1
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. Curr Biol 2023; 33:3360-3370.e4. [PMID: 37490920 PMCID: PMC10528541 DOI: 10.1016/j.cub.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae are cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons. The anatomical location, gene expression, and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, even in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae, the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low-level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Medina
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tao Laurent
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538092. [PMID: 37162881 PMCID: PMC10168268 DOI: 10.1101/2023.04.24.538092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78 ) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons . The anatomical location, gene expression and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, but which occur in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally-oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims, but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Matthew J. Kourakis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Juan Medina
- College of Creative Studies, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Tao Laurent
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| |
Collapse
|
3
|
Locascio A, Vassalli QA, Castellano I, Palumbo A. Novel Insights on Nitric Oxide Synthase and NO Signaling in Ascidian Metamorphosis. Int J Mol Sci 2022; 23:ijms23073505. [PMID: 35408864 PMCID: PMC8999111 DOI: 10.3390/ijms23073505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a pivotal signaling molecule involved in a wide range of physiological and pathological processes. We investigated NOS/NO localization patterns during the different stages of larval development in the ascidia Ciona robusta and evidenced a specific and temporally controlled pattern. NOS/NO expression starts in the most anterior sensory structures of the early larva and progressively moves towards the caudal portion as larval development and metamorphosis proceeds. We here highlight the pattern of NOS/NO expression in the central and peripheral nervous system of Ciona larvae which precisely follows the progression of neural signals of the central pattern generator necessary for the control of the movements of the larva towards the substrate. This highly dynamic localization profile perfectly matches with the central role played by NO from the first phase of settlement induction to the next control of swimming behavior, adhesion to substrate and progressive tissue resorption and reorganization of metamorphosis itself.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (A.L.); (A.P.)
| | - Quirino Attilio Vassalli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy;
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (A.L.); (A.P.)
| |
Collapse
|
4
|
Marotta P, Salatiello F, Ambrosino L, Berruto F, Chiusano ML, Locascio A. The Ascidia Ciona robusta Provides Novel Insights on the Evolution of the AP-1 Transcriptional Complex. Front Cell Dev Biol 2021; 9:709696. [PMID: 34414189 PMCID: PMC8369891 DOI: 10.3389/fcell.2021.709696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Activator Protein-1 transcription factor family (AP-1) transcriptional complex is historically defined as an early response group of transcription factors formed by dimeric complexes of the Jun, Fos, Atf, and Maf bZIP proteins that control cell proliferation and differentiation by regulating gene expression. It has been greatly investigated in many model organisms across metazoan evolution. Nevertheless, its complexity and variability of action made its multiple functions difficult to be defined. Here, we place the foundations for understanding the complexity of AP-1 transcriptional members in tunicates. We investigated the gene members of this family in the ascidian Ciona robusta and identified single copies of Jun, Fos, Atf3, Atf2/7, and Maf bZIP-related factors that could have a role in the formation of the AP-1 complex. We highlight that mesenchyme is a common cellular population where all these factors are expressed during embryonic development, and that, moreover, Fos shows a wider pattern of expression including also notochord and neural cells. By ectopic expression in transgenic embryos of Jun and Fos genes alone or in combination, we investigated the phenotypic alterations induced by these factors and highlighted a degree of functional conservation of the AP-1 complex between Ciona and vertebrates. The lack of gene redundancy and the first pieces of evidence of conserved functions in the control of cell movements and structural organization exerted by these factors open the way for using Ciona as a helpful model system to uncover the multiple potentialities of this highly complex family of bZIP transcription factors.
Collapse
Affiliation(s)
- Pina Marotta
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Naples, Italy.,Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Federica Salatiello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Federica Berruto
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Luisa Chiusano
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy.,Department of Agriculture, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Annamaria Locascio
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
5
|
Smith HM, Khairallah SM, Nguyen AH, Newman-Smith E, Smith WC. Misregulation of cell adhesion molecules in the Ciona neural tube closure mutant bugeye. Dev Biol 2021; 480:14-24. [PMID: 34407458 DOI: 10.1016/j.ydbio.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Neural tube closure (NTC) is a complex multi-step morphogenetic process that transforms the flat neural plate found on the surface of the post-gastrulation embryo into the hollow and subsurface central nervous system (CNS). Errors in this process underlie some of the most prevalent human birth defects, and occur in about 1 out of every 1000 births. Previously, we discovered a mutant in the basal chordate Ciona savignyi (named bugeye) that revealed a novel role for a T-Type Calcium Channel (Cav3) in this process. Moreover, the requirement for CAV3s in Xenopus NTC suggests a conserved function among the chordates. Loss of CAV3 leads to defects restricted to anterior NTC, with the brain apparently fully developed, but protruding from the head. Here we report first on a new Cav3 mutant in the related species C. robusta. RNAseq analysis of both C. robusta and C. savignyi bugeye mutants reveals misregulation of a number of transcripts including ones that are involved in cell-cell recognition and adhesion. Two in particular, Selectin and Fibronectin leucine-rich repeat transmembrane, which are aberrantly upregulated in the mutant, are expressed in the closing neural tube, and when disrupted by CRISPR gene editing lead to the open brain phenotype displayed in bugeye mutants. We speculate that these molecules play a transient role in tissue separation and adhesion during NTC and failure to downregulate them leads to an open neural tube.
