domain induced angiogenic sprouting defects, most notably in the intersegmental vessels, whereas the cytoplasmic domain of gicerin did not affect angiogenic sprouting. Moreover, morpholino-mediated knockdown of gicerin in embryos resulted in angiogenic sprouting defects in intersegmental vessels. Mechanistically, the angiogenic function of gicerin was found to be genetically linked to VEGF signaling in the knock-down experiments using vegf-a mRNA, VEGFR inhibitor and gicerin morpholino. In addition to the physiological angiogenesis during development, gicerin morphants efficiently blocked the tumor angiogenesis in zebrafish. Thus, knock-down of gicerin might have an important implication in controlling tumor angiogenesis.
Collapse
Affiliation(s)
- Ju-Hoon So
- Department of Biology and GRAST, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev Dyn 2009; 238:1836-50. [PMID: 19504456 DOI: 10.1002/dvdy.21990] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signaling pathways controlling vasculogenesis, angiogenesis, and myelopoiesis are still poorly understood, in part because not all genes important for vasculature or myeloid cell formation have been characterized. To identify novel potential regulators of vasculature and myeloid cell formation we performed microarray analysis of zebrafish embryos that overexpress Ets1-related protein (Etsrp/Etv2/ER71), sufficient to induce vasculogenesis and myelopoiesis (Sumanas and Lin [2006] Development 121:3141-3150; Lee [2008] Cell Stem Cell 2:497-507; Sumanas et al. [2008] Blood 111:4500-4510). We performed sequence homology and expression analysis for up-regulated genes that were novel or previously unassociated with the zebrafish vasculature formation. Angiotensin II type 2 receptor (agtr2), src homology 2 domain containing E (she), mannose receptor C1 (mrc1), endothelial cell-specific adhesion molecule (esam), yes-related kinase (yrk/fyn), zinc finger protein, multitype 2b (zfpm2b/fog2b), and stabilin 2 (stab2) were specifically expressed in vascular endothelial cells during early development while keratin18 expression was localized to the myeloid cells. Identification of vasculature and myeloid-specific genes will be important for dissecting molecular mechanisms of vasculogenesis/angiogenesis and myelopoiesis.
Collapse
Affiliation(s)
- Kuan Shen Wong
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
33
|
Bardin N, Blot-Chabaud M, Despoix N, Kebir A, Harhouri K, Arsanto JP, Espinosa L, Perrin P, Robert S, Vely F, Sabatier F, Le Bivic A, Kaplanski G, Sampol J, Dignat-George F. CD146 and its soluble form regulate monocyte transendothelial migration. Arterioscler Thromb Vasc Biol 2009; 29:746-53. [PMID: 19229070 DOI: 10.1161/atvbaha.108.183251] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES During inflammation, cell adhesion molecules are modulated or redistributed for leukocyte transmigration. Among molecules at the interendothelial junction, CD146 is involved in cell-cell cohesion and permeability, but its role in monocyte transmigration is unknown. METHODS AND RESULTS TNF enhanced CD146 expression at the junction and apical membrane of human umbilical veins endothelial cells (HUVECs) through CD146 synthesis and intracellular store redistribution. In addition, TNF increased the release of a soluble form (sCD146) through a metalloproteinase-dependent mechanism. The redistribution of CD146 to the junction led us to investigate its role in monocyte transmigration using THP1 and freshly isolated monocytes. Evidence that CD146 contributes to monocyte transmigration was provided by inhibition experiments using anti-CD146 antibodies and CD146 siRNA in HUVECs. In addition, sCD146 specifically bound both monocytes and HUVECs and dose-dependently increased monocyte transmigration. Assessment of sCD146 binding on immobilized CD146 failed to evidence any homophilic interaction. Together, our data suggest endothelial CD146 binds heterophilically with a yet unknown ligand on monocytes. CONCLUSIONS Our results demonstrate that CD146 is regulated by the inflammatory cytokine TNF and that CD146 and sCD146 are both involved in monocyte transendothelial migration during inflammation.
