1
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
2
|
Vega-Sendino M, Lüttmann FF, Olbrich T, Chen Y, Kuenne C, Stein P, Tillo D, Carey GI, Zhong J, Savy V, Radonova L, Lu T, Saykali B, Kim KP, Domingo CN, Schüler L, Günther S, Bentsen M, Bosnakovski D, Schöler H, Kyba M, Maity TK, Jenkins LM, Looso M, Williams CJ, Kim J, Ruiz S. The homeobox transcription factor DUXBL controls exit from totipotency. Nat Genet 2024; 56:697-709. [PMID: 38509386 PMCID: PMC11149696 DOI: 10.1038/s41588-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.
Collapse
Affiliation(s)
| | - Felipe F Lüttmann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yanpu Chen
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | | | - Grace I Carey
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Jiasheng Zhong
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Lenka Radonova
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Tianlin Lu
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Bechara Saykali
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Leah Schüler
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Hans Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Mario Looso
- Cardio-Pulmonary Institute, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany.
- German Center for Lung Research (DZL), Partner Site Rhein/Main, Germany.
- Institute of Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany.
- The Center for Cardiovascular Regeneration and Immunology at TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany.
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies. Over the last decade, a consensus was reached regarding the underlying cause of FSHD allowing—for the first time—a targeted approach to treatment. FSHD is the result of a toxic gain-of-function from de-repression of the DUX4 gene, a gene not normally expressed in skeletal muscle. With a clear therapeutic target, there is increasing interest in drug development for FSHD, an interest buoyed by the recent therapeutic successes in other neuromuscular diseases. Herein, we review the underlying disease mechanism, potential therapeutic approaches as well as the state of trial readiness in the planning and execution of future clinical trials in FSHD.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Tagliaferri D, Mazzone P, Noviello TMR, Addeo M, Angrisano T, Del Vecchio L, Visconte F, Ruggieri V, Russi S, Caivano A, Cantone I, De Felice M, Ceccarelli M, Cerulo L, Falco G. Retinoic Acid Induces Embryonic Stem Cells (ESCs) Transition to 2 Cell-Like State Through a Coordinated Expression of Dux and Duxbl1. Front Cell Dev Biol 2020; 7:385. [PMID: 32010697 PMCID: PMC6979039 DOI: 10.3389/fcell.2019.00385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from inner cell mass (ICM) of the blastocyst. In serum/LIF culture condition, they show variable expression of pluripotency genes that mark cell fluctuation between pluripotency and differentiation metastate. The ESCs subpopulation marked by zygotic genome activation gene (ZGA) signature, including Zscan4, retains a wider differentiation potency than epiblast-derived ESCs. We have recently shown that retinoic acid (RA) significantly enhances Zscan4 cell population. However, it remains unexplored how RA initiates the ESCs to 2-cell like reprogramming. Here we found that RA is decisive for ESCs to 2C-like cell transition, and reconstructed the gene network surrounding Zscan4. We revealed that RA regulates 2C-like population co-activating Dux and Duxbl1. We provided novel evidence that RA dependent ESCs to 2C-like cell transition is regulated by Dux, and antagonized by Duxbl1. Our suggested mechanism could shed light on the role of RA on ESC reprogramming.