Collapse
Affiliation(s)
- Haley M Smith
- Department of Molecular, Cellular and Developmental Biology, USA
| | | | - Ann Hong Nguyen
- Department of Molecular, Cellular and Developmental Biology, USA
| | | | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
6
|
Coppola U, Kamal AK, Stolfi A, Ristoratore F. The Cis-Regulatory Code for Kelch-like 21/30 Specific Expression in Ciona robusta Sensory Organs. Front Cell Dev Biol 2020; 8:569601. [PMID: 33043001 PMCID: PMC7517041 DOI: 10.3389/fcell.2020.569601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The tunicate Ciona robusta is an emerging model system to study the evolution of the nervous system. Due to their small embryos and compact genomes, tunicates, like Ciona robusta, have great potential to comprehend genetic circuitry underlying cell specific gene repertoire, among different neuronal cells. Their simple larvae possess a sensory vesicle comprising two pigmented sensory organs, the ocellus and the otolith. We focused here on Klhl21/30, a gene belonging to Kelch family, that, in Ciona robusta, starts to be expressed in pigmented cell precursors, becoming specifically maintained in the otolith precursor during embryogenesis. Evolutionary analyses demonstrated the conservation of Klhl21/30 in all the chordates. Cis-regulatory analyses and CRISPR/Cas9 mutagenesis of potential upstream factors, revealed that Klhl21/30 expression is controlled by the combined action of three transcription factors, Mitf, Dmrt, and Msx, which are downstream of FGF signaling. The central role of Mitf is consistent with its function as a fundamental regulator of vertebrate pigment cell development. Moreover, our results unraveled a new function for Dmrt and Msx as transcriptional co-activators in the context of the Ciona otolith.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ashwani Kumar Kamal
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
7
|
Coppola U, Olivo P, D’Aniello E, Johnson CJ, Stolfi A, Ristoratore F. Rimbp, a New Marker for the Nervous System of the Tunicate Ciona robusta. Genes (Basel) 2020; 11:genes11091006. [PMID: 32867148 PMCID: PMC7565545 DOI: 10.3390/genes11091006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Establishment of presynaptic mechanisms by proteins that regulate neurotransmitter release in the presynaptic active zone is considered a fundamental step in animal evolution. Rab3 interacting molecule-binding proteins (Rimbps) are crucial components of the presynaptic active zone and key players in calcium homeostasis. Although Rimbp involvement in these dynamics has been described in distantly related models such as fly and human, the role of this family in most invertebrates remains obscure. To fill this gap, we defined the evolutionary history of Rimbp family in animals, from sponges to mammals. We report, for the first time, the expression of the two isoforms of the unique Rimbp family member in Ciona robusta in distinct domains of the larval nervous system. We identify intronic enhancers that are able to drive expression in different nervous system territories partially corresponding to Rimbp endogenous expression. The analysis of gene expression patterns and the identification of regulatory elements of Rimbp will positively impact our understanding of this family of genes in the context of Ciona embryogenesis.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Paola Olivo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | - Enrico D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Correspondence: (A.S.); (F.R.)
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- Correspondence: (A.S.); (F.R.)
| |
Collapse
|
8
|
Transphyletic conservation of nitric oxide synthase regulation in cephalochordates and tunicates. Dev Genes Evol 2020; 230:329-338. [PMID: 32839880 DOI: 10.1007/s00427-020-00668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.
Collapse
|
9
|
Racioppi C, Coppola U, Christiaen L, Ristoratore F. Transcriptional regulation of Rab32/38, a specific marker of pigment cell formation in Ciona robusta. Dev Biol 2019; 448:111-118. [DOI: 10.1016/j.ydbio.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023]
|
10
|
Lischik CQ, Adelmann L, Wittbrodt J. Enhanced in vivo-imaging in medaka by optimized anaesthesia, fluorescent protein selection and removal of pigmentation. PLoS One 2019; 14:e0212956. [PMID: 30845151 PMCID: PMC6405165 DOI: 10.1371/journal.pone.0212956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.
