1
|
Désogère P, Montesi SB, Caravan P. Molecular Probes for Imaging Fibrosis and Fibrogenesis. Chemistry 2019; 25:1128-1141. [PMID: 30014529 PMCID: PMC6542638 DOI: 10.1002/chem.201801578] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/26/2022]
Abstract
Fibrosis, or the accumulation of extracellular matrix molecules that make up scar tissue, is a common result of chronic tissue injury. Advances in the clinical management of fibrotic diseases have been hampered by the low sensitivity and specificity of noninvasive early diagnostic options, lack of surrogate end points for use in clinical trials, and a paucity of noninvasive tools to assess fibrotic disease activity longitudinally. Hence, the development of new methods to image fibrosis and fibrogenesis is a large unmet clinical need. Herein, an overview of recent and selected molecular probes for imaging of fibrosis and fibrogenesis by magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography is provided.
Collapse
Affiliation(s)
- Pauline Désogère
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| |
Collapse
|
2
|
Abstract
Despite an increased understanding of the pathogenesis of osteoarthritis (OA) and the availability of a number of drugs designed to ameliorate its symptoms, a successful disease-modifying therapy remains elusive. Recent lines of evidence suggest that dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone classified as an adrenal androgen, exerts a chondroprotective effect in OA patients, and it has been proven to be an effective DMOAD candidate that slows OA progression. However, the exact mechanisms underlying its anti-OA effect is largely unknown. This review summarizes emerging observations from studies of cell biology, preclinical animal studies, and preliminary clinical trials and describes the findings of investigations on this topic to develop an initial blueprint of the mechanisms by which DHEA slows OA progression. Presently, studies on DMOADs are increasing in importance but have met limited success. Encouragingly, the current data on DHEA are promising and may prove that DHEA-based treatment is efficacious for preventing and slowing human OA progression.
Collapse
|
3
|
Rauch F, Geng Y, Lamplugh L, Hekmatnejad B, Gaumond MH, Penney J, Yamanaka Y, Moffatt P. Crispr-Cas9 engineered osteogenesis imperfecta type V leads to severe skeletal deformities and perinatal lethality in mice. Bone 2018; 107:131-142. [PMID: 29174564 DOI: 10.1016/j.bone.2017.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/24/2023]
Abstract
Osteogenesis imperfecta (OI) type V is caused by an autosomal dominant mutation in the IFITM5 gene, also known as BRIL. The c.-14C>T mutation in the 5'UTR of BRIL creates a novel translational start site adding 5 residues (MALEP) in frame with the natural coding of BRIL. A neomorphic function has been proposed for the MALEP-BRIL but the mechanisms at play are still unknown. In order to further understand the effects of MALEP-BRIL in vivo, we generated a knockin (KI) mouse model having the exact genetic -14C>T replica of patients with OI type V. Live KI descendants were never obtained from 2 male mosaic founders. Skeletal staining with alizarin red/alcian blue and μCT imaging of KI embryos revealed striking skeletal anomalies such as hypomineralized skull, short and bent long bones, and frail and wavy ribs. Histology and histochemical labeling revealed that midshaft of long bones was filled with hypertrophic chondrocytes, lacked a defined primary ossification center with the absence of defined cortices. Gene expression monitoring at E15.5 and E17.5 showed no change in Osx but decreased Bril itself as well as other differentiated osteoblast markers (Ibsp, Bglap, Sost). However, upregulation of Ptgs2 and Nr4a3 suggested that a pro-inflammatory reaction was activated. Primary osteoblasts from KI calvaria showed delayed differentiation and mineralization, with decreased abundance of BRIL. However, the upregulation AdipoQ and Fabp4 in young cultures indicated a possible switch in fate towards adipogenesis. Altogether our data suggest that the low level expression of MALEP-BRIL in Osx+ mesenchymal progenitors blunted their further differentiation into mature osteoblasts, which may have resulted in part from an inflammatory response.
Collapse
Affiliation(s)
- Frank Rauch
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Yeqing Geng
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Lisa Lamplugh
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | | | | | - Janice Penney
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Pierre Moffatt
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Injury Repair and Recovery Program, McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Methods for the visualization and analysis of extracellular matrix protein structure and degradation. Methods Cell Biol 2018; 143:79-95. [PMID: 29310793 DOI: 10.1016/bs.mcb.2017.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders.