Collapse
Affiliation(s)
- Daniela Tagliaferri
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy
| | - Teresa M R Noviello
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Martina Addeo
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Del Vecchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | | | - Vitalba Ruggieri
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Sabino Russi
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Antonella Caivano
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Irene Cantone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Michele Ceccarelli
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Luigi Cerulo
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Geppino Falco
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore," Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy.,IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| |
Collapse
|
5
|
Klein F, Mitrovic M, Roux J, Engdahl C, von Muenchow L, Alberti-Servera L, Fehling HJ, Pelczar P, Rolink A, Tsapogas P. The transcription factor Duxbl mediates elimination of pre-T cells that fail β-selection. J Exp Med 2019; 216:638-655. [PMID: 30765463 PMCID: PMC6400535 DOI: 10.1084/jem.20181444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/13/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
During β-selection, T cells without productive TCRβ rearrangements are eliminated. Klein et al. show that the transcription factor Duxbl regulates this process by inducing apoptosis through activation of the Oas/RNaseL pathway. Successful TCRβ rearrangement rescues cells by pre-TCR–mediated Duxbl suppression. T cell development is critically dependent on successful rearrangement of antigen-receptor chains. At the β-selection checkpoint, only cells with a functional rearrangement continue in development. However, how nonselected T cells proceed in their dead-end fate is not clear. We identified low CD27 expression to mark pre-T cells that have failed to rearrange their β-chain. Expression profiling and single-cell transcriptome clustering identified a developmental trajectory through β-selection and revealed specific expression of the transcription factor Duxbl at a stage of high recombination activity before β-selection. Conditional transgenic expression of Duxbl resulted in a developmental block at the DN3-to-DN4 transition due to reduced proliferation and enhanced apoptosis, whereas RNA silencing of Duxbl led to a decrease in apoptosis. Transcriptome analysis linked Duxbl to elevated expression of the apoptosis-inducing Oas/RNaseL pathway. RNaseL deficiency or sustained Bcl2 expression led to a partial rescue of cells in Duxbl transgenic mice. These findings identify Duxbl as a regulator of β-selection by inducing apoptosis in cells with a nonfunctional rearrangement.
Collapse
Affiliation(s)
- Fabian Klein
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Corinne Engdahl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
de Greef JC, Krom YD, den Hamer B, Snider L, Hiramuki Y, van den Akker RFP, Breslin K, Pakusch M, Salvatori DCF, Slütter B, Tawil R, Blewitt ME, Tapscott SJ, van der Maarel SM. Smchd1 haploinsufficiency exacerbates the phenotype of a transgenic FSHD1 mouse model. Hum Mol Genet 2019; 27:716-731. [PMID: 29281018 DOI: 10.1093/hmg/ddx437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 11/12/2022] Open
Abstract
In humans, a copy of the DUX4 retrogene is located in each unit of the D4Z4 macrosatellite repeat that normally comprises 8-100 units. The D4Z4 repeat has heterochromatic features and does not express DUX4 in somatic cells. Individuals with facioscapulohumeral muscular dystrophy (FSHD) have a partial failure of somatic DUX4 repression resulting in the presence of DUX4 protein in sporadic muscle nuclei. Somatic DUX4 derepression is caused by contraction of the D4Z4 repeat to 1-10 units (FSHD1) or by heterozygous mutations in genes responsible for maintaining the D4Z4 chromatin structure in a repressive state (FSHD2). One of the FSHD2 genes is the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene. SMCHD1 mutations have also been identified in FSHD1; patients carrying a contracted D4Z4 repeat and a SMCHD1 mutation are more severely affected than relatives with only a contracted repeat or a SMCHD1 mutation. To evaluate the modifier role of SMCHD1, we crossbred mice carrying a contracted D4Z4 repeat (D4Z4-2.5 mice) with mice that are haploinsufficient for Smchd1 (Smchd1MommeD1 mice). D4Z4-2.5/Smchd1MommeD1 mice presented with a significantly reduced body weight and developed skin lesions. The same skin lesions, albeit in a milder form, were also observed in D4Z4-2.5 mice, suggesting that reduced Smchd1 levels aggravate disease in the D4Z4-2.5 mouse model. Our study emphasizes the evolutionary conservation of the SMCHD1-dependent epigenetic regulation of the D4Z4 repeat array and further suggests that the D4Z4-2.5/Smchd1MommeD1 mouse model may be used to unravel the function of DUX4 in non-muscle tissues like the skin.
