1
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform specific functions in development and disease. J Biol Chem 2025:108215. [PMID: 39863103 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9.
| |
Collapse
|
2
|
Liu W, Xie H, Liu X, Xu S, Cheng S, Wang Z, Xie T, Zhang ZC, Han J. PQBP1 regulates striatum development through balancing striatal progenitor proliferation and differentiation. Cell Rep 2023; 42:112277. [PMID: 36943865 DOI: 10.1016/j.celrep.2023.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
The balance between cell proliferation and differentiation is essential for maintaining the neural progenitor pool and brain development. Although the mechanisms underlying cell proliferation and differentiation at the transcriptional level have been studied intensively, post-transcriptional regulation of cell proliferation and differentiation remains largely unclear. Here, we show that deletion of the alternative splicing regulator PQBP1 in striatal progenitors results in defective striatal development due to impaired neurogenesis of spiny projection neurons (SPNs). Pqbp1-deficient striatal progenitors exhibit declined proliferation and increased differentiation, resulting in a reduced striatal progenitor pool. We further reveal that PQBP1 associates with components in splicing machinery. The alternative splicing profiles identify that PQBP1 promotes the exon 9 inclusion of Numb, a variant that mediates progenitor proliferation. These findings identify PQBP1 as a regulator in balancing striatal progenitor proliferation and differentiation and provide alternative insights into the pathogenic mechanisms underlying Renpenning syndrome.
Collapse
Affiliation(s)
- Wenhua Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Hao Xie
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shoujing Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shanshan Cheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
3
|
The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biol 2022; 20:e3001615. [PMID: 35476669 PMCID: PMC9084524 DOI: 10.1371/journal.pbio.3001615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/09/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.
Collapse
|
4
|
Zhang Y, Dho SE, Othman K, Simpson CD, Lapierre J, Bondoc A, McGlade CJ. Numb exon 9 inclusion regulates Integrinβ5 surface expression and promotes breast cancer metastasis. Oncogene 2022; 41:2079-2094. [PMID: 35181737 DOI: 10.1038/s41388-022-02225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
The endocytic adaptor protein Numb acts as a tumor suppressor through downregulation of oncogenic pathways in multiple cancer types. The identification of splicing alterations giving rise to changes in Numb protein isoform expression indicate that Numb also has tumor promoting activity, though the underlying mechanisms are unknown. Here we report that NUMB exon 9 inclusion, which results in production of a protein isoform with an additional 49 amino acids, is a feature of multiple cancer types including all subtypes of breast cancer and correlates with worse progression-free survival. Specific deletion of exon 9-included Numb isoforms (Exon9in) from breast cancer cells reduced cell growth and prevents spontaneous lung metastasis in a mouse model. Quantitative proteome profiling showed that loss of Exon9in causes downregulation of membrane receptors and adhesion molecules, as well as proteins involved in extracellular matrix organization and the epithelial-mesenchymal transition (EMT) state. In addition, exon 9 deletion caused remodeling of the endocytic network, decreased ITGβ5 surface localization, cell spreading on vitronectin and downstream signaling to ERK and SRC. Together these observations suggest that Exon9in isoform expression disrupts the endocytic trafficking functions of Numb, resulting in increased surface expression of ITGβ5 as well as other plasma membrane proteins to promote cell adhesion, EMT, and tumor metastasis.
Collapse
Affiliation(s)
- Yangjing Zhang
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Kamal Othman
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Craig D Simpson
- SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jessica Lapierre
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Andrew Bondoc
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
5
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
6
|
Huang SC, Vu LV, Yu FH, Nguyen DT, Benz EJ. Multifunctional protein 4.1R regulates the asymmetric segregation of Numb during terminal erythroid maturation. J Biol Chem 2021; 297:101051. [PMID: 34364872 PMCID: PMC8408529 DOI: 10.1016/j.jbc.2021.101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 10/25/2022] Open
Abstract
The asymmetric cell division of stem or progenitor cells generates daughter cells with distinct fates that balance proliferation and differentiation. Asymmetric segregation of Notch signaling regulatory protein Numb plays a crucial role in cell diversification. However, the molecular mechanism remains unclear. Here, we examined the unequal distribution of Numb in the daughter cells of murine erythroleukemia cells (MELCs) that undergo DMSO-induced erythroid differentiation. In contrast to the cytoplasmic localization of Numb during uninduced cell division, Numb is concentrated at the cell boundary in interphase, near the one-spindle pole in metaphase, and is unequally distributed to one daughter cell in anaphase in induced cells. The inheritance of Numb guides this daughter cell toward erythroid differentiation while the other cell remains a progenitor cell. Mitotic spindle orientation, critical for distribution of cell fate determinants, requires complex communication between the spindle microtubules and the cell cortex mediated by the NuMA-LGN-dynein/dynactin complex. Depletion of each individual member of the complex randomizes the position of Numb relative to the mitotic spindle. Gene replacement confirms that multifunctional erythrocyte protein 4.1R (4.1R) functions as a member of the NuMA-LGN-dynein/dynactin complex and is necessary for regulating spindle orientation, in which interaction between 4.1R and NuMA plays an important role. These results suggest that mispositioning of Numb is the result of spindle misorientation. Finally, disruption of the 4.1R-NuMA-LGN complex increases Notch signaling and decreases the erythroblast population. Together, our results identify a critical role for 4.1R in regulating the asymmetric segregation of Numb to mediate erythropoiesis.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dan T Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts, USA; Leukemia Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
8
|
Choi HY, Seok J, Kang GH, Lim KM, Cho SG. The role of NUMB/NUMB isoforms in cancer stem cells. BMB Rep 2021; 54:335-343. [PMID: 34078527 PMCID: PMC8328821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs. [BMB Reports 2021; 54(7): 335-343].
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA, Seoul 05029, Korea
| | - Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
9
|
Li Y, Wang D, Wang H, Huang X, Wen Y, Wang B, Xu C, Gao J, Liu J, Tong J, Wang M, Su P, Ren S, Ma F, Li H, Bresnick EH, Zhou J, Shi L. A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells. EMBO Rep 2021; 22:e50535. [PMID: 33319461 PMCID: PMC7788460 DOI: 10.15252/embr.202050535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS) leads to transcriptome diversity in eukaryotic cells and is one of the key regulators driving cellular differentiation. Although AS is of crucial importance for normal hematopoiesis and hematopoietic malignancies, its role in early hematopoietic development is still largely unknown. Here, by using high-throughput transcriptomic analyses, we show that pervasive and dynamic AS takes place during hematopoietic development of human pluripotent stem cells (hPSCs). We identify a splicing factor switch that occurs during the differentiation of mesodermal cells to endothelial progenitor cells (EPCs). Perturbation of this switch selectively impairs the emergence of EPCs and hemogenic endothelial progenitor cells (HEPs). Mechanistically, an EPC-induced alternative spliced isoform of NUMB dictates EPC specification by controlling NOTCH signaling. Furthermore, we demonstrate that the splicing factor SRSF2 regulates splicing of the EPC-induced NUMB isoform, and the SRSF2-NUMB-NOTCH splicing axis regulates EPC generation. The identification of this splicing factor switch provides a new molecular mechanism to control cell fate and lineage specification.