Collapse
|
5
|
Marulanda J, Eimar H, McKee MD, Berkvens M, Nelea V, Roman H, Borrás T, Tamimi F, Ferron M, Murshed M. Matrix Gla protein deficiency impairs nasal septum growth, causing midface hypoplasia. J Biol Chem 2017; 292:11400-11412. [PMID: 28487368 PMCID: PMC5500805 DOI: 10.1074/jbc.m116.769802] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
Genetic and environmental factors may lead to abnormal growth of the orofacial skeleton, affecting the overall structure of the face. In this study, we investigated the craniofacial abnormalities in a mouse model for Keutel syndrome, a rare genetic disease caused by loss-of-function mutations in the matrix Gla protein (MGP) gene. Keutel syndrome patients show diffuse ectopic calcification of cartilaginous tissues and impaired midface development. Our comparative cephalometric analyses of micro-computed tomography images revealed a severe midface hypoplasia in Mgp-/- mice. In vivo reporter studies demonstrated that the Mgp promoter is highly active at the cranial sutures, cranial base synchondroses, and nasal septum. Interestingly, the cranial sutures of the mutant mice showed normal anatomical features. Although we observed a mild increase in mineralization of the spheno-occipital synchondrosis, it did not reduce the relative length of the cranial base in comparison with total skull length. Contrary to this, we found the nasal septum to be abnormally mineralized and shortened in Mgp-/- mice. Transgenic restoration of Mgp expression in chondrocytes fully corrected the craniofacial anomalies caused by MGP deficiency, suggesting a local role for MGP in the developing nasal septum. Although there was no up-regulation of markers for hypertrophic chondrocytes, a TUNEL assay showed a marked increase in apoptotic chondrocytes in the calcified nasal septum. Transmission electron microscopy confirmed unusual mineral deposits in the septal extracellular matrix of the mutant mice. Of note, the systemic reduction of the inorganic phosphate level was sufficient to prevent abnormal mineralization of the nasal septum in Mgp-/-;Hyp compound mutants. Our work provides evidence that modulation of local and systemic factors regulating extracellular matrix mineralization can be possible therapeutic strategies to prevent ectopic cartilage calcification and some forms of congenital craniofacial anomalies in humans.
Collapse
Affiliation(s)
- Juliana Marulanda
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Hazem Eimar
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Marc D McKee
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
- the Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Michelle Berkvens
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Valentin Nelea
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Hassem Roman
- the Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0C7, Canada
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Teresa Borrás
- the Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Faleh Tamimi
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Mathieu Ferron
- the Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada, and
| | - Monzur Murshed
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada,
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Shriners Hospital for Children, Montreal, Quebec H4A 0A9, Canada
| |
Collapse
|
6
|
Zheng L, Ding X, Liu K, Feng S, Tang B, Li Q, Huang D, Yang S. Molecular imaging of fibrosis using a novel collagen-binding peptide labelled with 99mTc on SPECT/CT. Amino Acids 2016; 49:89-101. [PMID: 27633720 DOI: 10.1007/s00726-016-2328-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
Fibrosis, closely related to chronic various diseases, is a pathological process characterised by the accumulation of collagen (largely collagen type I). Non-invasive methods are necessary for the diagnosis and follow-up of fibrosis. This study aimed to develop a collagen-targeted probe for the molecular imaging of fibrosis. We identified CPKESCNLFVLKD (CBP1495) as an original collagen-binding peptide using isothermal titration calorimetry and enzyme-linked immunosorbent assay. CBP1495 effectively bound to collagen type I (K d = 861 nM) and (GPO)9 (K d = 633 nM), a collagen mimetic peptide. Western blot and histochemistry validated CBP1495 targeting collagen in vitro and ex vivo. (Gly-(D)-Ala-Gly-Gly) was introduced to CBP1495 for coupling 99mTc. Labelling efficiency of 99mTc-CBP1495 was 95.06 ± 1.08 %. The physico-chemical properties, tracer kinetics and biodistribution of 99mTc-CBP1495 were carried out, and showed that the peptide stably chelated 99mTc in vitro and in vivo. SPECT/CT imaging with 99mTc-CBP1495 was performed in rat fibrosis models, and revealed that 99mTc-CBP1495 significantly accumulated in fibrotic lungs or livers of rats. Finally, 99mTc-CBP1495 uptake and hydroxyproline (Hyp), a specific amino acid of collagen, were quantitatively analysed. The results demonstrated that 99mTc-CBP1495 uptake was positvely correlated with Hyp content in lungs (P < 0.0001, r 2 = 0.8266) or livers (P < 0.0001, r 2 = 0.7581). Therefore, CBP1495 is a novel collagen-binding peptide, and 99mTc-labelled CBP1495 may be a promising radiotracer for the molecular imaging of fibrosis.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.,Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaojiang Ding