Collapse
Affiliation(s)
- Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne D Krom
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lauren Snider
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yosuke Hiramuki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rob F P van den Akker
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Miha Pakusch
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Bram Slütter
- Divisions of Biopharmaceutics & Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
7
|
Dmitriev P, Kiseleva E, Kharchenko O, Ivashkin E, Pichugin A, Dessen P, Robert T, Coppée F, Belayew A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vasiliev A, Vassetzky YS. Dux4 controls migration of mesenchymal stem cells through the Cxcr4-Sdf1 axis. Oncotarget 2018; 7:65090-65108. [PMID: 27556182 PMCID: PMC5323140 DOI: 10.18632/oncotarget.11368] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
We performed transcriptome profiling of human immortalized myoblasts (MB) transiently expressing double homeobox transcription factor 4 (DUX4) and double homeobox transcription factor 4 centromeric (DUX4c) and identified 114 and 70 genes differentially expressed in DUX4- and DUX4c-transfected myoblasts, respectively. A significant number of differentially expressed genes were involved in inflammation, cellular migration and chemotaxis suggesting a role for DUX4 and DUX4c in these processes. DUX4 but not DUX4c overexpression resulted in upregulation of the CXCR4 (C-X-C motif Receptor 4) and CXCL12 (C-X-C motif ligand 12 also known as SDF1) expression in human immortalized myoblasts. In a Transwell cell migration assay, human bone marrow-derived mesenchymal stem cells (BMSCs) were migrating more efficiently towards human immortalized myoblasts overexpressing DUX4 as compared to controls; the migration efficiency of DUX4-transfected BMSCs was also increased. DUX4c overexpression in myoblasts or in BMSCs had no impact on the rate of BMSC migration. Antibodies against SDF1 and CXCR4 blocked the positive effect of DUX4 overexpression on BMSC migration. We propose that DUX4 controls the cellular migration of mesenchymal stem cells through the CXCR4 receptor.
Collapse
Affiliation(s)
- Petr Dmitriev
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, Villejuif, France.,LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France
| | - Ekaterina Kiseleva
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Olga Kharchenko
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Evgeny Ivashkin
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Andrei Pichugin
- LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Philippe Dessen
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Thomas Robert
- Functional Genomics Unit, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | | | - Marc Lipinski
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, Villejuif, France.,LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France
| | - Andrei Vasiliev
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Yegor S Vassetzky
- UMR 8126, Univ. Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, Villejuif, France.,LIA1066 Laboratoire Franco-Russe de Recherches en Oncologie, Villejuif, France.,N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
8
|
Ansseau E, Eidahl JO, Lancelot C, Tassin A, Matteotti C, Yip C, Liu J, Leroy B, Hubeau C, Gerbaux C, Cloet S, Wauters A, Zorbo S, Meyer P, Pirson I, Laoudj-Chenivesse D, Wattiez R, Harper SQ, Belayew A, Coppée F. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS One 2016; 11:e0146893. [PMID: 26816005 PMCID: PMC4729438 DOI: 10.1371/journal.pone.0146893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Christel Matteotti
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cassandre Yip
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jian Liu
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Baptiste Leroy
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Hubeau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cécile Gerbaux
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Samuel Cloet
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Sabrina Zorbo
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Pierre Meyer
- Pediatric Department, CHRU Montpellier, Montpellier, France
| | - Isabelle Pirson
- I.R.I.B.H.M., Free University of Brussels, Brussels, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Scott Q. Harper
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
9
|
Wilming LG, Boychenko V, Harrow JL. Comprehensive comparative homeobox gene annotation in human and mouse. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav091. [PMID: 26412852 PMCID: PMC4584094 DOI: 10.1093/database/bav091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022]
Abstract
Homeobox genes are a group of genes coding for transcription factors with a DNA-binding helix-turn-helix structure called a homeodomain and which play a crucial role in pattern formation during embryogenesis. Many homeobox genes are located in clusters and some of these, most notably the HOX genes, are known to have antisense or opposite strand long non-coding RNA (lncRNA) genes that play a regulatory role. Because automated annotation of both gene clusters and non-coding genes is fraught with difficulty (over-prediction, under-prediction, inaccurate transcript structures), we set out to manually annotate all homeobox genes in the mouse and human genomes. This includes all supported splice variants, pseudogenes and both antisense and flanking lncRNAs. One of the areas where manual annotation has a significant advantage is the annotation of duplicated gene clusters. After comprehensive annotation of all homeobox genes and their antisense genes in human and in mouse, we found some discrepancies with the current gene set in RefSeq regarding exact gene structures and coding versus pseudogene locus biotype. We also identified previously un-annotated pseudogenes in the DUX, Rhox and Obox gene clusters, which helped us re-evaluate and update the gene nomenclature in these regions. We found that human homeobox genes are enriched in antisense lncRNA loci, some of which are known to play a role in gene or gene cluster regulation, compared to their mouse orthologues. Of the annotated set of 241 human protein-coding homeobox genes, 98 have an antisense locus (41%) while of the 277 orthologous mouse genes, only 62 protein coding gene have an antisense locus (22%), based on publicly available transcriptional evidence.
