1
|
Ge Y, Chen X, Nan N, Bard J, Wu F, Yergeau D, Liu T, Wang J, Mu X. Key transcription factors influence the epigenetic landscape to regulate retinal cell differentiation. Nucleic Acids Res 2023; 51:2151-2176. [PMID: 36715342 PMCID: PMC10018358 DOI: 10.1093/nar/gkad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
How the diverse neural cell types emerge from multipotent neural progenitor cells during central nervous system development remains poorly understood. Recent scRNA-seq studies have delineated the developmental trajectories of individual neural cell types in many neural systems including the neural retina. Further understanding of the formation of neural cell diversity requires knowledge about how the epigenetic landscape shifts along individual cell lineages and how key transcription factors regulate these changes. In this study, we dissect the changes in the epigenetic landscape during early retinal cell differentiation by scATAC-seq and identify globally the enhancers, enriched motifs, and potential interacting transcription factors underlying the cell state/type specific gene expression in individual lineages. Using CUT&Tag, we further identify the enhancers bound directly by four key transcription factors, Otx2, Atoh7, Pou4f2 and Isl1, including those dependent on Atoh7, and uncover the sequential and combinatorial interactions of these factors with the epigenetic landscape to control gene expression along individual retinal cell lineages such as retinal ganglion cells (RGCs). Our results reveal a general paradigm in which transcription factors collaborate and compete to regulate the emergence of distinct retinal cell types such as RGCs from multipotent retinal progenitor cells (RPCs).
Collapse
Affiliation(s)
- Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Xushen Chen
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nan Nan
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Jonathan Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Zhang X, Mandric I, Nguyen KH, Nguyen TTT, Pellegrini M, Grove JCR, Barnes S, Yang XJ. Single Cell Transcriptomic Analyses Reveal the Impact of bHLH Factors on Human Retinal Organoid Development. Front Cell Dev Biol 2021; 9:653305. [PMID: 34055784 PMCID: PMC8155690 DOI: 10.3389/fcell.2021.653305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proliferating retinal progenitors: pre-neurogenic, neurogenic, and cell cycle-exiting progenitors. Each shows different expression profile of bHLH factors. The cell cycle-exiting progenitors feed into a postmitotic heterozygous neuroblast pool that gives rise to early born neuronal lineages. Elevating ATOH7 or Neurog2 expression accelerates the transition from the pre-neurogenic to the neurogenic state, and expands the exiting progenitor and neuroblast populations. In addition, ATOH7 and Neurog2 significantly, yet differentially, enhance retinal ganglion cell and cone photoreceptor production. Moreover, single cell transcriptome analyses reveal that ATOH7 and Neurog2 each assert positive autoregulation, and both suppress key bHLH factors associated with the pre-neurogenic and states and elevate bHLH factors expressed by exiting progenitors and differentiating neuroblasts. This study thus provides novel insight regarding how ATOH7 and Neurog2 impact human retinal progenitor behaviors and neuroblast fate choices.
Collapse
Affiliation(s)
- Xiangmei Zhang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Igor Mandric
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin H Nguyen
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thao T T Nguyen
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xian-Jie Yang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
4
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Ge Y, Wu F, Cheng M, Bard J, Mu X. Two new genetically modified mouse alleles labeling distinct phases of retinal ganglion cell development by fluorescent proteins. Dev Dyn 2020; 249:1514-1528. [PMID: 32741043 PMCID: PMC7855626 DOI: 10.1002/dvdy.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND During development, all retinal cell types arise from retinal progenitor cells (RPCs) in a step-wise fashion. Atoh7 and Pou4f2 mark, and function in, two phases of retinal ganglion cell (RGC) genesis; Atoh7 functions in a subpopulation of RPCs to render them competent for the RGC fate, whereas Pou4f2 participates in RGC fate specification and RGC differentiation. Despite extensive research on their roles, the properties of the two phases represented by these two factors have not been well studied, likely due to the retinal cellular heterogeneity. RESULTS In this report, we describe two novel knock-in mouse alleles, Atoh7zsGreenCreERT2 and Pou4f2FlagtdTomato , which labeled retinal cells in the two phases of RGC development by fluorescent proteins. Also, the Atoh7zsGreenCreERT2 allele allowed for indirect labeling of RGCs and other cell types upon tamoxifen induction in a dose-dependent manner. Further, these alleles could be used to purify retinal cells in the different phases by fluorescence assisted cell sorting (FACS). Single cell RNA-seq analysis of purified cells from Atoh7zsGreenCreERT2 retinas further validated that this allele labeled both transitional/competent RPCs and their progenies including RGCs. CONCLUSIONS Thus, these two alleles are very useful tools for studying the molecular and genetic mechanisms underlying RGC formation.