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kaiyun Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Shibin Feng
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qianwei Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. Arthritis Res Ther 2016; 18:65. [PMID: 26980243 PMCID: PMC4791873 DOI: 10.1186/s13075-016-0965-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ephrins and their related receptors have been implicated in some developmental events. We have demonstrated that ephrin-B2 (EFNB2) could play a role in knee joint pathology associated with osteoarthritis (OA). Here, we delineate the in vivo role of EFNB2 in musculoskeletal growth, development, and in OA using a cartilage-specific EFNB2 knockout (EFNB2(Col2)KO) mouse model. METHODS EFNB2(Col2)KO was generated with Col2a1-Cre transgenic mice. The skeletal development was evaluated using macroscopy, immunohistochemistry, histomorphometry, radiology, densitometry, and micro-computed tomography. Analyses were performed at P0 (birth) and on postnatal days P15, P21, and on 8-week- and 1-year-old mice. RESULTS EFNB2(Col2)KO mice exhibited significant reduction in size, weight, length, and in long bones. At P0, the growth plates of EFNB2(Col2)KO mice displayed increased type X collagen, disorganized hyphertrophic zone, and decreased mineralization. At P15, mutant mice demonstrated a significant reduction in VEGF and TRAP at the chondro-osseous junction and a delay in the secondary ossification, including a decrease in bone volume and trabecular thickness. At P21 and 8 weeks old, EFNB2(Col2)KO mice exhibited reduced bone mineral density in the total skeleton, femur and spine. One-year-old EFNB2(Col2)KO mice demonstrated OA phenotypic features in both the knee and hip. By P15, 27 % of the EFNB2(Col2)KO mice developed a hip locomotor phenotype, which further experiments demonstrated reflected the neurological midline abnormality involving the corticospinal tract. CONCLUSION This in vivo study demonstrated, for the first time, that EFNB2 is essential for normal long bone growth and development and its absence leads to a knee and hip OA phenotype in aged mice.
Collapse
|
8
|
|
9
|
Valverde-Franco G, Pelletier JP, Fahmi H, Hum D, Matsuo K, Lussier B, Kapoor M, Martel-Pelletier J. In vivo bone-specific EphB4 overexpression in mice protects both subchondral bone and cartilage during osteoarthritis. ACTA ACUST UNITED AC 2012; 64:3614-25. [DOI: 10.1002/art.34638] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mech Dev 2012; 129:162-76. [PMID: 22579636 PMCID: PMC3419267 DOI: 10.1016/j.mod.2012.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
Abstract
Tartrate resistant acid phosphatase (TRAP) was shown to be critical for skeleton development, and TRAP deficiency leads to a reduced resorptive activity during endochondral ossification resulting in an osteopetrotic phenotype and shortened long bones in adult mice. A proper longitudinal growth depends on a timely, well-coordinated vascularization and formation of the secondary ossification center (SOC) of the long bones epiphysis. Our results demonstrate that TRAP is not essential for the formation of the epiphyseal vascular network. Therefore, in wild type (Wt) controls as well as TRAP deficient (TRAP−/−) mutants vascularised cartilage canals are present from postnatal day (P) five. However, in the epiphysis of the TRAP−/− mice cartilage mineralization, formation of the marrow cavity and the SOC occur prematurely compared with the controls. In the mutant mice the entire growth plate is widened due to an expansion of the hypertrophic zone. This is not seen in younger animals but first detected at week (W) three and during further development. Moreover, an enhanced number of thickened trabeculae, indicative of the osteopetrotic phenotype, are observed in the metaphysis beginning with W three. Epiphyseal excavation was proposed as an important function of TRAP, and we examined whether TRAP deficiency affects this process. We therefore evaluated the marrow cavity volume (MCV) and the epiphyseal volume (EV) and computed the MCV to EV ratio (MCV/EV). We investigated developmental stages until W 12. Our results indicate that both epiphyseal excavation and establishment of the SOC are hardly impaired in the knockouts. Furthermore, no differences in the morphology of the epiphyseal bone trabeculae and remodeling of the articular cartilage layers are noted between Wt and TRAP−/− mice. We conclude that in long bones, TRAP is critical for the development of the growth plate and the metaphysis but apparently not for the epiphyseal vascularization, excavation, and establishment of the SOC.