Collapse
Affiliation(s)
- Yapu Li
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ding Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hongtao Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Xin Huang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuqi Wen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - BingRui Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jie Gao
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jinhua Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jingyuan Tong
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Mengge Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Pei Su
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Sirui Ren
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Feng Ma
- Institute of Blood TransfusionChinese Academy of Medical Sciences & Peking Union Medical CollegeChengduChina
| | - Hong‐Dong Li
- School of Computer Science and EngineeringCentral South UniversityChangshaHunanChina
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research InstituteDepartment of Cell and Regenerative BiologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
10
|
Wei R, Liu X, Voss C, Qin W, Dagnino L, Li L, Vigny M, Li SSC. NUMB regulates the endocytosis and activity of the anaplastic lymphoma kinase in an isoform-specific manner. J Mol Cell Biol 2019; 11:994-1005. [PMID: 30726988 PMCID: PMC6927325 DOI: 10.1093/jmcb/mjz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
Collapse
Affiliation(s)
- Ran Wei
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wentao Qin
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Dagnino
- Physiology and Pharmacology and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lei Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, China
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, Paris, France
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Liu Z, Qi S, Fu Y, Shen L, Li M, Lu J, Zhao X, Zhang H. NUMB knockdown enhanced the anti-tumor role of cisplatin on ovarian cancer cells by inhibiting cell proliferation and epithelial-mesenchymal transition. Transl Cancer Res 2019; 8:379-388. [PMID: 35116770 PMCID: PMC8798962 DOI: 10.21037/tcr.2019.01.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
Abstract
Background NUMB is an inhibitory regulator of NOTCH signaling, which is critical for the induction of epithelial-mesenchymal transition (EMT). Loss of NUMB expression is correlated with the genesis and development of multiple tumors. Recent studies reported that NUMB expression was upregulated in human ovarian cancer. However, the role of NUMB in ovarian cancer is still unclear. Here, we invested the effect of NUMB knockdown on the proliferation and EMT in ovarian cancer cells and explored the role of NUMB in the effect of cisplatin. Methods Two ovarian cancer cells (OVCAR-3 and SK-OV-3) were used in the experiments. The proliferation and apoptosis of ovarian cancer cells was examined using methyl thiazolyl tetrazolium (MTT) test and flow cytometry assays. The invasion and migration of ovarian cancer cells were examined using Transwell assays. The expression of EMT markers were examined using Simple Western analysis. Results NUMB knockdown inhibited cell proliferation, invasion, and migration in both ovarian cancer cells. NUMB knockdown enhanced cisplatin-induced cell growth inhibiting and apoptosis in both ovarian cancer cells. NUMB knockdown enhanced cisplatin-induced cell invasion in SK-OV-3 cells. NUMB knockdown also decreased the expression of N-cadherin and Vimentin in SK-OV-3 cells. Conclusions NUMB acted as an oncogene in ovarian cancer and NUMB knockdown enhanced the anti-tumor role of cisplatin on ovarian carcinoma cells by inhibiting cell proliferation and EMT.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shasha Qi
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Yibing Fu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Mingjiang Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xingbo Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
12
|
Colaluca IN, Basile A, Freiburger L, D'Uva V, Disalvatore D, Vecchi M, Confalonieri S, Tosoni D, Cecatiello V, Malabarba MG, Yang CJ, Kainosho M, Sattler M, Mapelli M, Pece S, Di Fiore PP. A Numb-Mdm2 fuzzy complex reveals an isoform-specific involvement of Numb in breast cancer. J Cell Biol 2018; 217:745-762. [PMID: 29269425 PMCID: PMC5800818 DOI: 10.1083/jcb.201709092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/03/2022] Open
Abstract
Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.
Collapse
Affiliation(s)
| | - Andrea Basile
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lee Freiburger
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronica D'Uva
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | | | - Manuela Vecchi
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | | | - Daniela Tosoni
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maria Grazia Malabarba
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michael Sattler
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| |
Collapse
|
13
|
Abstract
Hyungsoo Kim and Ze’ev Ronai preview work from Colaluca et al. that reveals the function of Numb exon 3–containing isoforms in the formation of a fuzzy complex with Mdm2 and the regulation of p53 stability. Although numerous pathways are known to control the tumor suppressor protein p53, coordinated regulation of the p53–Notch axis by Numb may have an even more remarkable impact. In this issue, Colaluca at al. (2018. J. Cell Biol.https://doi.org/10.1083/jcb.201709092) reveal an unexpected role of a newly characterized Numb splice variant in the regulation of p53, which may have significant implications for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA .,Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Shao X, Ding Z, Zhao M, Liu K, Sun H, Chen J, Liu X, Zhang Y, Hong Y, Li H, Li H. Mammalian Numb protein antagonizes Notch by controlling postendocytic trafficking of the Notch ligand Delta-like 4. J Biol Chem 2017; 292:20628-20643. [PMID: 29042443 DOI: 10.1074/jbc.m117.800946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/30/2017] [Indexed: 11/06/2022] Open
Abstract
The biological antagonism between the signaling proteins Numb and Notch has been implicated in the regulation of many developmental processes, especially in asymmetric cell division. Mechanistic studies show that Numb inactivates Notch via endocytosis and proteasomal degradation that directly reduce Notch protein levels at the cell surface. However, some aspects of how Numb antagonizes Notch remain unclear. Here, we report a novel mechanism in which Numb acts as a Notch antagonist by controlling the intracellular destination and stability of the Notch ligand Delta-like 4 (Dll4) through a postendocytic-sorting process. We observed that Numb/Numblike knockdown increases the stability and cell-surface accumulation of Dll4. Further study indicated that Numb acts as a sorting switch to control the postendocytic trafficking of Dll4. Of note, the Numb/Numblike knockdown decreased Dll4 delivery to the lysosome, while increasing the recycling of Dll4 to the plasma membrane. Moreover, we demonstrate that this enrichment of Dll4 at the cell surface within Numb/Numblike knockdown cells could activate Notch signaling in neighboring cells. We also provide evidence that Numb negatively controls the Dll4 plasma membrane recycling through a well-documented recycling regulator protein AP1. In conclusion, our study has uncovered a molecular mechanism whereby Numb regulates the endocytic trafficking of the Notch ligand Dll4. Our findings provide a new perspective on how Numb counteracts Notch signaling and sheds additional critical insights into the antagonistic relationship between Numb and Notch signaling.