Collapse
Affiliation(s)
- Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
| | - Mobin Cheng
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
| | - Jonathan Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
6
|
Miesfeld JB, Ghiasvand NM, Marsh-Armstrong B, Marsh-Armstrong N, Miller EB, Zhang P, Manna SK, Zawadzki RJ, Brown NL, Glaser T. The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc Natl Acad Sci U S A 2020; 117:21690-21700. [PMID: 32817515 PMCID: PMC7474671 DOI: 10.1073/pnas.2006888117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 messenger RNA (mRNA) fivefold but does not recapitulate optic nerve loss; however, SEdel/knockout (KO) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show that the SE ensures robust Atoh7 transcriptional output. Combining SE deletion and KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together, these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism that is hard-wired in the machinery of vertebrate retinal ganglion cell genesis.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Noor M Ghiasvand
- Department of Biology, Grand Valley State University, Allendale, MI 49401
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Brennan Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Eric B Miller
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Pengfei Zhang
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Suman K Manna
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Robert J Zawadzki
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616;
| |
Collapse
|
7
|
Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, Lao Z, Stephen D, Rosello-Diez A, Dauber-Decker KL, Orvis GD, Wu Z, Tessier-Lavigne M, Joyner AL. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. eLife 2019; 8:e50617. [PMID: 31742552 PMCID: PMC6890462 DOI: 10.7554/elife.50617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.
Collapse
Affiliation(s)
- Ryan T Willett
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - N Sumru Bayin
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Andrew S Lee
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Anjana Krishnamurthy
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Zhimin Lao
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Daniel Stephen
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | | | - Grant D Orvis
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Zhuhao Wu
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Marc Tessier-Lavigne
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Biochemistry, Cell and Molecular Biology ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
8
|
Zhang XM, Hashimoto T, Tang R, Yang XJ. Elevated expression of human bHLH factor ATOH7 accelerates cell cycle progression of progenitors and enhances production of avian retinal ganglion cells. Sci Rep 2018; 8:6823. [PMID: 29717171 PMCID: PMC5931526 DOI: 10.1038/s41598-018-25188-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
The production of vertebrate retinal projection neurons, retinal ganglion cells (RGCs), is regulated by cell-intrinsic determinants and cell-to-cell signaling events. The basic-helix-loop-helix (bHLH) protein Atoh7 is a key neurogenic transcription factor required for RGC development. Here, we investigate whether manipulating human ATOH7 expression among uncommitted progenitors can promote RGC fate specification and thus be used as a strategy to enhance RGC genesis. Using the chicken retina as a model, we show that cell autonomous expression of ATOH7 is sufficient to induce precocious RGC formation and expansion of the neurogenic territory. ATOH7 overexpression among neurogenic progenitors significantly enhances RGC production at the expense of reducing the progenitor pool. Furthermore, forced expression of ATOH7 leads to a minor increase of cone photoreceptors. We provide evidence that elevating ATOH7 levels accelerates cell cycle progression from S to M phase and promotes cell cycle exit. We also show that ATOH7-induced ectopic RGCs often exhibit aberrant axonal projection patterns and are correlated with increased cell death during the period of retinotectal connections. These results demonstrate the high potency of human ATOH7 in promoting early retinogenesis and specifying the RGC differentiation program, thus providing insight for manipulating RGC production from stem cell-derived retinal organoids.