Collapse
Affiliation(s)
- Nathalie Bardin
- UMR-S 608 INSERM, Laboratoire d'Hématologie et d'Immunologie, Université de la Méditerranée, UFR de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines. Breast Cancer Res 2009; 11:R1. [PMID: 19123925 PMCID: PMC2687703 DOI: 10.1186/bcr2215] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/12/2008] [Accepted: 01/05/2009] [Indexed: 01/28/2023] Open
Abstract
Introduction Metastasis is a complex process involving loss of adhesion, migration, invasion and proliferation of cancer cells. Cell adhesion molecules play a pivotal role in this phenomenon by regulating cell–cell and cell–matrix interactions. CD146 (MCAM) is associated with an advanced tumor stage in melanoma, prostate cancer and ovarian cancer. Studies of CD146 expression and function in breast cancer remain scarce except for a report concluding that CD146 could act as a tumor suppressor in breast carcinogenesis. Methods To resolve these apparent discrepancies in the role of CD146 in tumor cells, we looked at the association of CD146 expression with histoclinical features in human primary breast cancers using DNA and tissue microarrays. By flow cytometry, we characterized CD146 expression on different breast cancer cell lines. Using siRNA or shRNA technology, we studied functional consequences of CD146 downmodulation of MDA-MB-231 cells in migration assays. Wild-type, mock-transfected and downmodulated transfected cells were profiled using whole-genome DNA microarrays to identify genes whose expression was modified by CD146 downregulation. Results Microarray studies revealed the association of higher levels of CD146 with histoclinical features that belong to the basal cluster of human tumors. Expression of CD146 protein on epithelial cells was detected in a small subset of cancers with histoclinical features of basal tumors. CD146+ cell lines displayed a mesenchymal phenotype. Downmodulation of CD146 expression in the MDA-MB-231 cell line resulted in downmodulation of vimentin, as well as of a set of genes that include both genes associated with a poor prognosis in a variety of cancers and genes known to promote cell motility. In vitro functional assays revealed decreased migration abilities associated with decreased CD146 expression. Conclusions In addition to its expression in the vascular compartment, CD146 is expressed on a subset of epithelial cells in malignant breast. CD146 may directly or indirectly contribute to tumor aggressiveness by promoting malignant cell motility. Changes in molecular signatures following downmodulation of CD146 expression suggest that CD146 downmodulation is associated with the reversal of several biological characteristics associated with epithelial to mesenchymal transition, and the phenomenon associated with the metastatic process.
Collapse
|
35
|
Chen W, Zhang HL, Jiang YG, Li JH, Liu BL, Sun MY. Inhibition of CD146 gene expression via RNA interference reduces in vitro perineural invasion on ACC-M cell. J Oral Pathol Med 2008; 38:198-205. [DOI: 10.1111/j.1600-0714.2008.00706.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Despoix N, Walzer T, Jouve N, Blot-Chabaud M, Bardin N, Paul P, Lyonnet L, Vivier E, Dignat-George F, Vély F. Mouse CD146/MCAM is a marker of natural killer cell maturation. Eur J Immunol 2008; 38:2855-64. [DOI: 10.1002/eji.200838469] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:369-75. [PMID: 18248216 DOI: 10.1089/zeb.2005.1.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Guezguez B, Vigneron P, Lamerant N, Kieda C, Jaffredo T, Dunon D. Dual role of melanoma cell adhesion molecule (MCAM)/CD146 in lymphocyte endothelium interaction: MCAM/CD146 promotes rolling via microvilli induction in lymphocyte and is an endothelial adhesion receptor. THE JOURNAL OF IMMUNOLOGY 2007; 179:6673-85. [PMID: 17982057 DOI: 10.4049/jimmunol.179.10.6673] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The melanoma cell adhesion molecule (MCAM)/CD146 is expressed as two isoforms differing by their cytoplasmic domain (MCAM long (MCAM-l) and MCAM short (MCAM-s)). MCAM being expressed by endothelial cells and activated T cells, we analyzed its involvement in lymphocyte trafficking. The NK cell line NKL1 was transfected by MCAM isoforms and submitted to adhesion on both the endothelial cell monolayer and recombinant molecules under shear stress. MCAM-l transfection reduced rolling velocity and increased NKL1 adhesion on the endothelial cell monolayer and VCAM-1. Scanning electron microscopy revealed that MCAM-l induced microvilli formation and extension. In contrast, MCAM short or mock transfection had no effect on adhesion of NKL1 cells and microvilli formation. As shown by mutagenesis, serine 32 of the MCAM-l cytoplasmic tail, belonging to a putative protein kinase C phosphorylation site, was necessary for MCAM-l-actin cytoskeleton interaction and microvilli induction. Accordingly, chelerythrine chloride, a protein kinase C inhibitor, abolished MCAM-l-induced microvilli and rolling of MCAM-l-transfected NKL1 cells. Inhibition of adhesion under shear stress by anti-MCAM Abs suggested that both lymphoid MCAM-l and endothelial MCAM were also directly involved in lymphocyte endothelium interaction. MCAM-l-transfected NKL1 and activated CD4 T cells adhered to rMCAM under shear stress whereas anti-MCAM Ab treatment inhibited this process. Taken together, these data establish that MCAM is involved in the initial steps of lymphocyte endothelium interaction. By promoting the rolling on the inflammation marker VCAM-1 via microvilli induction and displaying adhesion receptor activity involving possible homophilic MCAM-l-MCAM-l interactions, MCAM might be involved in the recruitment of activated T cells to inflammation sites.