Collapse
Affiliation(s)
- Laurens G Wilming
- HAVANA Group, Informatics Department, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Veronika Boychenko
- HAVANA Group, Informatics Department, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jennifer L Harrow
- HAVANA Group, Informatics Department, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
10
|
Dandapat A, Bosnakovski D, Hartweck LM, Arpke RW, Baltgalvis KA, Vang D, Baik J, Darabi R, Perlingeiro RCR, Hamra FK, Gupta K, Lowe DA, Kyba M. Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene. Cell Rep 2014; 8:1484-96. [PMID: 25176645 PMCID: PMC4188423 DOI: 10.1016/j.celrep.2014.07.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/03/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3' genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Lynn M Hartweck
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Kristen A Baltgalvis
- Program in Physical Medicine and Rehabilitation, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine MMC 480, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - June Baik
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Radbod Darabi
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - F Kent Hamra
- Department of Pharmacology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine MMC 480, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Program in Physical Medicine and Rehabilitation, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Wu SL, Li GZ, Chou CY, Tsai MS, Chen YP, Li CJ, Liou GG, Chang WW, Chen SL, Wang SH. Double homeobox gene, Duxbl, promotes myoblast proliferation and abolishes myoblast differentiation by blocking MyoD transactivation. Cell Tissue Res 2014; 358:551-66. [PMID: 25130140 DOI: 10.1007/s00441-014-1974-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023]
Abstract
Homeobox genes encode transcription factors that regulate embryonic development programs including organogenesis, axis formation and limb development. Previously, we identified and cloned a mouse double homeobox gene, Duxbl, whose homeodomain exhibits the highest identity (67 %) to human DUX4, a candidate gene of facioscapulohumeral muscular dystrophy (FSHD). Duxbl proteins have been shown to be expressed in elongated myocytes and myotubes of trunk and limb muscles during embryogenesis. In this study, we found that Duxbl maintained low expression levels in various adult muscles. Duxbl proteins were induced to express in activated satellite cells and colocalized with MyoG, a myogenic differentiating marker. Furthermore, Duxbl proteins were not detected in quiescent satellite cells but detected in regenerated myocytes and colocalized with MyoD and MyoG following cardiotoxin-induced muscle injury. Ectopic Duxbl overexpressions in C2C12 myoblast cells promoted cell proliferation through mainly enhancing cyclin D1 and hyper-phosphorylated retinoblastoma protein but reducing p21 expression. However, Duxbl overexpression in C2C12 cells inhibited myogenic differentiation by decreasing MyoD downstream gene expressions, including M-cadherin, MyoG, p21 and cyclin D3 but not MyoD itself. Duxbl overexpressions also promoted cell proliferation but blocked MyoD-induced myogenic conversion in multipotent mesenchymal C3H10T1/2 cells. In addition, results of a luciferase reporter assay suggest that Duxbl negatively regulated MyoG promoter activity through the proximal two E boxes. In conclusion, these results indicate that Duxbl may play a crucial role in myogenesis and postnatal muscle regeneration by activating and proliferating satellite and myoblast cells.