Collapse
Affiliation(s)
- Xiang-Mei Zhang
- Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Takao Hashimoto
- Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Ronald Tang
- Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Xian-Jie Yang
- Stein Eye Institute, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Miesfeld JB, Glaser T, Brown NL. The dynamics of native Atoh7 protein expression during mouse retinal histogenesis, revealed with a new antibody. Gene Expr Patterns 2018; 27:114-121. [PMID: 29225067 PMCID: PMC5835195 DOI: 10.1016/j.gep.2017.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Abstract
The Atoh7 transcription factor catalyzes the rate-limiting step in the specification of retinal ganglion cells (RGCs). As a tool to study vertebrate retinal development, we validate an antibody that recognizes human and mouse Atoh7 polypeptide, using informative knockout and transgenic mouse tissues and overexpression experiments. The transient features of Atoh7 protein expression during retinal neurogenesis match the expected pattern at the tissue and cellular level. Further, we compare endogenous Atoh7 to established RGC markers, reporter mouse lines and cell cycle markers, demonstrating the utility of the antibody to investigate molecular mechanisms of retinal histogenesis.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California, Davis School of Medicine, One Shields Avenue, Davis, CA 95616, United States
| | - Tom Glaser
- Department of Cell Biology & Human Anatomy, University of California, Davis School of Medicine, One Shields Avenue, Davis, CA 95616, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California, Davis School of Medicine, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
10
|
Sreekanth S, Rasheed VA, Soundararajan L, Antony J, Saikia M, Sivakumar KC, Das AV. miR Cluster 143/145 Directly Targets Nrl and Regulates Rod Photoreceptor Development. Mol Neurobiol 2017; 54:8033-8049. [PMID: 27878762 DOI: 10.1007/s12035-016-0237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Retinal histogenesis requires coordinated and temporal functioning of factors by which different cell types are generated from multipotent progenitors. Development of rod photoreceptors is regulated by multiple transcription factors, and Nrl is one of the major factors involved in their fate specification. Presence or absence of Nrl at the postnatal stages decides the generation of cone photoreceptors or other later retinal cells. This suggests the need for regulated expression of Nrl in order to accelerate the generation of other cell types during retinal development. We found that miR cluster 143/145, comprising miR-143 and miR-145, targets and imparts a posttranscriptional inhibition of Nrl. Expression of both miRNAs was differentially regulated during retinal development and showed least expression at PN1 stage in which most of the rod photoreceptors are generated. Downregulation of rod photoreceptor regulators and markers upon miR cluster 143/145 overexpression demonstrated that this cluster indeed negatively regulates rod photoreceptors. Further, we prove that Nrl positively regulates miR cluster 143/145, thus establishing a feedback loop regulatory mechanism. This may be one possible mechanism by which Nrl is posttranscriptionally regulated to facilitate the generation of other cell types in retina.
Collapse
Affiliation(s)
- Sreekumaran Sreekanth
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Vazhanthodi A Rasheed
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Lalitha Soundararajan
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Jayesh Antony
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Minakshi Saikia
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | | | - Ani V Das
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
- Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
11
|
Aparicio JG, Hopp H, Choi A, Mandayam Comar J, Liao VC, Harutyunyan N, Lee TC. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina. Exp Eye Res 2017; 154:177-189. [PMID: 27867005 PMCID: PMC5359064 DOI: 10.1016/j.exer.2016.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022]
Abstract
Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.