Collapse
Affiliation(s)
- Colin Q Lischik
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Leonie Adelmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Kugler JE, Wu Y, Katikala L, Passamaneck YJ, Addy J, Caballero N, Oda-Ishii I, Maguire JE, Li R, Di Gregorio A. Positioning a multifunctional basic helix-loop-helix transcription factor within the Ciona notochord gene regulatory network. Dev Biol 2019; 448:119-135. [PMID: 30661645 DOI: 10.1016/j.ydbio.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 11/26/2022]
Abstract
In a multitude of organisms, transcription factors of the basic helix-loop-helix (bHLH) family control the expression of genes required for organ development and tissue differentiation. The functions of different bHLH transcription factors in the specification of nervous system and paraxial mesoderm have been widely investigated in various model systems. Conversely, the knowledge of the role of these regulators in the development of the axial mesoderm, the embryonic territory that gives rise to the notochord, and the identities of their target genes, remain still fragmentary. Here we investigated the transcriptional regulation and target genes of Bhlh-tun1, a bHLH transcription factor expressed in the developing Ciona notochord as well as in additional embryonic territories that contribute to the formation of both larval and adult structures. We describe its possible role in notochord formation, its relationship with the key notochord transcription factor Brachyury, and suggest molecular mechanisms through which Bhlh-tun1 controls the spatial and temporal expression of its effectors.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Lavanya Katikala
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yale J Passamaneck
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Jermyn Addy
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Natalia Caballero
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Izumi Oda-Ishii
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Julie E Maguire
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Raymond Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA.
| |
Collapse
|
12
|
Pickett CJ, Zeller RW. Efficient genome editing using CRISPR-Cas-mediated homology directed repair in the ascidian Ciona robusta. Genesis 2018; 56:e23260. [PMID: 30375719 DOI: 10.1002/dvg.23260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Eliminating or silencing a gene's level of activity is one of the classic approaches developmental biologists employ to determine a gene's function. A recently developed method of gene perturbation called CRISPR-Cas, which was derived from a prokaryotic adaptive immune system, has been adapted for use in eukaryotic cells. This technology has been established in several model organisms as a powerful and efficient tool for knocking out or knocking down the function of a gene of interest. It has been recently shown that CRISPR-Cas functions with fidelity and efficiency in Ciona robusta. Here, we show that in C. robusta CRISPR-Cas mediated genomic knock-ins can be efficiently generated. Electroporating a tissue-specific transgene driving Cas9 and a U6-driven gRNA transgene together with a fluorescent protein-containing homology directed repair (FP-HDR) template results in gene-specific patterns of fluorescence consistent with a targeted genomic insertion. Using the Tyrosinase locus to optimize reagents, we first characterize a new Pol III promoter for expressing gRNAs from the Ciona savignyi H1 gene, and then adapt technology that flanks gRNAs by ribozymes allowing cell-specific expression from Pol II promoters. Next, we examine homology arm-length efficiencies of FP-HDR templates. Reagents were then developed for targeting Brachyury and Pou4 that resulted in expected patterns of fluorescence, and sequenced PCR amplicons derived from single embryos validated predicted genomic insertions. Finally, using two differentially colored FP-HDR templates, we show that biallelic FP-HDR template insertion can be detected in live embryos of the F0 generation.
Collapse
Affiliation(s)
- C J Pickett
- Department of Biology, San Diego State University, San Diego, California
| | - Robert W Zeller
- Department of Biology, San Diego State University, San Diego, California.,Coastal and Marine Institute, San Diego State University, San Diego, California.,Center for Applied and Experimental Genomics, San Diego State University, San Diego, California
| |
Collapse
|
13
|
Abstract
Transgenesis is an indispensable method for elucidating the cellular and molecular mechanisms underlying biological phenomena. In Ciona, transgenic lines that have a transgene insertion in their genomes have been created. The transgenic lines are valuable because they express reporter genes in a nonmosaic manner. This nonmosaic manner allows us to accurately observe tissues and organs. The insertions of transgenes can destroy genes to create mutants. The insertional mutagenesis is a splendid method for investigating functions of genes. In Ciona intestinalis, expression of the gfp reporter gene is subjected to epigenetic silencing in the female germline. This epigenetic silencing has been used to establish a novel method for knocking down maternal expression of genes. The genetic procedures based on germline transgenesis facilitate studies for addressing gene functions in Ciona.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
14
|
Transgenic Techniques for Investigating Cell Biology During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542088 DOI: 10.1007/978-981-10-7545-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ascidians are increasingly being used as a system for investigating cell biology during development. The extreme genetic and cellular simplicity of ascidian embryos in combination with superior experimental tractability make this an ideal system for in vivo analysis of dynamic cellular processes. Transgenic approaches to cellular and sub-cellular analysis of ascidian development have begun to yield new insights into the mechanisms regulating developmental signaling and morphogenesis. This chapter focuses on the targeted expression of fusion proteins in ascidian embryos and how this technique is being deployed to garner new insights into the cell biology of development.