Collapse
Affiliation(s)
- Shey-Lin Wu
- Department of Neurology, Chang-Hua Christian Hospital, Changhua, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang SL, Chou TC, Lin TH, Tsai MS, Wang SH. Gcse, a novel germ-cell-specific gene, is differentially expressed during meiosis and gametogenesis. Reprod Sci 2013; 20:1193-206. [PMID: 23456662 DOI: 10.1177/1933719113477490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gametogenesis is a complex process wherein germ cells develop from primordial diploid cells into haploid gametes. To understand the mechanisms controlling gametogenesis, we identified a novel germ-cell-specific gene, Gcse. Gcse produces two major transcripts that are 1589 bp (Gcse-l) and 906 bp (Gcse-s) in length. Northern blotting and reverse transcription-polymerase chain reaction (RT-PCR) analyses of multiple tissues reveal that Gcse-l is expressed in both adult testes and ovaries, but Gcse-s is expressed only in adult testes. During female gonad development, Gcse-l is expressed from embryonic day 13.5 to adulthood, specifically in oocytes, and maintained in ovulated and fertilized eggs. However, Gcse-s signals were detected only in ovulated oocytes and fertilized eggs but not in adult ovary. During male gonad development, strong Gcse-l signals were detected in late pachytene spermatocytes and round spermatids. However, Gcse-s transcripts exist only in round spermatids. Furthermore, the expression of GCSE-L proteins and their subcellular localizations within cells are stage specific. GCSE-L is detected in the nucleus of late pachytene spermatocytes. During meiosis, GCSE-L is translocated to acrosome regions in spermatids and maintained in the acrosome of spermatozoa. GCSE-L colocalizes with acrosin and lectin peanut agglutinin in the Golgi apparatus. However, GCSE-S proteins are expressed only in the nucleus of spermatids. From these results, we suggest that GCSE proteins play roles in meiosis and may be involved in acrosome biogenesis during spermiogenesis.
Collapse
Affiliation(s)
- Shih-Ling Huang
- 1Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Evolution of DUX gene macrosatellites in placental mammals. Chromosoma 2012; 121:489-97. [PMID: 22903800 DOI: 10.1007/s00412-012-0380-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 01/21/2023]
Abstract
Macrosatellites are large polymorphic tandem arrays. The human subtelomeric macrosatellite D4Z4 has 11-150 repeats, each containing a copy of the intronless DUX4 gene. DUX4 is linked to facioscapulohumeral muscular dystrophy, but its normal function is unknown. The DUX gene family includes DUX4, the intronless Dux macrosatellites in rat and mouse, as well as several intron-containing members (DUXA, DUXB, Duxbl, and DUXC). Here, we report that the genomic organization (though not the syntenic location) of primate DUX4 is conserved in the Afrotheria. In primates and Afrotheria, DUX4 arose by retrotransposition of an ancestral intron-containing DUXC, which is itself not found in these species. Surprisingly, we discovered a similar macrosatellite organization for DUXC in cow and other Laurasiatheria (dog, alpaca, dolphin, pig, and horse), and in Xenarthra (sloth). Therefore, DUX4 and Dux are not the only DUX gene macrosatellites. Our data suggest a new retrotransposition-displacement model for the evolution of intronless DUX macrosatellites.
Collapse
|
14
|
Abstract
DUX4, a homeobox-containing gene present in a tandem array, is implicated in facioscapulohumeral muscular dystrophy (FSHD), a dominant autosomal disease. New findings about DUX4 have raised as many fundamental questions about the molecular pathology of this unique disease as they have answered. This review discusses recent studies addressing the question of whether there is extensive FSHD-related transcription dysregulation in adult-derived myoblasts and myotubes, the precursors for muscle repair. Two models for the role of DUX4 in FSHD are presented. One involves transient pathogenic expression of DUX4 in many cells in the muscle lineage before the myoblast stage resulting in a persistent, disease-related transcription profile ('Majority Rules'), which might be enhanced by subsequent oscillatory expression of DUX4. The other model emphasizes the toxic effects of inappropriate expression of DUX4 in only an extremely small percentage of FSHD myoblasts or myotube nuclei ('Minority Rules'). The currently favored Minority Rules model is not supported by recent studies of transcription dysregulation in FSHD myoblasts and myotubes. It also presents other difficulties, for example, explaining the expression of full-length DUX4 transcripts in FSHD fibroblasts. The Majority Rules model is the simpler explanation of findings about FSHD-associated gene expression and the DUX4-encoded homeodomain-type protein.