Collapse
Affiliation(s)
- J G Aparicio
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - H Hopp
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - A Choi
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - V C Liao
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - N Harutyunyan
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - T C Lee
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Ophthalmology and USC Eye Institute, University of Southern California, USA
| |
Collapse
|
12
|
Wang J, Galvao J, Beach KM, Luo W, Urrutia RA, Goldberg JL, Otteson DC. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. J Biol Chem 2016; 291:18084-95. [PMID: 27402841 DOI: 10.1074/jbc.m116.732339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Regenerative medicine holds great promise for the treatment of degenerative retinal disorders. Krüppel-like factors (KLFs) are transcription factors that have recently emerged as key tools in regenerative medicine because some of them can function as epigenetic reprogrammers in stem cell biology. Here, we show that KLF16, one of the least understood members of this family, is a POU4F2 independent transcription factor in retinal ganglion cells (RGCs) as early as embryonic day 15. When overexpressed, KLF16 inhibits RGC neurite outgrowth and enhances RGC growth cone collapse in response to exogenous ephrinA5 ligands. Ephrin/EPH signaling regulates RGC connectivity. The EphA5 promoter contains multiple GC- and GT-rich KLF-binding sites, which, as shown by ChIP-assays, bind KLF16 in vivo In electrophoretic mobility shift assays, KLF16 binds specifically to a single KLF site near the EphA5 transcription start site that is required for KLF16 transactivation. Interestingly, methylation of only six of 98 CpG dinucleotides within the EphA5 promoter blocks its transactivation by KLF16 but enables transactivation by KLF2 and KLF15. These data demonstrate a role for KLF16 in regulation of RGC neurite outgrowth and as a methylation-sensitive transcriptional regulator of EphA5 expression. Together, these data identify differential low level methylation as a novel mechanism for regulating KLF16-mediated EphA5 expression across the retina. Because of the critical role of ephrin/EPH signaling in patterning RGC connectivity, understanding the role of KLFs in regulating neurite outgrowth and Eph receptor expression will be vital for successful restoration of functional vision through optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Jianbo Wang
- From the Departments of Physiological Optics and Vision Science and
| | - Joana Galvao
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Krista M Beach
- From the Departments of Physiological Optics and Vision Science and
| | - Weijia Luo
- Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Raul A Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Epigenomics Translational Program, Center for Individualized Medicine, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Jeffrey L Goldberg
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Deborah C Otteson
- From the Departments of Physiological Optics and Vision Science and Biology and Biochemistry, University of Houston, Houston, Texas 77204,
| |
Collapse
|
13
|
Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. Proc Natl Acad Sci U S A 2015; 112:E1559-68. [PMID: 25775587 DOI: 10.1073/pnas.1421535112] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As with other retinal cell types, retinal ganglion cells (RGCs) arise from multipotent retinal progenitor cells (RPCs), and their formation is regulated by a hierarchical gene-regulatory network (GRN). Within this GRN, three transcription factors--atonal homolog 7 (Atoh7), POU domain, class 4, transcription factor 2 (Pou4f2), and insulin gene enhancer protein 1 (Isl1)--occupy key node positions at two different stages of RGC development. Atoh7 is upstream and is required for RPCs to gain competence for an RGC fate, whereas Pou4f2 and Isl1 are downstream and regulate RGC differentiation. However, the genetic and molecular basis for the specification of the RGC fate, a key step in RGC development, remains unclear. Here we report that ectopic expression of Pou4f2 and Isl1 in the Atoh7-null retina using a binary knockin-transgenic system is sufficient for the specification of the RGC fate. The RGCs thus formed are largely normal in gene expression, survive to postnatal stages, and are physiologically functional. Our results indicate that Pou4f2 and Isl1 compose a minimally sufficient regulatory core for the RGC fate. We further conclude that during development a core group of limited transcription factors, including Pou4f2 and Isl1, function downstream of Atoh7 to determine the RGC fate and initiate RGC differentiation.
Collapse
|
14
|
Gao Z, Mao CA, Pan P, Mu X, Klein WH. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation. Dev Neurobiol 2014; 74:1123-40. [PMID: 24799426 DOI: 10.1002/dneu.22188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | | | | | |
Collapse
|
15
|
Bai L, Kiyama T, Li H, Wang SW. Birth of cone bipolar cells, but not rod bipolar cells, is associated with existing RGCs. PLoS One 2014; 9:e83686. [PMID: 24392091 PMCID: PMC3879276 DOI: 10.1371/journal.pone.0083686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022] Open
Abstract
Retinal ganglion cells (RGCs) play important roles in retinogenesis. They are required for normal retinal histogenesis and retinal cell number balance. Developmental RGC loss is typically characterized by initial retinal neuronal number imbalance and subsequent loss of retinal neurons. However, it is not clear whether loss of a specific non-RGC cell type in the RGC-depleted retina is due to reduced cell production or subsequent degeneration. Taking advantage of three knockout mice with varying degrees of RGC depletion, we re-examined bipolar cell production in these retinas from various aspects. Results show that generation of the cone bipolar cells is correlated with the existing number of RGCs. However, generation of the rod bipolar cells is unaffected by RGC shortage. Results report the first observation that RGCs selectively influence the genesis of subsequent retinal cell types.