Collapse
Affiliation(s)
- Ximing Shao
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhihao Ding
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ming Zhao
- the Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ke Liu
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haiyan Sun
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Juntao Chen
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xianming Liu
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yuzhen Zhang
- the Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yang Hong
- the Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Huashun Li
- the ATCG Corp., BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongchang Li
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China,
| |
Collapse
|
15
|
Kikuchi H, Sakakibara-Konishi J, Furuta M, Yokouchi H, Nishihara H, Yamazaki S, Uramoto H, Tanaka F, Harada M, Akie K, Sugaya F, Fujita Y, Takamura K, Kojima T, Harada T, Higuchi M, Honjo O, Minami Y, Watanabe N, Oizumi S, Suzuki H, Ishida T, Dosaka-Akita H, Isobe H, Munakata M, Nishimura M. Expression of Notch1 and Numb in small cell lung cancer. Oncotarget 2017; 8:10348-10358. [PMID: 28060745 PMCID: PMC5354663 DOI: 10.18632/oncotarget.14411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Notch signaling in tumorigenesis functions as an oncogene or tumor suppressor according to the type of malignancy. Numb represses intracellular Notch signaling. Previous studies have demonstrated that Notch signaling suppresses the proliferation of small cell lung cancer (SCLC) cell lines. However, in SCLC, the association between Notch1 and Numb expression and clinicopathological factors or prognosis has remained unclear. In this study, we evaluated the expression of Notch1 and Numb in SCLC. We immunohistochemically assessed 125 SCLCs that were surgically resected at 16 institutions participating in either the Hokkaido Lung Cancer Clinical Study Group Trial (HOT) or the Fukushima Investigative Group for Healing Thoracic Malignancy (FIGHT) between 2003 and 2013. Correlations between Notch1 or Numb expression and various clinicopathological features were evaluated. Notch1 expression was associated with ECOG performance status. Numb expression was associated with age, sex, and pathological histology (SCLC or Combined SCLC). Analysis of cellular biological expression did not demonstrate a significant correlation between the expression of Notch1 and of Numb. Multivariate Cox regression analysis showed that high Notch1 expression was an independent favorable prognostic factor for SCLC(hazard ratio = 0.503, P = 0.023). High Notch1 expression, but not Numb expression, is associated with favorable prognosis in SCLC.
Collapse
Affiliation(s)
- Hajime Kikuchi
- Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | - Megumi Furuta
- Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiroshi Yokouchi
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigeo Yamazaki
- Department of Thoracic Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Hidetaka Uramoto
- Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu, Japan
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Fumihiro Tanaka
- Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu, Japan
| | - Masao Harada
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Kenji Akie
- Department of Respiratory Disease, Sapporo City General Hospital, Sapporo, Japan
| | - Fumiko Sugaya
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa, Japan
| | - Kei Takamura
- Department of Medicine, Obihiro Kosei Hospital, Obihiro, Japan
| | - Tetsuya Kojima
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Mitsunori Higuchi
- Department of Thoracic Surgery, Fukushima Red Cross Hospital, Fukushima, Japan
- Department of Thoracic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Osamu Honjo
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Yoshinori Minami
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Naomi Watanabe
- Department of Internal Medicine, Sunagawa City Medical Center, Sunagawa, Japan
| | - Satoshi Oizumi
- Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hiroyuki Suzuki
- Department of Thoracic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ishida
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
- Clinical Oncology Center, Fukushima Medical University Hospital, Fukushima, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Isobe
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masaharu Nishimura
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
16
|
Rajendran D, Zhang Y, Berry DM, McGlade CJ. Regulation of Numb isoform expression by activated ERK signaling. Oncogene 2016; 35:5202-13. [PMID: 27041567 DOI: 10.1038/onc.2016.69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 12/23/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022]
Abstract
The endocytic adaptor protein Numb has a major role in development as an intrinsic regulator of cell fate determination and inhibitor of the Notch signaling pathway. In vertebrates, four protein isoforms of Numb are produced through alternative splicing (AS) of two cassette exons (exons 3 and 9). AS of coding exon 9 (E9) produces E9-included (p72/p71) and -excluded (p66/p65) protein products. Expression of Numb isoforms is developmentally regulated and E9-included products are expressed in progenitors, whereas E9-excluded isoforms are dominantly expressed in differentiated cells. Analyses of AS events in multiple cancers previously identified a switch in Numb transcript and protein expression from the E9-excluded to the E9-included isoform, suggesting that misregulation of the mechanisms that control E9 inclusion may have a role in tumorigenesis. Here we identify splicing factors ASF/SF2 and PTBP1 as regulators of E9 splicing and show that activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway promotes E9 inclusion in cancer cells. Our evidence supports a mechanism by which Numb AS is regulated in response to oncogenic signaling pathways, and contributes to activation of downstream pathways to promote tumorigenesis.
Collapse
Affiliation(s)
- D Rajendran
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Y Zhang
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - D M Berry
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - C J McGlade
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Tarn WY, Kuo HC, Yu HI, Liu SW, Tseng CT, Dhananjaya D, Hung KY, Tu CC, Chang SH, Huang GJ, Chiu IM. RBM4 promotes neuronal differentiation and neurite outgrowth by modulating Numb isoform expression. Mol Biol Cell 2016; 27:1676-83. [PMID: 27009199 PMCID: PMC4865323 DOI: 10.1091/mbc.e15-11-0798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/18/2016] [Indexed: 01/22/2023] Open
Abstract
RBM4 modulates alternative exon selection of Numb and up-regulates proneural Mash1 gene expression, possibly via specific Numb isoforms. RBM4 overexpression promotes neuronal cell differentiation. Moreover, RBM4 is essential for neurite outgrowth in primary cortical neurons by modulating specific Numb isoform expression. RBM4 participates in cell differentiation by regulating tissue-specific alternative pre-mRNA splicing. RBM4 also has been implicated in neurogenesis in the mouse embryonic brain. Using mouse embryonal carcinoma P19 cells as a neural differentiation model, we observed a temporal correlation between RBM4 expression and a change in splicing isoforms of Numb, a cell-fate determination gene. Knockdown of RBM4 affected the inclusion/exclusion of exons 3 and 9 of Numb in P19 cells. RBM4-deficient embryonic mouse brain also exhibited aberrant splicing of Numb pre-mRNA. Using a splicing reporter minigene assay, we demonstrated that RBM4 promoted exon 3 inclusion and exon 9 exclusion. Moreover, we found that RBM4 depletion reduced the expression of the proneural gene Mash1, and such reduction was reversed by an RBM4-induced Numb isoform containing exon 3 but lacking exon 9. Accordingly, induction of ectopic RBM4 expression in neuronal progenitor cells increased Mash1 expression and promoted cell differentiation. Finally, we found that RBM4 was also essential for neurite outgrowth from cortical neurons in vitro. Neurite outgrowth defects of RBM4-depleted neurons were rescued by RBM4-induced exon 9–lacking Numb isoforms. Therefore our findings indicate that RBM4 modulates exon selection of Numb to generate isoforms that promote neuronal cell differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hung-Che Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shin-Wu Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Tzu Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Dodda Dhananjaya
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kuan-Yang Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chiang Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shuo-Hsiu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Guo-Jen Huang
- Graduate Institute of Biomedical Sciences, Chung-Gung University, Tao-Yuan City 33302, Taiwan
| | - Ing-Ming Chiu
- National Health Research Institutes, Chu-Nan 35053, Taiwan
| |
Collapse
|
18
|
Suslov O, Silver DJ, Siebzehnrubl FA, Orjalo A, Ptitsyn A, Steindler DA. Application of an RNA amplification method for reliable single-cell transcriptome analysis. Biotechniques 2015; 59:137-48. [PMID: 26345506 DOI: 10.2144/000114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/27/2015] [Indexed: 01/22/2023] Open
Abstract
Diverse cell types have unique transcriptional signatures that are best interrogated at single-cell resolution. Here we describe a novel RNA amplification approach that allows for high fidelity gene profiling of individual cells. This technique significantly diminishes the problem of 3' bias, enabling detection of all regions of transcripts, including the recognition of mRNA with short or completely absent poly(A) tails, identification of noncoding RNAs, and discovery of the full array of splice isoforms from any given gene product. We assess this technique using statistical and bioinformatics analyses of microarray data to establish the limitations of the method. To demonstrate applicability, we profiled individual cells isolated from the mouse subventricular zone (SVZ)-a well-characterized, discrete yet highly heterogeneous neural structure involved in persistent neurogenesis. Importantly, this method revealed multiple splice variants of key germinal zone gene products within individual cells, as well as an unexpected coexpression of several mRNAs considered markers of distinct and separate SVZ cell types. These findings were independently confirmed using RNA-fluorescence in situ hybridization (RNA-FISH), contributing to the utility of this new technology that offers genomic and transcriptomic analysis of small numbers of dynamic and clinically relevant cells.