Collapse
|
15
|
Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 2012; 149:819-31. [PMID: 22541069 PMCID: PMC3350859 DOI: 10.1016/j.cell.2012.03.035] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 02/05/2023]
Abstract
Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors targets D4Z4 in healthy subjects and that D4Z4 deletion is associated with reduced Polycomb silencing in FSHD patients. We identify DBE-T, a chromatin-associated noncoding RNA produced selectively in FSHD patients that coordinates de-repression of 4q35 genes. DBE-T recruits the Trithorax group protein Ash1L to the FSHD locus, driving histone H3 lysine 36 dimethylation, chromatin remodeling, and 4q35 gene transcription. This study provides insights into the biological function of repetitive sequences in regulating gene expression and shows how mutations of such elements can influence the progression of a human genetic disease.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 2011; 22:38-51. [PMID: 22209328 DOI: 10.1016/j.devcel.2011.11.013] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is one of the most common inherited muscular dystrophies. The causative gene remains controversial and the mechanism of pathophysiology unknown. Here we identify genes associated with germline and early stem cell development as targets of the DUX4 transcription factor, a leading candidate gene for FSHD. The genes regulated by DUX4 are reliably detected in FSHD muscle but not in controls, providing direct support for the model that misexpression of DUX4 is a causal factor for FSHD. Additionally, we show that DUX4 binds and activates LTR elements from a class of MaLR endogenous primate retrotransposons and suppresses the innate immune response to viral infection, at least in part through the activation of DEFB103, a human defensin that can inhibit muscle differentiation. These findings suggest specific mechanisms of FSHD pathology and identify candidate biomarkers for disease diagnosis and progression.
Collapse
|
17
|
|
18
|
Zhong YF, Holland PWH. The dynamics of vertebrate homeobox gene evolution: gain and loss of genes in mouse and human lineages. BMC Evol Biol 2011; 11:169. [PMID: 21679462 PMCID: PMC3141429 DOI: 10.1186/1471-2148-11-169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/16/2011] [Indexed: 01/04/2023] Open
Abstract
Background Homeobox genes are a large and diverse group of genes, many of which play important roles in transcriptional regulation during embryonic development. Comparison of homeobox genes between species may provide insights into the evolution of developmental mechanisms. Results Here we report an extensive survey of human and mouse homeobox genes based on their most recent genome assemblies, providing the first comprehensive analysis of mouse homeobox genes and updating an earlier survey of human homeobox genes. In total we recognize 333 human homeobox loci comprising 255 probable genes and 78 probable pseudogenes, and 324 mouse homeobox loci comprising 279 probable genes and 45 probable pseudogenes (accessible at http://homeodb.zoo.ox.ac.uk). Comparison to partial genome sequences from other species allows us to resolve which differences are due to gain of genes and which are due to gene losses. Conclusions We find there has been much more homeobox gene loss in the rodent evolutionary lineage than in the primate lineage. While humans have lost only the Msx3 gene, mice have lost Ventx, Argfx, Dprx, Shox, Rax2, LOC647589, Tprx1 and Nanognb. This analysis provides insight into the patterns of homeobox gene evolution in the mammals, and a step towards relating genomic evolution to phenotypic evolution.
Collapse
Affiliation(s)
- Ying-fu Zhong
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
19
|
van der Maarel SM, Tawil R, Tapscott SJ. Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 2011; 17:252-8. [PMID: 21288772 PMCID: PMC3092836 DOI: 10.1016/j.molmed.2011.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 01/10/2023]
Abstract
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) has an unusual pathogenic mechanism. FSHD is caused by deletion of a subset of D4Z4 macrosatellite repeat units in the subtelomere of chromosome 4q. Recent studies provide compelling evidence that a retrotransposed gene in the D4Z4 repeat, DUX4, is expressed in the human germline and then epigenetically silenced in somatic tissues. In FSHD, the combination of inefficient chromatin silencing of the D4Z4 repeat and polymorphisms on the FSHD-permissive alleles that stabilize the DUX4 mRNAs emanating from the repeat result in inappropriate DUX4 protein expression in muscle cells. FSHD is thereby the first example of a human disease caused by the inefficient repression of a retrogene in a macrosatellite repeat array.