Collapse
Affiliation(s)
- Ling Bai
- Department of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Takae Kiyama
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
| | - Hongyan Li
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
| | - Steven W. Wang
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wu F, Li R, Umino Y, Kaczynski TJ, Sapkota D, Li S, Xiang M, Fliesler SJ, Sherry DM, Gannon M, Solessio E, Mu X. Onecut1 is essential for horizontal cell genesis and retinal integrity. J Neurosci 2013; 33:13053-65, 13065a. [PMID: 23926259 PMCID: PMC3735885 DOI: 10.1523/jneurosci.0116-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 01/03/2023] Open
Abstract
Horizontal cells are interneurons that synapse with photoreceptors in the outer retina. Their genesis during development is subject to regulation by transcription factors in a hierarchical manner. Previously, we showed that Onecut 1 (Oc1), an atypical homeodomain transcription factor, is expressed in developing horizontal cells (HCs) and retinal ganglion cells (RGCs) in the mouse retina. Herein, by knocking out Oc1 specifically in the developing retina, we show that the majority (∼80%) of HCs fail to form during early retinal development, implying that Oc1 is essential for HC genesis. However, no other retinal cell types, including RGCs, were affected in the Oc1 knock-out. Analysis of the genetic relationship between Oc1 and other transcription factor genes required for HC development revealed that Oc1 functions downstream of FoxN4, in parallel with Ptf1a, but upstream of Lim1 and Prox1. By in utero electroporation, we found that Oc1 and Ptf1a together are not only essential, but also sufficient for determination of HC fate. In addition, the synaptic connections in the outer plexiform layer are defective in Oc1-null mice, and photoreceptors undergo age-dependent degeneration, indicating that HCs are not only an integral part of the retinal circuitry, but also are essential for the survival of photoreceptors. In sum, these results demonstrate that Oc1 is a critical determinant of HC fate, and reveal that HCs are essential for photoreceptor viability, retinal integrity, and normal visual function.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Renzhong Li
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Yumiko Umino
- SUNY Eye Institute, Buffalo, New York 14203
- Department of Ophthalmology, Upstate Medical University, Syracuse, New York 13210
| | - Tadeusz J. Kaczynski
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
| | - Shengguo Li
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Steven J. Fliesler
- Department of Ophthalmology/Ross Eye Institute and
- SUNY Eye Institute, Buffalo, New York 14203
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, New York 14215
| | - David M. Sherry
- Department of Cell Biology, Oklahoma Center for Neurosciences and Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eduardo Solessio
- SUNY Eye Institute, Buffalo, New York 14203
- Department of Ophthalmology, Upstate Medical University, Syracuse, New York 13210
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute and
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- SUNY Eye Institute, Buffalo, New York 14203
- CCSG Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
17
|
Mao CA, Cho JH, Wang J, Gao Z, Pan P, Tsai WW, Frishman LJ, Klein WH. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. Development 2013; 140:541-51. [PMID: 23293286 DOI: 10.1242/dev.085886] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The specification of the seven retinal cell types from a common pool of retina progenitor cells (RPCs) involves complex interactions between the intrinsic program and the environment. The proneural basic helix-loop-helix (bHLH) transcriptional regulators are key components for the intrinsic programming of RPCs and are essential for the formation of the diverse retinal cell types. However, the extent to which an RPC can re-adjust its inherent program and the mechanisms through which the expression of a particular bHLH factor influences RPC fate is unclear. Previously, we have shown that Neurod1 inserted into the Atoh7 locus activates the retinal ganglion cell (RGC) program in Atoh7-expressing RPCs but not in Neurod1-expressing RPCs, suggesting that Atoh7-expressing RPCs are not able to adopt the cell fate determined by Neurod1, but rather are pre-programmed to produce RGCs. Here, we show that Neurod1-expressing RPCs, which are destined to produce amacrine and photoreceptor cells, can be re-programmed into RGCs when Atoh7 is inserted into the Neurod1 locus. These results suggest that Atoh7 acts dominantly to convert a RPC subpopulation not destined for an RGC fate to adopt that fate. Thus, Atoh7-expressing and Neurod1-expressing RPCs are intrinsically different in their behavior. Additionally, ChIP-Seq analysis identified an Atoh7-dependent enhancer within the intronic region of Nrxn3. The enhancer recognized and used Atoh7 in the developing retina to regulate expression of Nrxn3, but could be forced to use Neurod1 when placed in a different regulatory context. The results indicate that Atoh7 and Neurod1 activate distinct sets of genes in vivo, despite their common DNA-binding element.