Collapse
Affiliation(s)
- Oleg Suslov
- Department of Neurosurgery, College of Medicine, the Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Daniel J Silver
- Department of Neurosurgery, College of Medicine, the Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Florian A Siebzehnrubl
- Department of Neurosurgery, College of Medicine, the Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Andrey Ptitsyn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL.,Research Biomedical Informatics Division, Sidra Medical and Research Centre, Doha, Qatar
| | - Dennis A Steindler
- Department of Neurosurgery, College of Medicine, the Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Neuroscience and Aging Lab, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
19
|
Zhao YJ, Han HZ, Liang Y, Shi CZ, Zhu QC, Yang J. Alternative splicing of VEGFA, APP and NUMB genes in colorectal cancer. World J Gastroenterol 2015; 21:6550-60. [PMID: 26074693 PMCID: PMC4458765 DOI: 10.3748/wjg.v21.i21.6550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate alternative splicing in vascular endothelial growth factor A (VEGFA), amyloid beta precursor protein (APP), and Numb homolog (NUMB) in colorectal cancer (CRC). METHODS Real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and PCR-restriction fragment length polymorphism analyses were performed to detect the expression of VEGFA, APP, and NUMB mRNA in 20 CRC tissues and matched adjacent normal tissues, as well as their alternative splicing variants. RESULTS qRT-PCR analysis revealed that the expression of APP, NUMB, and VEGFA165b mRNA were significantly downregulated, while VEGFA mRNA was upregulated, in CRC tissues (all P < 0.05). PCR-restriction fragment length polymorphism analysis revealed that the expression of VEGFA165a/b in CRC tissues was significantly higher than in adjacent normal tissues (P < 0.05). Compared with adjacent normal tissues, the expression of NUMB-PRR(S) in CRC tissues was significantly decreased (P < 0.05), and the expression of NUMB-PRR(L) was increased (P < 0.05). CONCLUSION Alternative splicing of VEGFA, APP, and NUMB may regulate the development of CRC, and represent new targets for its diagnosis, prognosis, and treatment.
Collapse
|
20
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
21
|
Raju HB, Englander Z, Capobianco E, Tsinoremas NF, Lerch JK. Identification of potential therapeutic targets in a model of neuropathic pain. Front Genet 2014; 5:131. [PMID: 24904634 PMCID: PMC4033210 DOI: 10.3389/fgene.2014.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain (NP) is caused by damage to the nervous system, resulting in dysfunction and aberrant pain. The cellular functions (e.g., peripheral neuron spinal cord innervation, neuronal excitability) associated with NP often develop over time and are likely associated with gene expression changes. Gene expression studies on the cells involved in NP (e.g., sensory dorsal root ganglion neurons) are publically available; the mining of these studies may enable the identification of novel targets and the subsequent development of therapies that are essential for improving quality of life for the millions of individuals suffering with NP. Here we analyzed a publically available microarray dataset (GSE30165) in order to identify new RNAs (e.g., messenger RNA (mRNA) isoforms and non-coding RNAs) underlying NP. GSE30165 profiled gene expression in dorsal root ganglion neurons (DRG) and in sciatic nerve (SN) after resection, a NP model. Gene ontological analysis shows enrichment for sensory and neuronal processes. Protein network analysis demonstrates DRG upregulated genes typical to an injury and NP response. Of the top changing genes, 34 and 36% are associated with more than one protein coding isoform in the DRG and SN, respectively. The majority of genes are receptor and enzymes. We identified 15 long non-coding RNAs (lncRNAs) targeting these genes in LNCipedia.org, an online comprehensive lncRNA database. These RNAs represent new therapeutic targets for preventing NP development and this approach demonstrates the feasibility of data reanalysis for their identification.