Collapse
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center, Department of Human Genetics, Albinusdreef 2, 2333 ZA, Leiden, Netherlands. Phone: +31 71 526 9480, Fax: +31 71 526 8285
| | - Rabi Tawil
- University of Rochester Medical Center, Department of Neurology, POBox 673, 601 Elmwood Avenue, Rochester, NY 14642 USA. Phone: 1-585-275-6372, FAX: 1-585-273-1255
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA. Phone: 1-206-667-4499, FAX 1-206-667-6524
| |
Collapse
|
20
|
Leidenroth A, Hewitt JE. A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene. BMC Evol Biol 2010; 10:364. [PMID: 21110847 PMCID: PMC3004920 DOI: 10.1186/1471-2148-10-364] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/26/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND DUX4 is causally involved in the molecular pathogenesis of the neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD). It has previously been proposed to have arisen by retrotransposition of DUXC, one of four known intron-containing DUX genes. Here, we investigate the evolutionary history of this multi-member double-homeobox gene family in eutherian mammals. RESULTS Our analysis of the DUX family shows the distribution of different homologues across the mammalian class, including events of secondary loss. Phylogenetic comparison, analysis of gene structures and information from syntenic regions confirm the paralogous relationship of Duxbl and DUXB and characterize their relationship with DUXA and DUXC. We further identify Duxbl pseudogene orthologues in primates. A survey of non-mammalian genomes identified a single-homeobox gene (sDUX) as a likely representative homologue of the mammalian DUX ancestor before the homeobox duplication. Based on the gene structure maps, we suggest a possible mechanism for the generation of the DUX gene structure. CONCLUSIONS Our study underlines how secondary loss of orthologues can obscure the true ancestry of individual gene family members. Their relationships should be considered when interpreting the relevance of functional data from DUX4 homologues such as Dux and Duxbl to FSHD.
Collapse
Affiliation(s)
- Andreas Leidenroth
- Centre for Genetics and Genomics, School of Biology, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Jane E Hewitt
- Centre for Genetics and Genomics, School of Biology, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
21
|
Snider L, Geng LN, Lemmers RJLF, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, Miller DG. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 2010; 6:e1001181. [PMID: 21060811 PMCID: PMC2965761 DOI: 10.1371/journal.pgen.1001181] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/27/2010] [Indexed: 12/15/2022] Open
Abstract
Each unit of the D4Z4 macrosatellite repeat contains a retrotransposed gene encoding the DUX4 double-homeobox transcription factor. Facioscapulohumeral dystrophy (FSHD) is caused by deletion of a subset of the D4Z4 units in the subtelomeric region of chromosome 4. Although it has been reported that the deletion of D4Z4 units induces the pathological expression of DUX4 mRNA, the association of DUX4 mRNA expression with FSHD has not been rigorously investigated, nor has any human tissue been identified that normally expresses DUX4 mRNA or protein. We show that FSHD muscle expresses a different splice form of DUX4 mRNA compared to control muscle. Control muscle produces low amounts of a splice form of DUX4 encoding only the amino-terminal portion of DUX4. FSHD muscle produces low amounts of a DUX4 mRNA that encodes the full-length DUX4 protein. The low abundance of full-length DUX4 mRNA in FSHD muscle cells represents a small subset of nuclei producing a relatively high abundance of DUX4 mRNA and protein. In contrast to control skeletal muscle and most other somatic tissues, full-length DUX4 transcript and protein is expressed at relatively abundant levels in human testis, most likely in the germ-line cells. Induced pluripotent (iPS) cells also express full-length DUX4 and differentiation of control iPS cells to embryoid bodies suppresses expression of full-length DUX4, whereas expression of full-length DUX4 persists in differentiated FSHD iPS cells. Together, these findings indicate that full-length DUX4 is normally expressed at specific developmental stages and is suppressed in most somatic tissues. The contraction of the D4Z4 repeat in FSHD results in a less efficient suppression of the full-length DUX4 mRNA in skeletal muscle cells. Therefore, FSHD represents the first human disease to be associated with the incomplete developmental silencing of a retrogene array normally expressed early in development.
Collapse
MESH Headings
- Adult
- Animals
- Blotting, Western
- Cell Line
- Chromosomes, Human, Pair 4/genetics
- Female
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation
- HCT116 Cells
- Homeodomain Proteins/genetics
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Molecular Sequence Data
- Muscle Cells/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/pathology
- RNA Splicing
- Repetitive Sequences, Nucleic Acid/genetics
- Retroelements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Lauren Snider
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Linda N. Geng
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carol B. Ware
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Angelique M. Nelson
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| | - Galina N. Filippova
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | | | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Daniel G. Miller
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|