Collapse
|
15
|
Abstract
The ascidian Ciona intestinalis is an important model animal for studying developmental mechanisms for constructing the chordate body. Although molecular and embryological techniques for manipulating Ciona genes were developed a long time ago, recent achievements of genome editing in this animal have innovated functional analyses of genes in Ciona. Particularly, knockout of genes in the G0 generation coupled with tissue-specific expression of TALENs enables us to rapidly address gene functions that were difficult using previous methods.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan.
| | - Keita Yoshida
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
16
|
Segade F, Cota C, Famiglietti A, Cha A, Davidson B. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo 2016; 7:21. [PMID: 27583126 PMCID: PMC5006582 DOI: 10.1186/s13227-016-0056-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genomic analysis has upended chordate phylogeny, placing the tunicates as the sister group to the vertebrates. This taxonomic rearrangement raises questions about the emergence of a tunicate/vertebrate ancestor. RESULTS Characterization of developmental genes uniquely shared by tunicates and vertebrates is one promising approach for deciphering developmental shifts underlying acquisition of novel, ancestral traits. The matrix glycoprotein Fibronectin (FN) has long been considered a vertebrate-specific gene, playing a major instructive role in vertebrate embryonic development. However, the recent computational prediction of an orthologous "vertebrate-like" Fn gene in the genome of a tunicate, Ciona savignyi, challenges this viewpoint suggesting that Fn may have arisen in the shared tunicate/vertebrate ancestor. Here we verify the presence of a tunicate Fn ortholog. Transgenic reporter analysis was used to characterize a Ciona Fn enhancer driving expression in the notochord. Targeted knockdown in the notochord lineage indicates that FN is required for proper convergent extension. CONCLUSIONS These findings suggest that acquisition of Fn was associated with altered notochord morphogenesis in the vertebrate/tunicate ancestor.
Collapse
Affiliation(s)
- Fernando Segade
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Christina Cota
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Amber Famiglietti
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anna Cha
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| |
Collapse
|
17
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
18
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
19
|
Chen JS, Gumbayan AM, Zeller RW, Mahaffy JM. An expanded Notch-Delta model exhibiting long-range patterning and incorporating MicroRNA regulation. PLoS Comput Biol 2014; 10:e1003655. [PMID: 24945987 PMCID: PMC4063677 DOI: 10.1371/journal.pcbi.1003655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial patterns in tissues where Notch-Delta signaling is active.
Collapse
Affiliation(s)
- Jerry S. Chen
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Abygail M. Gumbayan
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert W. Zeller
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Joseph M. Mahaffy
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
20
|
Russo MT, Racioppi C, Zanetti L, Ristoratore F. Expression of a single prominin homolog in the embryo of the model chordate Ciona intestinalis. Gene Expr Patterns 2014; 15:38-45. [PMID: 24755348 DOI: 10.1016/j.gep.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022]
Abstract
Prominins are a family of pentaspan transmembrane glycoproteins, expressed in various types of cells, including stem and cancer stem cells in mammals. Prominin-1 is critical in generating and maintaining the structure of the photoreceptors in the eye since mutations in the PROM1 gene are associated with retinal and macular degeneration in human. In this study, we identified a single prominin homolog, Ci-prom1/2, in the model chordate the ascidian Ciona intestinalis and characterized Ci-prom1/2 expression profile in relation to photoreceptor differentiation during Ciona embryonic development. In situ hybridization experiments show Ci-prom1/2 transcripts localized in the developing central nervous system, predominantly in photoreceptor cell precursors as early as neurula stage and expression is maintained through larva stage in photoreceptor cells around the simple eye. We also isolated the regulatory region responsible for the specific spatio-temporal expression of the Ci-prom1/2 in photoreceptor cell lineage. Collectively, we report that Ci-prom1/2 is a novel molecular marker for ascidian photoreceptor cells and might represent a potential source to enlarge the knowledge about the function of prominin family in photoreceptor cell evolution and development.
Collapse
Affiliation(s)
- Monia T Russo
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy
| | - Claudia Racioppi
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy
| | - Laura Zanetti
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
21
|
Negishi T, McDougall A, Yasuo H. Practical tips for imaging ascidian embryos. Dev Growth Differ 2013; 55:446-53. [PMID: 23611302 DOI: 10.1111/dgd.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/06/2013] [Accepted: 03/15/2013] [Indexed: 01/12/2023]
Abstract
Decades of studies on ascidian embryogenesis have culminated in deciphering the first gene regulatory "blueprint" for the generation of all major larval tissue types in chordates. However, the current gene regulatory network (GRN) is not well integrated with the morphogenetic and cellular processes that are also taking place during embryogenesis. Describing these processes represents a major on-going challenge, aided by recent advances in imaging and fluorescent protein (FP) technologies. In this report, we describe the application of these technologies to the developmental biology of ascidians and provide a detailed practical guide on the preparation of ascidian embryos for imaging.