Collapse
Affiliation(s)
- Chai-An Mao
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves. Mol Vis 2012; 18:2658-72. [PMID: 23170059 PMCID: PMC3501281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 11/08/2012] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Retinal ganglion cell (RGC) death and optic nerve degeneration are complex processes whose underlying molecular mechanisms are only vaguely understood. Treatments commonly used for optic nerve degeneration have little long-term value and only prolong degeneration. Recent advances in stem cell replacement therapy offer new ways to overcome RGC loss by transferring healthy cells into eyes of afflicted individuals. However, studies on stem cell replacement for optic nerve degeneration are hampered by limitations of the available animal models, especially genetic models. We have developed a mouse model in which RGCs are genetically ablated in adult mice with subsequent degeneration of the optic nerve. In the study reported here, we used this model to determine whether embryonic retinal progenitor cells (RPCs) removed from donor retinas when RPCs are committing to an RGC fate could restore lost RGCs. METHODS We used the RGC-depleted model as a host for transplanting donor green fluorescent protein (GFP)-labeled RPCs from embryonic retinas that are maximally expressing Atoh7, a basic helix-loop-helix gene essential for RGC specification. Dissociated GFP-labeled RPCs were characterized in situ by immunolabeling with antibodies against proteins known to be expressed in RPCs at embryonic day (E)14.5. Dissociated retinal cells were injected into the vitreous of one eye of RGC-depleted mice at two to six months of age. The injected and non-injected retinas were analyzed for gene expression using immunolabeling, and the morphology of optic nerves was assessed visually and with histological staining at different times up to four months after injection. RESULTS We demonstrate the successful transfer of embryonic GFP-labeled RPCs into the eyes of RGC-depleted mice. Many transplanted RPCs invaded the ganglion cell layer, but the efficiency of the invasion was low. GFP-labeled cells within the ganglion cell layer expressed genes associated with early and late stages of RGC differentiation, including Pou4f1, Pou4f2, NFL, Map2, and syntaxin. Several GFP-labeled cells were detected within the injected optic nerves of RGC-depleted mice, and in most cases, we observed a significant increase in the thickness of the RPC-injected optic nerves compared with non-injected controls. We also observed more bundled axons emanating from RPC-injected retinas compared with RGC-depleted controls. CONCLUSIONS The results offer a new approach for regenerating damaged optic nerves and indicate that a significant number of E14.5 RPCs are able to differentiate into RGCs in the foreign environment of the adult retina. However, the proportion of RPCs that populated the ganglion cell layer and contributed to the optic nerve was not sufficient to account for the increased thickness and higher number of axons. The results support the hypothesis that the injected E14.5 RPCs are contributing autonomously and non-autonomously to restoring damaged optic nerves.
Collapse
|
19
|
Brzezinski JA, Prasov L, Glaser T. Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev Biol 2012; 365:395-413. [PMID: 22445509 PMCID: PMC3337348 DOI: 10.1016/j.ydbio.2012.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is transiently expressed during early retinal histogenesis and is necessary for retinal ganglion cell (RGC) development. Using nucleoside pulse-chase experiments and clonal analysis, we determined that progenitor cells activate Math5 during or after the terminal division, with progressively later onset as histogenesis proceeds. We have traced the lineage of Math5+ cells using mouse BAC transgenes that express Cre recombinase under strict regulatory control. Quantitative analysis showed that Math5+ progenitors express equivalent levels of Math5 and contribute to every major cell type in the adult retina, but are heavily skewed toward early fates. The Math5>Cre transgene labels 3% of cells in adult retina, including 55% of RGCs. Only 11% of Math5+ progenitors develop into RGCs; the majority become photoreceptors. The fate bias of the Math5 cohort, inferred from the ratio of cone and rod births, changes over time, in parallel with the remaining neurogenic population. Comparable results were obtained using Math5 mutant mice, except that ganglion cells were essentially absent, and late fates were overrepresented within the lineage. We identified Math5-independent RGC precursors in the earliest born (embryonic day 11) retinal cohort, but these precursors require Math5-expressing cells for differentiation. Math5 thus acts permissively to establish RGC competence within a subset of progenitors, but is not sufficient for fate specification. It does not autonomously promote or suppress the determination of non-RGC fates. These data are consistent with progressive and temporal restriction models for retinal neurogenesis, in which environmental factors influence the final histotypic choice.