Collapse
Affiliation(s)
- Hemalatha B Raju
- Center for Computational Science, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA ; Human Genetics and Genomics Graduate Program, University of Miami Miller School of Medicine Miami, FL, USA
| | - Zoe Englander
- Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - Enrico Capobianco
- Center for Computational Science, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA ; Laboratory of Integrative Systems Medicine, National Research Council (CNR) Pisa, Italy
| | - Nicholas F Tsinoremas
- Center for Computational Science, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Jessica K Lerch
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, The Ohio State University Columbus, OH, USA
| |
Collapse
|
22
|
Zong FY, Fu X, Wei WJ, Luo YG, Heiner M, Cao LJ, Fang Z, Fang R, Lu D, Ji H, Hui J. The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genet 2014; 10:e1004289. [PMID: 24722255 PMCID: PMC3983035 DOI: 10.1371/journal.pgen.1004289] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/18/2014] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Aberrant splicing has been implicated in lung tumorigenesis. However, the functional links between splicing regulation and lung cancer are not well understood. Here we identify the RNA-binding protein QKI as a key regulator of alternative splicing in lung cancer. We show that QKI is frequently down-regulated in lung cancer, and its down-regulation is significantly associated with a poorer prognosis. QKI-5 inhibits the proliferation and transformation of lung cancer cells both in vitro and in vivo. Our results demonstrate that QKI-5 regulates the alternative splicing of NUMB via binding to two RNA elements in its pre-mRNA, which in turn suppresses cell proliferation and prevents the activation of the Notch signaling pathway. We further show that QKI-5 inhibits splicing by selectively competing with a core splicing factor SF1 for binding to the branchpoint sequence. Taken together, our data reveal QKI as a critical regulator of splicing in lung cancer and suggest a novel tumor suppression mechanism involving QKI-mediated regulation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Feng-Yang Zong
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xing Fu
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Juan Wei
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ya-Ge Luo
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Monika Heiner
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Cao
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyuan Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Nieber F, Hedderich M, Jahn O, Pieler T, Henningfeld KA. NumbL is essential for Xenopus primary neurogenesis. BMC DEVELOPMENTAL BIOLOGY 2013; 13:36. [PMID: 24125469 PMCID: PMC3852787 DOI: 10.1186/1471-213x-13-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Abstract
Background Members of the vertebrate Numb family of cell fate determinants serve multiple functions throughout early embryogenesis, including an essential role in the development of the nervous system. The Numb proteins interact with various partner proteins and correspondingly participate in multiple cellular activities, including inhibition of the Notch pathway. Results Here, we describe the expression characteristics of Numb and Numblike (NumbL) during Xenopus development and characterize the function of NumbL during primary neurogenesis. NumbL, in contrast to Numb, is expressed in the territories of primary neurogenesis and is positively regulated by the Neurogenin family of proneural transcription factors. Knockdown of NumbL afforded a complete loss of primary neurons and did not lead to an increase in Notch signaling in the open neural plate. Furthermore, we provide evidence that interaction of NumbL with the AP-2 complex is required for NumbL function during primary neurogenesis. Conclusion We demonstrate an essential role of NumbL during Xenopus primary neurogenesis and provide evidence for a Notch-independent function of NumbL in this context.
Collapse
Affiliation(s)
- Frank Nieber
- Institute of Developmental Biochemistry, University of Goettingen, Goettingen, Germany.
| | | | | | | | | |
Collapse
|
24
|
Pro- and anti-mitogenic actions of pituitary adenylate cyclase-activating polypeptide in developing cerebral cortex: potential mediation by developmental switch of PAC1 receptor mRNA isoforms. J Neurosci 2013; 33:3865-78. [PMID: 23447598 DOI: 10.1523/jneurosci.1062-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During corticogenesis, pituitary adenylate cyclase-activating polypeptide (PACAP; ADCYAP1) may contribute to proliferation control by activating PAC1 receptors of neural precursors in the embryonic ventricular zone. PAC1 receptors, specifically the hop and short isoforms, couple differentially to and activate distinct pathways that produce pro- or anti-mitogenic actions. Previously, we found that PACAP was an anti-mitogenic signal from embryonic day 13.5 (E13.5) onward both in culture and in vivo and activated cAMP signaling through the short isoform. However, we now find that mice deficient in PACAP exhibited a decrease in the BrdU labeling index (LI) in E9.5 cortex, suggesting that PACAP normally promotes proliferation at this stage. To further define mechanisms, we established a novel culture model in which the viability of very early cortical precursors (E9.5 mouse and E10.5 rat) could be maintained. At this stage, we found that PACAP evoked intracellular calcium fluxes and increased phospho-PKC levels, as well as stimulated G1 cyclin mRNAs and proteins, S-phase entry, and proliferation without affecting cell survival. Significantly, expression of hop receptor isoform was 24-fold greater than the short isoform at E10.5, a ratio that was reversed at E14.5 when short expression was 15-fold greater and PACAP inhibited mitogenesis. Enhanced hop isoform expression, elicited by in vitro treatment of E10.5 precursors with retinoic acid, correlated with sustained pro-mitogenic action of PACAP beyond the developmental switch. Conversely, depletion of hop receptor using short-hairpin RNA abolished PACAP mitogenic stimulation at E10.5. These observations suggest that PACAP elicits temporally specific effects on cortical proliferation via developmentally regulated expression of specific receptor isoforms.
Collapse
|
25
|
Numb is required for the production of terminal asymmetric cell divisions in the developing mouse retina. J Neurosci 2013. [PMID: 23197712 DOI: 10.1523/jneurosci.4127-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the developing nervous system, cell diversification depends on the ability of neural progenitor cells to divide asymmetrically to generate daughter cells that acquire different identities. While much work has recently focused on the mechanisms controlling self-renewing asymmetric divisions producing a differentiating daughter and a progenitor, little is known about mechanisms regulating how distinct differentiating cell types are produced at terminal divisions. Here we study the role of the endocytic adaptor protein Numb in the developing mouse retina. Using clonal numb inactivation in retinal progenitor cells (RPCs), we show that Numb is required for normal cell-cycle progression at early stages, but is dispensable for the production of self-renewing asymmetric cell divisions. At late stages, however, Numb is no longer required for cell-cycle progression, but is critical for the production of terminal asymmetric cell divisions. In the absence of Numb, asymmetric terminal divisions that generate a photoreceptor and a non-photoreceptor cell are decreased in favor of symmetric terminal divisions generating two photoreceptors. Using live imaging in retinal explants, we show that a Numb fusion protein is asymmetrically inherited by the daughter cells of some late RPC divisions. Together with our finding that Numb antagonizes Notch signaling in late-stage RPCs, and that blocking Notch signaling in late RPCs almost completely abolishes the generation of terminal asymmetric divisions, these results suggest a model in which asymmetric inheritance of Numb in sister cells of terminal divisions might create unequal Notch activity, which in turn drives the production of terminal asymmetric divisions.
Collapse
|
26
|
Takahashi T, Suzuki H, Imai T, Shibata S, Tabuchi Y, Tsuchimoto K, Okano H, Hibi T. Musashi-1 post-transcriptionally enhances phosphotyrosine-binding domain-containing m-Numb protein expression in regenerating gastric mucosa. PLoS One 2013; 8:e53540. [PMID: 23308249 PMCID: PMC3537613 DOI: 10.1371/journal.pone.0053540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/30/2012] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Upregulation of the RNA-binding protein Musashi-1 (Msi1) has been shown to occur in rat gastric corpus mucosa after ethanol-induced mucosal injury. However, there is no direct evidence linking Msi1 with gastric regeneration. We examined the process of tissue repair after acute gastric mucosal injury with Msi1-knock-out (KO) mice to clarify the role of Msi1 and Msi1-dependent regulation of m-Numb expression in regenerating gastric mucosa. METHODS Acute gastric injury was induced in Msi1-KO and wild-type ICR mice by administering absolute ethanol. Expression of the splicing variants of m-Numb mRNA and protein in the gastric mucosa were analyzed by quantitative RT-PCR and western blotting, respectively. RESULTS We demonstrated that phosphotyrosine-binding domain-containing m-Numb expression was significantly upregulated at both the mRNA and protein levels in wild-type mice at 3 h after ethanol-induced acute gastric injury. In contrast, in Msi1-KO mice, the m-Numb protein was expressed weakly, and was associated with delayed regeneration of the injured gastric mucosal epithelium. In the Msi1-KO mouse, the ratio of m-Numb mRNA to total m-Numb mRNA in the heavy polysome fractions was lower than that in the wild-type mouse. Further, we showed that m-Numb-enhancement in gastric mucous cells induced the expression of prostate stem cell antigen and metallothionein-2. Under the m-Numb enhancing condition, the gastric cells exhibited enhanced cell proliferation and were significantly more resistant to H(2)O(2)-induced cell death than control cells. CONCLUSIONS Msi1-dependent post-transcriptional enhancement of m-Numb is crucial in gastric epithelial regeneration.