Collapse
Affiliation(s)
- Takefumi Negishi
- UPMC Univ Paris 06 and Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique, 06234, Villefranche-sur-mer, France
| | | | | |
Collapse
|
22
|
Joyce Tang W, Chen JS, Zeller RW. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 2013; 378:183-93. [PMID: 23545329 DOI: 10.1016/j.ydbio.2013.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
Collapse
Affiliation(s)
- W Joyce Tang
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
23
|
Chen JS, Pedro MS, Zeller RW. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development 2011; 138:4943-53. [DOI: 10.1242/dev.068049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nervous system-enriched microRNA miR-124 is necessary for proper nervous system development, although the mechanism remains poorly understood. Here, through a comprehensive analysis of miR-124 and its gene targets, we demonstrate that, in the chordate ascidian Ciona intestinalis, miR-124 plays an extensive role in promoting nervous system development. We discovered that feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells. Notch signaling silences miR-124 in epidermal midline cells, whereas in PNS midline cells miR-124 silences Notch, Neuralized and all three Ciona Hairy/Enhancer-of-Split genes. Furthermore, ectopic expression of miR-124 is sufficient to convert epidermal midline cells into PNS neurons, consistent with a role in modulating Notch signaling. More broadly, genome-wide target extraction with validation using an in vivo tissue-specific sensor assay indicates that miR-124 shapes neuronal progenitor fields by downregulating non-neural genes, notably the muscle specifier Macho-1 and 50 Brachyury-regulated notochord genes, as well as several anti-neural factors including SCP1 and PTBP1. 3′UTR conservation analysis reveals that miR-124 targeting of SCP1 is likely to have arisen as a shared, derived trait in the vertebrate/tunicate ancestor and targeting of PTBP1 is conserved among bilaterians except for ecdysozoans, while extensive Notch pathway targeting appears to be Ciona specific. Altogether, our results provide a comprehensive insight into the specific mechanisms by which miR-124 promotes neuronal development.
Collapse
Affiliation(s)
- Jerry S. Chen
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Matthew San Pedro
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Robert W. Zeller
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Center for Applied and Experimental Genomics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
24
|
Parton RM, Davis I. How the sea squirt nucleus tells mesoderm not to be endoderm. Dev Cell 2010; 19:487-8. [PMID: 20951340 PMCID: PMC3232446 DOI: 10.1016/j.devcel.2010.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sea squirts are simple invertebrate chordates. In this issue of Developmental Cell, Takatori et al. show nuclear migration within ascidian mesendodermal cells enables polarized localization of Not mRNA, which encodes a homeobox protein that distinguishes mesoderm from endoderm fates. The link between nuclear migration and mRNA localization suggests exciting parallels with protostomes.
Collapse
Affiliation(s)
- Richard M. Parton
- Department of Biochemistry The University Oxford South Parks Road Oxford OX1 3QU United Kingdom
| | - Ilan Davis
- Department of Biochemistry The University Oxford South Parks Road Oxford OX1 3QU United Kingdom
| |
Collapse
|
25
|
Kano S. Genomics and Developmental Approaches to an Ascidian Adenohypophysis Primordium. Integr Comp Biol 2010; 50:35-52. [DOI: 10.1093/icb/icq050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
26
|
Virata MJ, Zeller RW. Ascidians: an invertebrate chordate model to study Alzheimer's disease pathogenesis. Dis Model Mech 2010; 3:377-85. [PMID: 20197417 DOI: 10.1242/dmm.003434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present the ascidian Ciona intestinalis as an alternative invertebrate system to study Alzheimer's disease (AD) pathogenesis. Through the use of AD animal models, researchers often attempt to reproduce various aspects of the disease, particularly the coordinated processing of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretases to generate amyloid beta (Abeta)-containing plaques. Recently, Drosophila and C. elegans AD models have been developed, exploiting the relative simplicity of these invertebrate systems, but they lack a functional Abeta sequence and a beta-secretase ortholog, thus complicating efforts to examine APP processing in vivo. We propose that the ascidian is a more appropriate invertebrate AD model owing to their phylogenetic relationship with humans. This is supported by bioinformatic analyses, which indicate that the ascidian genome contains orthologs of all AD-relevant genes. We report that transgenic ascidian larvae can properly process human APP(695) to generate Abeta peptides. Furthermore, Abeta can rapidly aggregate to form amyloid-like plaques, and plaque deposition is significantly increased in larvae expressing a human APP(695) variant associated with familial Alzheimer's disease. We also demonstrate that nervous system-specific Abeta expression alters normal larval behavior during attachment. Importantly, plaque formation and alterations in behavior are not only observed within 24 hours post-fertilization, but anti-amyloid drug treatment improves these AD-like pathologies. This ascidian model for AD provides a powerful and rapid system to study APP processing, Abeta plaque formation and behavioral alterations, and could aid in identifying factors that modulate amyloid deposition and the associated disruption of normal cellular function and behaviors.