Collapse
|
11
|
Chan WCW, Sze KL, Samartzis D, Leung VYL, Chan D. Structure and biology of the intervertebral disk in health and disease. Orthop Clin North Am 2011; 42:447-64, vii. [PMID: 21944583 DOI: 10.1016/j.ocl.2011.07.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The intervertebral disks along the spine provide motion and protection against mechanical loading. The 3 structural components, nucleus pulposus, annulus fibrosus, and cartilage endplate, function as a synergistic unit, though each has its own role. The cells within each of these components have distinct origins in development and morphology, producing specific extracellular matrix proteins that are organized into unique architectures fit for intervertebral disk function. This article focuses on various aspects of intervertebral disk biology and disruptions that could lead to diseases such as intervertebral disk degeneration.
Collapse
Affiliation(s)
- Wilson C W Chan
- Department of Biochemistry, The University of Hong Kong, LKS Faculty of Medicine, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
12
|
Abstract
STUDY DESIGN Histologic analysis of spine development in cartilage-specific knockout mice. OBJECTIVE To evaluate the role hyaluronan produced by hyaluronan synthase-2 (Has2) in spine development. SUMMARY OF BACKGROUND DATA The Has2 gene is responsible for most hyaluronan production throughout the body, including the skeleton. However, it is not possible to study the involvement of hyaluronan in skeletal development using constitutive Has2 knockout mice, as the embryonic mice die early before skeletal development has occurred. This problem can be overcome by the use of cartilage-specific knockout mice. METHODS Mice possessing floxed Has2 genes were crossed with mice expressing Cre recombinase under control of the type II collagen promoter to generate cartilage-specific Has2 knockout mice. Spine development was studied by histology. RESULTS Knockout mice died near birth and displayed severe abnormality in skeletal development. The spine showed defects in vertebral body size and the formation of the intervertebral discs. There was no evidence for the formation of an organized primary center of ossification within the vertebrae, and the appearance and organization of the hypertrophic chondrocytes was abnormal. Although no organized endochondral ossification appeared to be taking place, there was excessive bone formation at the center of the vertebrae. There was also a generalized increased cellularity of the vertebral cartilage and a corresponding decrease in the abundance of extracellular matrix. The nucleus pulposus of the intervertebral discs were less flattened than in the control mice and possessed an increased amount of large vacuolated cells. Remnants of the notochord could also be seen between adjacent discs. CONCLUSION Hyaluronan production by Has2 is essential for normal vertebral and intervertebral disc development within the spine, and the absence of this synthase impairs the organization of both soft and hard tissue elements.