Collapse
Affiliation(s)
- Tetsufumi Takahashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Laboratory of Pathophysiology, Division of Clinical Medicine, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- * E-mail:
| | - Takao Imai
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Shinsuke Shibata
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Kanji Tsuchimoto
- Laboratory of Pathophysiology, Division of Clinical Medicine, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Toshifumi Hibi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
27
|
Kordes C, Sawitza I, Götze S, Häussinger D. Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration. PLoS One 2012; 7:e51878. [PMID: 23272184 PMCID: PMC3521726 DOI: 10.1371/journal.pone.0051878] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/13/2012] [Indexed: 12/13/2022] Open
Abstract
The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC), which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iris Sawitza
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
28
|
Schmit TL, Nihal M, Ndiaye M, Setaluri V, Spiegelman VS, Ahmad N. Numb regulates stability and localization of the mitotic kinase PLK1 and is required for transit through mitosis. Cancer Res 2012; 72:3864-72. [PMID: 22593191 PMCID: PMC3410979 DOI: 10.1158/0008-5472.can-12-0714] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numb functions in progenitor cell fate determination and early development, but it is also expressed in postdevelopmental tissues and cancers where its role is unclear. In this study, we report that a targeted knockdown of Numb expression causes a G(2)-M arrest and reduced cell growth in human melanoma cells. Co-immunoprecipitation and colocalization studies showed that Numb interacts with the serine/threonine polo-like kinase Plk1 and Numb cycles in a cell-cycle-dependent fashion along with this mitotic regulator. Interestingly, Numb expression was required for Plk1 protein stability and localization to the spindle poles during mitosis. Reduction in Numb expression resulted in mislocalization of Plk1 at both metaphase and anaphase, leading to disorganized γ-tubulin recruitment in centrosomes. Together, our findings present a novel function for Numb during symmetric cell division. We suggest that dysregulation of Numb expression results in mislocalized Plk1 and poor centrosomal γ-tubulin recruitment, potentially contributing to mitotic errors, aneuploidy, and cancer development.
Collapse
Affiliation(s)
- Travis L. Schmit
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Minakshi Nihal
- Department of Dermatology, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI
| | - Mary Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI
| | - Vladimir S. Spiegelman
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
29
|
Euskirchen P, Skaftnesmo KO, Huszthy PC, Brekkå N, Bjerkvig R, Jacobs AH, Miletic H. NUMB does not impair growth and differentiation status of experimental gliomas. Exp Cell Res 2011; 317:2864-73. [PMID: 21939656 DOI: 10.1016/j.yexcr.2011.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/28/2011] [Accepted: 09/04/2011] [Indexed: 11/15/2022]
Abstract
The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.
Collapse
|
30
|
Endo-Porter-mediated delivery of phosphorodiamidate morpholino oligos (PMOs) in erythrocyte suspension cultures from Cope's gray treefrog Hyla chrysoscelis. Biotechniques 2011; 50:329-32. [PMID: 21548895 DOI: 10.2144/000113671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/11/2011] [Indexed: 11/23/2022] Open
Abstract
Cope's gray treefrog, Hyla chrysoscelis, is a freeze-tolerant anuran that accumulates cryoprotective glycerol during cold acclimation. H. chrysoscelis erythrocytes express the aquaglyceroporin HC-3, which facilitates transmembrane glycerol and water movement. Aquaglyceroporins have no pharmacological inhibitors, and no genetic knockout tools currently exist for H. chrysoscelis. A phosphorodiamidate morpholino oligo (PMO)-mediated expression knockdown approach was therefore pursued to provide a model for testing the role of HC-3. We describe a novel procedure optimized for specific, efficient knockdown of HC-3 expression in amphibian erythrocyte suspensions cultured at nonmammalian physiological temperatures using Endo-Porter. Our protocol includes three critical components: pre-incubation at 37°C, two rounds of Endo-Porter and HC-3 PMO administration at ~23°C, and continuous shaking at 190 rpm. This combination of steps resulted in 94% reduction in HC-3 protein expression (Western blot), substantial decrease in HC-3 expression in >65% of erythrocytes, and no detectable expression in an additional 30% of cells (immunocytochemistry).
Collapse
|
31
|
Yang Y, Zhu R, Bai J, Zhang X, Tian Y, Li X, Peng Z, He Y, Chen L, Ji Q, Chen W, Fang D, Wang R. Numb modulates intestinal epithelial cells toward goblet cell phenotype by inhibiting the Notch signaling pathway. Exp Cell Res 2011; 317:1640-8. [PMID: 21557937 DOI: 10.1016/j.yexcr.2011.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/07/2011] [Accepted: 04/14/2011] [Indexed: 12/16/2022]
Abstract
Numb was originally identified as an important cell fate determinant that is asymmetrically inherited during mitosis and controls the fate of sibling cells by inhibiting the Notch signaling pathway in neural tissue. The small intestinal epithelium originates from the division of stem cells that reside in the crypt, which further differentiate into goblet cells, absorptive cells, paneth cells, and enteroendocrine cells. However, Numb's involvement in the differentiation process of intestinal epithelium is largely unknown. In the present study, we confirm that both the Numb mRNA and protein isoforms are expressed in adult mouse intestinal mucosa. Numb protein is ubiquitously expressed throughout the crypt-villus axis of the small intestinal epithelium and is mainly localized to the cytoplasmic membrane. Down-regulation of endogenous Numb using RNA interference in cultured intestinal LS174T cells increased Notch signaling, leading to the up-regulation of Hes1 and the down-regulation of Hath1. Knockdown of Numb alleviated MUC2 protein expression and led to loss of the goblet cell phenotype in LS174Tl cells. Our results provide the first evidence that Numb, an important cell fate determinant, modulates intestinal epithelial cells towards the goblet cell phenotype by inhibiting the Notch signaling pathway.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Haider M, Qiu Q, Bani-Yaghoub M, Tsang BK, Gruslin A. Characterization and role of NUMB in the human extravillous trophopblast. Placenta 2011; 32:441-9. [PMID: 21486681 DOI: 10.1016/j.placenta.2011.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 01/27/2023]
Abstract
NUMB is a multifunctional protein involved in asymmetric cell differentiation, proliferation and maintenance. Four mammalian NUMB isoforms have been identified, which utilize the phosphotyrosine binding (PTB) domain and the proline rich region (PRR) domain to regulate cell growth and differentiation in the developing nervous system. The observation that a decrease in spongiotrophoblast number and thickness of placentae of null (Numb(-/-)) mouse embryos, which died at E10.5, suggests NUMB may play a role in placental development. In this study, we demonstrated for the first time, that NUMB isoforms 1, 2, 3, and 4 are present in the human placenta and the human extravillous trophoblast (EVT) cell line HTR8/SVneo. We report three novel isoforms, NUMB 7, 8, and 9, identified by cloning of RT-PCR products and sequencing. Corresponding sequences of novel isoforms were submitted to genebank (accession numbers for each new isoform: NUMB 7- EU265736, NUMB 8- EU265737 and NUMB 9-EU265738). Western blot analysis confirmed the presence of all NUMB isofoms in human placental samples in all trimesters and in EVT cells. NUMB immunosignals were extensively localized in human extravillous trophoblasts and decidual cells at the maternal-fetal interface. NUMB 8 appeared to be the predominant isoform in placental villi. Furthermore, cell migration studies revealed NUMB isoform 1 to be involved in EVT cell migration and NUMB isoforms 2 and 4 to induce EVT apoptosis.