Collapse
Affiliation(s)
- Michael J Virata
- Center for Applied and Experimental Genomics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-4614, USA
| | | |
Collapse
|
27
|
Passamaneck YJ, Katikala L, Perrone L, Dunn MP, Oda-Ishii I, Di Gregorio A. Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis. Development 2009; 136:3679-89. [PMID: 19820186 DOI: 10.1242/dev.038141] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notochord is a defining feature of the chordate body plan. Experiments in ascidian, frog and mouse embryos have shown that co-expression of Brachyury and FoxA class transcription factors is required for notochord development. However, studies on the cis-regulatory sequences mediating the synergistic effects of these transcription factors are complicated by the limited knowledge of notochord genes and cis-regulatory modules (CRMs) that are directly targeted by both. We have identified an easily testable model for such investigations in a 155-bp notochord-specific CRM from the ascidian Ciona intestinalis. This CRM contains functional binding sites for both Ciona Brachyury (Ci-Bra) and FoxA (Ci-FoxA-a). By combining point mutation analysis and misexpression experiments, we demonstrate that binding of both transcription factors to this CRM is necessary and sufficient to activate transcription. To gain insights into the cis-regulatory criteria controlling its activity, we investigated the organization of the transcription factor binding sites within the 155-bp CRM. The 155-bp sequence contains two Ci-Bra binding sites with identical core sequences but opposite orientations, only one of which is required for enhancer activity. Changes in both orientation and spacing of these sites substantially affect the activity of the CRM, as clusters of identical sites found in the Ciona genome with different arrangements are unable to activate transcription in notochord cells. This work presents the first evidence of a synergistic interaction between Brachyury and FoxA in the activation of an individual notochord CRM, and highlights the importance of transcription factor binding site arrangement for its function.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
28
|
Passamaneck YJ, Hadjantonakis AK, Di Gregorio A. Dynamic and polarized muscle cell behaviors accompany tail morphogenesis in the ascidian Ciona intestinalis. PLoS One 2007; 2:e714. [PMID: 17684560 PMCID: PMC1934933 DOI: 10.1371/journal.pone.0000714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/04/2007] [Indexed: 11/19/2022] Open
Abstract
Background Axial elongation is a key morphogenetic process that serves to shape developing organisms. Tail extension in the ascidian larva represents a striking example of this process, wherein paraxially positioned muscle cells undergo elongation and differentiation independent of the segmentation process that characterizes the formation of paraxial mesoderm in vertebrates. Investigating the cell behaviors underlying the morphogenesis of muscle in ascidians may therefore reveal the evolutionarily conserved mechanisms operating during this process. Methodology/Principle Findings A live cell imaging approach utilizing subcellularly-localized fluorescent proteins was employed to investigate muscle cell behaviors during tail extension in the ascidian Ciona intestinalis. Changes in the position and morphology of individual muscle cells were analyzed in vivo in wild type embryos undergoing tail extension and in embryos in which muscle development was perturbed. Muscle cells were observed to undergo elongation in the absence of positional reorganization. Furthermore, high-speed high-resolution live imaging revealed that the onset and progression of tail extension were characterized by the presence of dynamic and polarized actin-based protrusive activity at the plasma membrane of individual muscle cells. Conclusions/Significance Our results demonstrate that in the Ciona muscle, tissue elongation resulted from gradual and coordinated changes in cell geometry and not from changes in cell topology. Proper formation of muscle cells was found to be necessary not only for muscle tissue elongation, but also more generally for completion of tail extension. Based upon the characterized dynamic changes in cell morphology and plasma membrane protrusive activity, a three-phase model is proposed to describe the cell behavior operating during muscle morphogenesis in the ascidian embryo.