Collapse
Affiliation(s)
- Borhane Guezguez
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7622, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Bu P, Zhuang J, Feng J, Yang D, Shen X, Yan X. Visualization of CD146 dimerization and its regulation in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:513-20. [PMID: 17320204 DOI: 10.1016/j.bbamcr.2007.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/30/2006] [Accepted: 01/19/2007] [Indexed: 11/24/2022]
Abstract
Our previous study showed that the adhesion molecule CD146 as a biomarker is over-expressed on activated endothelium during angiogenesis, which was induced by tumor conditional medium and inhibited by anti-CD146 monoclonal antibody (mAb AA98). However, the CD146 molecular organization on the cells is unknown. Here, using immunoprecipitation, we found that the dimerization of CD146 occurs in both normal and tumor cells. However, the dimer/monomer ratio was higher in tumor cells than in normal cells. Moreover, we found that CD146 dimerization was up-regulated by tumor conditional medium through the NF-kappa B pathway and down-regulated by mAb AA98. To further confirm that CD146 dimerization occurs in living cells, we used fluorescence resonance energy transfer (FRET) with melanoma Mel888 cells co-expressing CFP/YFP-tagged CD146 fusion proteins. By acceptor photobleaching, we observed a strong FRET signal produced by these two fluorescence-tagged proteins. The FRET efficiency reached 20.1%. Our data provide the first evidence that CD146 dimerization occurs in living cells and is regulated within the tumor microenvironment, implying that dimerization of CD146 may be associated with malignancy.
Collapse
Affiliation(s)
- Pengcheng Bu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Homotypic cell-cell adhesion is essential for tissue and organ development, remodeling, regeneration, and physiological function. Whereas a significant number of homotypic cell-cell adhesion molecules have been identified, much more is known about those concentrated in epithelia than in endothelia. Among the endothelial cell-cell adhesion molecules, very little is known that is specific to endothelium in the pulmonary and bronchial circulations. This review focuses primarily on homotypic cell-cell adhesion molecules that are or are likely to be important in lung endothelium.
Collapse
Affiliation(s)
- D Michael Shasby
- Dept. of Internal Medicine, University of Iowa College of Medicine, 140E EMRB, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Hu G, Tang J, Zhang B, Lin Y, Hanai JI, Galloway J, Bedell V, Bahary N, Han Z, Ramchandran R, Thisse B, Thisse C, Zon LI, Sukhatme VP. A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J Cell Sci 2006; 119:4117-26. [PMID: 16968741 DOI: 10.1242/jcs.03179] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A zebrafish transcript dubbed GA2692 was initially identified via a whole-mount in situ hybridization screen for vessel specific transcripts. Its mRNA expression during embryonic development was detected in ventral hematopoietic and vasculogenic mesoderm and later throughout the vasculature up to 48 hours post fertilization. Morpholino-mediated knockdown of GA2692 in embryos resulted in multiple defects in vasculature, particularly, at sites undergoing active capillary sprouting: the intersegmental vessels, sub-intestinal vessels and the capillary sprouts of the pectoral fin vessel. During the course of these studies, a homology search indicated that GA2692 is the zebrafish orthologue of mammalian HspA12B, a distant member of the heat shock protein 70 (Hsp70) family. By a combination of northern blot and real-time PCR analysis, we showed that HspA12B is highly expressed in human endothelial cells in vitro. Knockdown of HspA12B by small interfering RNAs (siRNAs) in human umbilical vein endothelial cells blocked wound healing, migration and tube formation, whereas overexpression of HspA12B enhanced migration and accelerated wound healing - data that are consistent with the in vivo fish phenotype obtained in the morpholino-knockdown studies. Phosphorylation of Akt was consistently reduced by siRNAs against HspA12B. Overexpression of a constitutively active form of Akt rescued the inhibitory effects of knockdown of HspA12B on migration of human umbilical vein endothelial cells. Collectively, our data suggests that HspA12B is a highly endothelial-cell-specific distant member of the Hsp70 family and plays a significant role in endothelial cells during development and angiogenesis in vitro, partially attributable to modulation of Akt phosphorylation.