Collapse
Affiliation(s)
- M Haider
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
33
|
Beres BJ, George R, Lougher EJ, Barton M, Verrelli BC, McGlade CJ, Rawls JA, Wilson-Rawls J. Numb regulates Notch1, but not Notch3, during myogenesis. Mech Dev 2011; 128:247-57. [DOI: 10.1016/j.mod.2011.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 12/18/2022]
|
34
|
Pece S, Confalonieri S, R Romano P, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:26-43. [PMID: 20940030 DOI: 10.1016/j.bbcan.2010.10.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 02/07/2023]
Abstract
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Salvatore Pece
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | | | | | | |
Collapse
|
35
|
Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol 2011; 31:138-50. [PMID: 21041478 PMCID: PMC3019846 DOI: 10.1128/mcb.00709-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/19/2010] [Accepted: 10/25/2010] [Indexed: 01/02/2023] Open
Abstract
Alternative splicing (AS) is a widespread mechanism underlying the generation of proteomic and regulatory complexity. However, which of the myriad of human AS events play important roles in disease is largely unknown. To identify frequently occurring AS events in lung cancer, we used AS microarray profiling and reverse transcription-PCR (RT-PCR) assays to survey patient-matched normal and adenocarcinoma tumor tissues from the lungs of 29 individuals diagnosed with non-small cell lung cancer (NSCLC). Of 5,183 profiled alternative exons, four displayed tumor-associated changes in the majority of the patients. These events affected transcripts from the VEGFA, MACF1, APP, and NUMB genes. Similar AS changes were detected in NUMB and APP transcripts in primary breast and colon tumors. Tumor-associated increases in NUMB exon 9 inclusion correlated with reduced levels of NUMB protein expression and activation of the Notch signaling pathway, an event that has been linked to tumorigenesis. Moreover, short hairpin RNA (shRNA) knockdown of NUMB followed by isoform-specific rescue revealed that expression of the exon 9-skipped (nontumor) isoform represses Notch target gene activation whereas expression of the exon 9-included (tumor) isoform lacks this activity and is capable of promoting cell proliferation. The results thus reveal widespread AS changes in NSCLC that impact cell signaling in a manner that likely contributes to tumorigenesis.
Collapse
Affiliation(s)
- Christine M. Misquitta-Ali
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Edith Cheng
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Dave O'Hanlon
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ni Liu
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - C. Jane McGlade
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ming Sound Tsao
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Benjamin J. Blencowe
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
36
|
Moran TB, Goldberg LB, Serviss SL, Raetzman LT. Numb deletion in POMC-expressing cells impairs pituitary intermediate lobe cell adhesion, progenitor cell localization, and neuro-intermediate lobe boundary formation. Mol Endocrinol 2010; 25:117-27. [PMID: 21084383 DOI: 10.1210/me.2010-0248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The pituitary gland contains six distinct hormone-secreting cell types that are essential for basic physiological processes including fertility and responding to stress. Formation of hormone-secreting cells during development relies on Notch signaling to prevent progenitors from prematurely differentiating. The nature of the signal curtailing Notch signaling in the pituitary is unknown, but a good candidate is the endocytic adaptor protein NUMB. NUMB targets Notch for proteolytic degradation, but it also has a broad range of actions, including stabilizing adherens junctions through interactions with cadherins and influencing cell proliferation by stabilizing expression of the tumor suppressor protein p53. Here, we show that NUMB and its closely related homolog, NUMBLIKE, are expressed in undifferentiated cells during development and later in gonadotropes in the anterior lobe and melanotropes of the intermediate lobe. All four isoforms of NUMB, are detectable in the pituitary, with the shorter forms becoming more prominent after adolescence. Conditionally deleting Numb and Numblike in the intermediate lobe melanotropes with Pomc Cre mice dramatically alters the morphology of cells in the intermediate lobe, coincident with impaired localization of adherens junctions proteins including E-CADHERIN, N-CADHERIN, β-CATENIN, and α-CATENIN. Strikingly, the border between posterior and intermediate lobes is also disrupted. These mice also have disorganized progenitor cells, marked by SOX2, but proliferation is unaffected. Unexpectedly, Notch activity appears normal in conditional knockout mice. Thus, Numb is critical for maintaining cell-cell interactions in the pituitary intermediate lobe that are essential for proper cell placement.
Collapse
Affiliation(s)
- Tyler B Moran
- University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
37
|
Revil T, Gaffney D, Dias C, Majewski J, Jerome-Majewska LA. Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics 2010; 11:399. [PMID: 20573213 PMCID: PMC2898759 DOI: 10.1186/1471-2164-11-399] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/23/2010] [Indexed: 12/20/2022] Open
Abstract
Background Alternative splicing is known to increase the complexity of mammalian transcriptomes since nearly all mammalian genes express multiple pre-mRNA isoforms. However, our knowledge of the extent and function of alternative splicing in early embryonic development is based mainly on a few isolated examples. High throughput technologies now allow us to study genome-wide alternative splicing during mouse development. Results A genome-wide analysis of alternative isoform expression in embryonic day 8.5, 9.5 and 11.5 mouse embryos and placenta was carried out using a splicing-sensitive exon microarray. We show that alternative splicing and isoform expression is frequent across developmental stages and tissues, and is comparable in frequency to the variation in whole-transcript expression. The genes that are alternatively spliced across our samples are disproportionately involved in important developmental processes. Finally, we find that a number of RNA binding proteins, including putative splicing factors, are differentially expressed and spliced across our samples suggesting that such proteins may be involved in regulating tissue and temporal variation in isoform expression. Using an example of a well characterized splicing factor, Fox2, we demonstrate that changes in Fox2 expression levels can be used to predict changes in inclusion levels of alternative exons that are flanked by Fox2 binding sites. Conclusions We propose that alternative splicing is an important developmental regulatory mechanism. We further propose that gene expression should routinely be monitored at both the whole transcript and the isoform level in developmental studies
Collapse
Affiliation(s)
- Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Numb carries the distinction of being the first molecule discovered to influence cell fate by being asymmetrically segregated during cell division. Originally identified from studies in Drosophila, further work has since demonstrated the importance of Numb in mammalian and, in particular, human systems, from diverse fields such as developmental neurobiology to cancer biology and neurodegenerative disease. This review surveys the body of knowledge concerning Numb, and discusses the relevance of Numb to human biology and disease.