Collapse
|
13
|
Stempel J, Fritsch H, Pfaller K, Blumer MJF. Development of articular cartilage and the metaphyseal growth plate: the localization of TRAP cells, VEGF, and endostatin. J Anat 2011; 218:608-18. [PMID: 21457260 DOI: 10.1111/j.1469-7580.2011.01377.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During long bone development the original cartilaginous model in mammals is replaced by bone, but at the long bone endings the avascular articular cartilage remains. Before the articular cartilage attains structural maturity it undergoes reorganization, and molecules such as vascular endothelial growth factor (VEGF) and endostatin could be involved in this process. VEGF attracts blood vessels, whereas endostatin blocks their formation. The present study therefore focused on the spatio-temporal localization of these two molecules during the development of the articular cartilage. Furthermore, we investigated the distribution of the chondro/osteoclasts at the chondro-osseous junction of the articular cartilage with the subchondral bone. Mice served as our animal model, and we examined several postnatal stages of the femur starting with week (W) 4. Our results indicated that during the formation of the articular cartilage, VEGF and endostatin had an overlapping localization. The former molecule was, however, down-regulated, whereas the latter was uniformly intensely localized until W12. At the chondro-osseous junction, the number of tartrate-resistant acid phosphatase (TRAP)-positive chondro/osteoclasts declined with increasing age. Until W3 the articular cartilage was not well organized but at W8 it appeared structurally mature. At that time only a few TRAP cells were present, indicative of a low resorptive activity at the chondro-osseous junction. Subsequently, we examined the metaphyseal growth plate that is closed when skeletal maturity is attained. Within its hypertrophic zone, localization of endostatin and VEGF was observed until W6 and W8, respectively. At the chondro-osseous junction of the growth plate, chondro/osteoclasts remained numerous until W12 to allow for its complete resorption. According to former findings, VEGF is critical for a normal skeleton development, whereas endostatin has almost no effect on this process. In conclusion, our findings suggest that both VEGF and endostatin play a role in the structural reorganization of the articular cartilage and endostatin may be involved in the maintenance of its avascularity. In the growth plate, however, endostatin does not appear to counteract VEGF, allowing vascular invasion of hypertrophic cartilage and bone growth.
Collapse
Affiliation(s)
- Judith Stempel
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
14
|
Devitt Møller H, Ralfkjær U, Cremers N, Frankel M, Troelsgaard Pedersen R, Klingelhöfer J, Yanagisawa H, Grigorian M, Guldberg P, Sleeman J, Lukanidin E, Ambartsumian N. Role of Fibulin-5 in Metastatic Organ Colonization. Mol Cancer Res 2011; 9:553-63. [DOI: 10.1158/1541-7786.mcr-11-0093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Allerstorfer D, Longato S, Schwarzer C, Fischer-Colbrie R, Hayman AR, Blumer MJF. VEGF and its role in the early development of the long bone epiphysis. J Anat 2011; 216:611-24. [PMID: 20525089 DOI: 10.1111/j.1469-7580.2010.01223.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In long bones of murine species, undisturbed development of the epiphysis depends on the generation of vascularized cartilage canals shortly after birth. Despite its importance, it is still under discussion how this event is exactly regulated. It was suggested previously that, following increased hypoxia in the epiphyseal core, angiogenic factors are expressed and hence stimulate the ingrowth of the vascularized canals. In the present study, we tested this model and examined the spatio-temporal distribution of two angiogenic molecules during early development in mice. In addition, we investigated the onset of cartilage hypertrophy and mineralization. Our results provide evidence that the vascular endothelial growth factor is expressed in the epiphyseal resting cartilage prior to the moment of canal formation and is continuously expressed until the establishment of a large secondary ossification centre. Interestingly, we found no expression of secretoneurin before the establishment of the canals although this factor attracts blood vessels under hypoxic conditions. Epiphyseal development further involves maturation of the resting chondrocytes into hypertrophic ones, associated with the mineralization of the cartilage matrix and eventual death of the latter cells. Our results suggest that vascular endothelial growth factor is the critical molecule for the generation of the epiphyseal vascular network in mice long bones. Secretoneurin, however, does not appear to be a player in this event. Hypertrophic chondrocytes undergo cell death by a mechanism interpreted as chondroptosis.
Collapse
Affiliation(s)
- Doris Allerstorfer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Aiken A, Khokha R. Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:121-32. [PMID: 19616584 DOI: 10.1016/j.bbamcr.2009.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/17/2022]
Abstract
The metalloproteinase family includes MMP, ADAM and ADAMTS proteases. Mice deficient in individual or pairs of metalloproteinases have been generated, and a number of these genetic models spontaneously develop skeletal abnormalities. Here we review metalloproteinase function in endochondral and intramembranous ossification, as well as in postnatal bone remodeling. We highlight how metalloproteinases enable interactions between distinct bone cell types and how this communication contributes to the skeletal phenotypes observed in knockout mice. In addition to the physiological actions of metalloproteinases in the skeletal system, the experimental manipulation of metalloproteinase-deficient mice has revealed substantial roles for these enzymes in osteoarthritis and rheumatoid arthritis. MMP, ADAM and ADAMTS proteases thus emerge as key players in the development and homeostasis of the skeletal system.
Collapse
Affiliation(s)
- Alison Aiken
- Ontario Cancer Institute/University Health Network, Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|