Collapse
Affiliation(s)
- Guang Hu
- Renal Division, Center for Study of the Tumor Microenvironment and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cerletti M, Molloy MJ, Tomczak KK, Yoon S, Ramoni MF, Kho AT, Beggs AH, Gussoni E. Melanoma cell adhesion molecule is a novel marker for human fetal myogenic cells and affects myoblast fusion. J Cell Sci 2006; 119:3117-27. [PMID: 16835268 PMCID: PMC1578761 DOI: 10.1242/jcs.03056] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Myoblast fusion is a highly regulated process that is important during muscle development and myofiber repair and is also likely to play a key role in the incorporation of donor cells in myofibers for cell-based therapy. Although several proteins involved in muscle cell fusion in Drosophila are known, less information is available on the regulation of this process in vertebrates, including humans. To identify proteins that are regulated during fusion of human myoblasts, microarray studies were performed on samples obtained from human fetal skeletal muscle of seven individuals. Primary muscle cells were isolated, expanded, induced to fuse in vitro, and gene expression comparisons were performed between myoblasts and early or late myotubes. Among the regulated genes, melanoma cell adhesion molecule (M-CAM) was found to be significantly downregulated during human fetal muscle cell fusion. M-CAM expression was confirmed on activated myoblasts, both in vitro and in vivo, and on myoendothelial cells (M-CAM(+) CD31(+)), which were positive for the myogenic markers desmin and MyoD. Lastly, in vitro functional studies using M-CAM RNA knockdown demonstrated that inhibition of M-CAM expression enhances myoblast fusion. These studies identify M-CAM as a novel marker for myogenic progenitors in human fetal muscle and confirm that downregulation of this protein promotes myoblast fusion.
Collapse
Affiliation(s)
| | | | | | | | - Marco F. Ramoni
- Bioinformatics Program, Children’s Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Alvin T. Kho
- Bioinformatics Program, Children’s Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | - Emanuela Gussoni
- Division of Genetics and Program in Genomics and
- Author for correspondence (e-mail: )
| |
Collapse
|
43
|
Goligorsky MS, Rabelink T. Meeting report: ISN forefronts in nephrology on endothelial biology and renal disease: from bench to prevention. Kidney Int 2006; 70:258-64. [PMID: 16775602 DOI: 10.1038/sj.ki.5001559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This ISN-sponsored Forefront in Nephrology meeting, which has brought together 120 scientists from 21 countries, has been concerned with various aspects of endothelial function and dysfunction and their contribution to progression of chronic kidney disease and/or its cardiovascular complications. The following themes were discussed in great depth: (1) phenotypical changes in the vascular endothelium - permeability, senescence, and apoptosis; (2) regulation of endothelial nitric oxide (NO) synthase function - caveolar and shear stress mechanisms, epigenetic regulation, S-nitrosylation, and Rho-kinase regulation; (3) oxidative stress and hypoxia-induced changes; (4) organellar dysfunction - lysosomes, mitochondria, and endoplasmic reticulum; (5) NO-independent mechanisms of vasomotion - epoxides, heme oxygenase-1 and carbon monoxide, thromboxane, tumor necrosis factor-alpha, and uric acid; (6) endothelial crosstalk with podocytes, monocytes, smooth muscle cells, and platelets; (7) candidate clinical biomarkers of endothelial dysfunction - functional testing of macro- and micro-vascular functions, surrogate markers, circulating detached endothelial cells, and endothelial precursor cells; and culminated in Round Table discussion on the diagnosis of endothelial dysfunction and its treatment options. In conclusion, this meeting has focused on several key problems of endothelial cell pathobiology relevant to chronic kidney disease.
Collapse
Affiliation(s)
- M S Goligorsky
- New York Medical College, Valhalla, New York, USA and Leiden University Medical School, Leiden, The Netherlands.
| | | |
Collapse
|
44
|
Guezguez B, Vigneron P, Alais S, Jaffredo T, Gavard J, Mège RM, Dunon D. A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Lett 2006; 580:3649-56. [PMID: 16756976 DOI: 10.1016/j.febslet.2006.05.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 01/28/2023]
Abstract
Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.
Collapse
Affiliation(s)
- Borhane Guezguez
- Université Pierre et Marie, Curie-Paris 6, CNRS UMR 7622, Bat C 6ème étage, Case 24, 9 quai Saint-Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
45
|
|