Collapse
Affiliation(s)
- Benedict Yan
- Department of Pathology, National University Hospital and Yong Loo Lin's School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Republic of Singapore.
| |
Collapse
|
39
|
Abstract
Numb is an evolutionary conserved protein that plays critical roles in cell fate determination. Mammalian Numb displays a higher degree of structural complexity compared to the Drosophila homolog based on the number of encoding genes (Numb and Numb-like) and of alternative spliced isoforms. Accordingly, Numb proteins display a complex pattern of functions such as the control of asymmetric cell division and cell fate choice, endocytosis, cell adhesion, cell migration, ubiquitination of specific substrates and a number of signaling pathways (i.e. Notch, Hedgehog, p53). Recent findings indicate that, besides controlling such physiologic developmental processes, subversion of the above Numb-dependent events plays a critical role in disease (e.g. cancer). We will review here the multiple functions of mNumb and their underlying molecular mechanisms in development and disease.
Collapse
|
40
|
Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009; 3:412-24. [PMID: 19535895 DOI: 10.4161/cam.3.4.8803] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.
Collapse
Affiliation(s)
- Sohail Ahmed
- Institute of Medical Biology, Immunos, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu F, Yao PJ. Clathrin-mediated endocytosis and Alzheimer's disease: an update. Ageing Res Rev 2009; 8:147-9. [PMID: 19491039 DOI: 10.1016/j.arr.2009.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 12/01/2022]
Abstract
Thanks to new evidence we are now a step closer to understanding how neurons produce amyloid-beta peptide (Abeta)-the chief culprit of Alzheimer's disease. As importance of clathrin-mediated endocytosis to normal neurons has become clearer, so has its role in pathology of neurological disorders. Here we update recent evidence that endocytosis plays a central role in the production of Abeta in neurons.
Collapse
Affiliation(s)
- Fangbai Wu
- Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, Baltimore, MD 21224, United States
| | | |
Collapse
|
42
|
Kyriazis GA, Wei Z, Vandermey M, Jo DG, Xin O, Mattson MP, Chan SL. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis. J Biol Chem 2008; 283:25492-25502. [PMID: 18599481 PMCID: PMC2533073 DOI: 10.1074/jbc.m802072200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/01/2008] [Indexed: 01/10/2023] Open
Abstract
Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.
Collapse
Affiliation(s)
- George A Kyriazis
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32816
| | - Zelan Wei
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32816
| | - Miriam Vandermey
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32816
| | - Dong-Gyu Jo
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Ouyang Xin
- Laboratory of Neurosciences, NIA, National Institutes of Health, Intramural Research Program, Baltimore, Maryland 21224
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA, National Institutes of Health, Intramural Research Program, Baltimore, Maryland 21224
| | - Sic L Chan
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32816.
| |
Collapse
|
43
|
Nikopoulos GN, Duarte M, Kubu CJ, Bellum S, Friesel R, Maciag T, Prudovsky I, Verdi JM. Soluble Jagged1 Attenuates Lateral Inhibition, Allowing for the Clonal Expansion of Neural Crest Stem Cells. Stem Cells 2007; 25:3133-42. [PMID: 17761753 DOI: 10.1634/stemcells.2007-0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The activation of Notch signaling in neural crest stem cells (NCSCs) results in the rapid loss of neurogenic potential and differentiation into glia. We now show that the attenuation of endogenous Notch signaling within expanding NCSC clones by the Notch ligand soluble Jagged1 (sJ1), maintains NCSCs in a clonal self-renewing state in vitro without affecting their sensitivity to instructive differentiation signals observed previously during NCSC self-renewal. sJ1 functions as a competitive inhibitor of Notch signaling to modulate endogenous cell-cell communication to levels sufficient to inhibit neural differentiation but insufficient to instruct gliogenic differentiation. Attenuated Notch signaling promotes the induction and nonclassic release of fibroblast growth factor 1 (FGF1). The functions of sJ1 and FGF1 signaling are complementary, as abrogation of FGF signaling diminishes the ability of sJ1 to promote NCSC expansion, yet the secondary NCSCs maintain the dosage sensitivity of the founder. These results validate and build upon previous studies on the role of Notch signaling in stem cell self-renewal and suggest that the differentiation bias or self-renewal potential of NCSCs is intrinsically linked to the level of endogenous Notch signaling. This should provide a unique opportunity for the expansion of NCSCs ex vivo without altering their differentiation bias for clinical cell replacement or transplant strategies in tissue repair. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- George N Nikopoulos
- Interdisciplinary Program in Molecular Genetics and Cell Biology, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Alternative pre-mRNA splicing has an important role in the control of neuronal gene expression. Many neuronal proteins are structurally diversified through the differential inclusion and exclusion of sequences in the final spliced mRNA. Here, we discuss common mechanisms of splicing regulation and provide examples of how alternative splicing has important roles in neuronal development and mature neuron function. Finally, we describe regulatory proteins that control the splicing of some neuronally expressed transcripts.
Collapse
Affiliation(s)
- Qin Li
- Howard Hughes Medical Institute, University of California, Los Angeles, 6-762 MacDonald Research Laboratories, 675 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
45
|
Wakamatsu Y, Nakamura N, Lee JA, Cole GJ, Osumi N. Transitin, a nestin-like intermediate filament protein, mediates cortical localization and the lateral transport of Numb in mitotic avian neuroepithelial cells. Development 2007; 134:2425-33. [PMID: 17522158 DOI: 10.1242/dev.02862] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroepithelium is an apicobasally polarized tissue that contains neural stem cells and gives rise to neurons and glial cells of the central nervous system. The cleavage orientation of neural stem cells is thought to be important for asymmetric segregation of fate-determinants, such as Numb. Here, we show that an intermediate filament protein, transitin, colocalizes with Numb in the cell cortex of mitotic neuroepithelial cells, and that transitin anchors Numb via a physical interaction. Detailed immunohistological and time-lapse analyses reveal that basal Numb-transitin complexes shift laterally during mitosis, allowing asymmetric segregation of Numb-transitin to one of the daughter cells, even when the cell cleavage plane is perpendicular to the ventricular surface. In addition, RNA interference (RNAi) knockdown of the transitin gene reveals its involvement in neurogenesis. These results indicate that transitin has important roles in determining the intracellular localization of Numb, which regulates neurogenesis in the developing nervous system of avian embryos.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Department of Developmental Neurobiology, Tohoku University, Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | |
Collapse
|