Collapse
Affiliation(s)
- Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | | | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (A-KH), and (ADG)
| |
Collapse
|
29
|
Oda-Ishii I, Di Gregorio A. Lineage-independent mosaic expression and regulation of theCiona multidomgene in the ancestral notochord. Dev Dyn 2007; 236:1806-19. [PMID: 17576134 DOI: 10.1002/dvdy.21213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The transcription factor Ciona Brachyury (Ci-Bra) plays an essential role in notochord development in the ascidian Ciona intestinalis. We characterized a putative Ci-Bra target gene, which we named Ci-multidom, and analyzed in detail its expression pattern in normal embryos and in embryos where Ci-Bra was misexpressed. Ci-multidom encodes a novel protein, which contains eight CCP domains and a partial VWFA domain. We show that an EGFP-multidom fusion protein localizes preferentially to the endoplasmic reticulum (ER), and is excluded from the nucleus. In situ hybridization experiments demonstrate that Ci-multidom is expressed in the notochord and in the anterior neural boundary (ANB). We found that the expression in the ANB is fully recapitulated by an enhancer element located upstream of Ci-multidom. By means of misexpression experiments, we provide evidence that Ci-Bra controls transcription of Ci-multidom in the notochord; however, while Ci-Bra is homogeneously expressed throughout this structure, Ci-multidom is transcribed at detectable levels only in a random subset of notochord cells. The number of notochord cells expressing Ci-multidom varies among different embryos and is independent of developmental stage, lineage, and position along the anterior-posterior axis. These results suggest that despite its morphological simplicity and invariant cell-lineage, the ancestral notochord is a mosaic of cells in which the gene cascade downstream of Brachyury is differentially modulated.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Mocz G. Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:305-28. [PMID: 17372780 DOI: 10.1007/s10126-006-7145-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/24/2007] [Indexed: 05/14/2023]
Abstract
This review explores the field of fluorescent proteins (FPs) from the perspective of their marine origins and their applications in marine biotechnology and proteomics. FPs occur in hydrozoan, anthozoan, and copepodan species, and possibly in other metazoan niches as well. Many FPs exhibit unique photophysical and photochemical properties that are the source of exciting research opportunities and technological development. Wild-type FPs can be enhanced by mutagenetic modifications leading to variants with optimized fluorescence and new functionalities. Paradoxically, the benefits from ocean-derived FPs have been realized, first and foremost, for terrestrial organisms. In recent years, however, FPs have also made inroads into aquatic biosciences, primarily as genetically encoded fluorescent fusion tags for optical marking and tracking of proteins, organelles, and cells. Examples of FPs and applications summarized here testify to growing utilization of FP-based platform technologies in basic and applied biology of aquatic organisms. Hydra, sea squirt, zebrafish, striped bass, rainbow trout, salmonids, and various mussels are only a few of numerous instances where FPs have been used to address questions relevant to evolutionary and developmental research and aquaculture.
Collapse
Affiliation(s)
- Gabor Mocz
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
31
|
Abstract
Mitochondria have long been known to be the powerhouses of the cell but they also contribute to redox and Ca2+ homeostasis, provide intermediary metabolites and store proapoptotic factors. Mitochondria have a unique behavior during development. They are maternally transmitted with little (if any) paternal contribution, and they originate from a restricted founder population, which is amplified during oogenesis. Then, having established the full complement of mitochondria in the fully grown oocyte, there is no further increase of the mitochondrial population during early development. The localization of mitochondria in the egg during maturation and their segregation to blastomeres in the cleaving embryo are strictly regulated. Gradients in the distribution of mitochondria present in the egg have the potential to give rise to blastomeres receiving different numbers of mitochondria. Such maternally inherited differences in mitochondrial distribution are thought to play roles in defining the long-term viability of the blastomere in some cases and embryonic axes and patterning in others. Mitochondria may also regulate development by a number of other means, including modulating Ca2+ signaling, and the production of ATP, reactive oxygen species, and intermediary metabolites. If the participation of mitochondria in the regulation of sperm-triggered Ca2+ oscillations is now well established, the role of other properties of mitochondrial function during development remain largely unexplored probably due to the difficulty of accessing the mitochondrial compartment in an embryo. Maintaining a functional complement of maternally derived mitochondria is vital for the early embryo. Mitochondrial dysfunction may not only compromise developmental processes but also trigger apoptosis in the embryo. This dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated.
Collapse
Affiliation(s)
- Rémi Dumollard
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
32
|
Davidson B, Shi W, Beh J, Christiaen L, Levine M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 2006; 20:2728-38. [PMID: 17015434 PMCID: PMC1578698 DOI: 10.1101/gad.1467706] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/18/2006] [Indexed: 02/02/2023]
Abstract
Comprehensive gene networks in Ciona intestinalis embryos provide a foundation for characterizing complex developmental processes, such as the initial phases of chordate heart development. The basic helix-loop-helix regulatory gene Ci-Mesp is required for activation of cardiac transcription factors. Evidence is presented that Ci-Ets1/2, a transcriptional effector of receptor tyrosine kinase (RTK) signaling, acts downstream from Mesp to establish the heart field. Asymmetric activation of Ets1/2, possibly through localized expression of FGF9, drives heart specification within this field. During gastrulation, Ets1/2 is expressed in a group of four cells descended from two Mesp-expressing founder cells (the B7.5 cells). After gastrulation, these cells divide asymmetrically; the smaller rostral daughters exhibit RTK activation (phosphorylation of ERK) and form the heart lineage while the larger caudal daughters form the anterior tail muscle lineage. Inhibition of RTK signaling prevents heart specification. Targeted inhibition of Ets1/2 activity or FGF receptor function also blocks heart specification. Conversely, application of FGF or targeted expression of constitutively active Ets1/2 (EtsVp16) cause both rostral and caudal B7.5 lineages to form heart cells. This expansion produces an unexpected phenotype: transformation of a single-compartment heart into a functional multicompartment organ. We discuss these results with regard to the development and evolution of the multichambered vertebrate heart.