Collapse
Affiliation(s)
- Joseph A. Brzezinski
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lev Prasov
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Tom Glaser
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol 2012; 520:952-69. [PMID: 21830221 PMCID: PMC3898336 DOI: 10.1002/cne.22741] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our current study focuses on the expression of two members of the onecut transcription factor family, Onecut1 (Oc1) and Onecut2 (Oc2), in the developing mouse retina. By immunofluorescence staining, we found that Oc1 and Oc2 had very similar expression patterns throughout retinal development. Both factors started to be expressed in the retina at around embryonic day (E) 11.5. At early stages (E11.5 and E12.5), they were expressed in both the neuroblast layer (NBL) and ganglion cell layer (GCL). As development progressed (from E14.5 to postnatal day [P] 0), expression diminished in the retinal progenitor cells and became more restricted to the GCL. By P5, Oc1 and Oc2 were expressed at very low levels in the GCL. By co-labeling with transcription factors known to be involved in retinal ganglion cell (RGC) development, we found that Oc1 and Oc2 had extensive overlap with Math5 in the NBL, and that they completely overlapped with Pou4f2 and Isl1 in the GCL, but only partially in the NBL. Co-labeling of Oc1 with cell cycle markers confirmed that Oc1 was expressed in both proliferating retinal progenitors and postmitotic retinal cells. In addition, we demonstrated that expression of Oc1 and Oc2 did not require Math5, Isl1, or Pou4f2. Thus, Oc1 and Oc2 may regulate the formation of RGCs in a pathway independent of Math5, Pou4f2, and Isl1. Furthermore, we showed that Oc1 and Oc2 were expressed in both developing and mature horizontal cells (HCs). Therefore the two factors may also function in the genesis and maintenance of HCs.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
| | - Renzhong Li
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- State University of New York (SUNY) Eye Institute, University at Buffalo, Buffalo, New York 14203
- Cancer Center Support Grant (CCSG) Molecular Epidemiology and Functional Genomics (MEFG) Program, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
21
|
Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA. The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res 2011; 96:147-56. [PMID: 22200487 DOI: 10.1016/j.exer.2011.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/12/2011] [Accepted: 12/03/2011] [Indexed: 11/17/2022]
Abstract
Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5(-/-) mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5(-/-) mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5(-/-) mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5(-/-) mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5(-/-) retina. In addition, GFAP(+) Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5(-/-) mice is associated with a lack of retinal vascular development.
Collapse
Affiliation(s)
- Malia M Edwards
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Overlapping spatiotemporal patterns of regulatory gene expression are required for neuronal progenitors to specify retinal ganglion cell fate. Vision Res 2010; 51:251-9. [PMID: 20951721 DOI: 10.1016/j.visres.2010.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 11/20/2022]
Abstract
Retinal progenitor cells (RPCs) are programmed early in development to acquire the competence for specifying the seven retinal cell types. Acquiring competence is a complex spatiotemporal process that is still only vaguely understood. Here, our objective was to more fully understand the mechanisms by which RPCs become competent for specifying a retinal ganglion cell (RGC) fate. RGCs are the first retinal cell type to differentiate and their abnormal development leads to apoptosis and optic nerve degeneration. Previous work demonstrated that the paired domain factor Pax6 and the bHLH factor Atoh7 are required for RPCs to specify RGCs. RGC commitment is marked by the expression of the Pou domain factor Pou4f2 and the Lim domain factor Isl1. We show that three RPC subpopulations can specify RGCs: Atoh7-expressing RPCs, Neurod1-expressing RPCs, and Atoh7-Neurod1-expressing RPCs. All three RPC subpopulations were highly interspersed throughout retinal development, although each subpopulation maintained a distinct temporal pattern. Most, but not all, RPCs from each subpopulation were postmitotic. Atoh7-Neurod1 double knockout mice were generated and double-mutant retinas revealed an unexpected role for Neurod1 in specifying RGC fate. We conclude that RPCs have a complex regulatory gene expression program in which they acquire competence using highly integrated mechanisms.
Collapse
|