Collapse
Affiliation(s)
- Brad Davidson
- Department of Molecular and Cellular Biology, Division of Genetics and Development, Center for Integrative Genomics, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
33
|
Giacalone MJ, Sabbadini RA, Chambers AL, Pillai S, McGuire KL. Immune responses elicited by bacterial minicells capable of simultaneous DNA and protein antigen delivery. Vaccine 2006; 24:6009-17. [PMID: 16806602 PMCID: PMC7125846 DOI: 10.1016/j.vaccine.2006.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/14/2006] [Accepted: 04/20/2006] [Indexed: 11/22/2022]
Abstract
Recent events surrounding emerging infectious diseases, bioterrorism and increasing multidrug antibiotic resistance in bacteria have drastically increased current needs for effective vaccines. Many years of study have shown that live, attenuated pathogens are often more effective at delivering heterologous protein or DNA to induce protective immune responses. However, these vaccine carriers have inherent safety concerns that have limited their development and their use in many patient populations. Studies using nonliving delivery mechanisms have shown that providing both protein antigen and DNA encoding the antigen to an individual induces an improved, more protective immune response but rarely, if ever, are both delivered simultaneously. Here, non-replicating bacterial minicells derived from a commensal E. coli strain are shown to effectively induce antigen-specific immune responses after simultaneous protein and DNA delivery. These data demonstrate the potential use of achromosomal bacterial minicells as a vaccine carrier.
Collapse
Affiliation(s)
| | - Roger A. Sabbadini
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
- Department of Biology, Center For Microbial Sciences, San Diego State University, San Diego, CA, USA
| | - Amy L. Chambers
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
| | - Sabitha Pillai
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
| | - Kathleen L. McGuire
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
- Department of Biology, Center For Microbial Sciences, San Diego State University, San Diego, CA, USA
- Corresponding author at: Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA. Tel.: +1 619 594 7191; fax: +1 619 594 5676.
| |
Collapse
|
34
|
Giacalone MJ, Gentile AM, Lovitt BT, Berkley NL, Gunderson CW, Surber MW. Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 2006; 40:355-64. [PMID: 16568824 DOI: 10.2144/000112112] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The refinement of tightly regulated prokaryotic expression systems that permit functional expression of toxic recombinant proteins is a continually evolving process. Unfortunately, the current best promoter options are either tightly repressed and produce little protein, or produce substantial protein but lack the necessary repression to avoid mutations stimulated by leaky expression in the absence of inducer. In this report, we present three novel prokaryotic expression constructs that are tightly regulated by L-rhamnose and D-glucose. These expression vectors utilize the Escherichia coli rhaT promoter and corresponding regulatory genes to provide titratable, high-level protein yield without compromising clone integrity. Together, these components may enable the stable cloning and functional expression of otherwise toxic proteins.
Collapse
|
35
|
Zeller RW, Virata MJ, Cone AC. Predictable mosaic transgene expression in ascidian embryos produced with a simple electroporation device. Dev Dyn 2006; 235:1921-32. [PMID: 16607640 DOI: 10.1002/dvdy.20815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two customized electroporators were specifically designed for creating transgenic ascidian embryos. These electroporators were simple to build, inexpensive, and produced transgenic embryos with efficiencies that equaled or rivaled commercially available machines. A key design feature of these machines resulted in the generation of consistent electroporation pulses providing repeatability between experiments. These devices were used to optimize experimental parameters allowing for the creation of transient transgenic embryos with predictable patterns of mosaic transgene expression. We used these new electroporators to examine the expression of two different fluorescent protein reporter genes with regard to embryonic cell lineage. In general, transgene expression followed the embryonic cell lineage and coelectroporated transgenes were always expressed in the same embryonic cells. Our analysis also indicated that, during development, transgenes could be lost from embryonic cells, suggesting that transgenes may be present in extrachromosomal arrays, as has been observed in other organisms. Our new electroporator designs will allow ascidian researchers to inexpensively produce transgenic ascidians and should prove useful for adapting the electroporation technique to other marine embryo systems.
Collapse
Affiliation(s)
- Robert W Zeller
- Molecular Biology Institute and Coastal and Marine Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | |
Collapse
|