1
|
Farrus N, Maestro JL, Piulachs MD. CHMP4B contributes to maintaining the follicular cells integrity in the panoistic ovary of the cockroach Blattella germanica. Biol Cell 2024; 116:e2400010. [PMID: 38895958 DOI: 10.1111/boc.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The Endosomal Sorting Complex Required for Transport (ESCRT) is a highly conserved cellular machinery essential for many cellular functions, including transmembrane protein sorting, endosomal trafficking, and membrane scission. CHMP4B is a key component of ESCRT-III subcomplex and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster showing its relevance in maintaining this reproductive organ during the life of the fly. However, the role of the CHMP4B in the most basal panoistic ovaries remains elusive. RESULTS Using RNAi, we examined the function of CHMP4B in the ovary of Blattella germanica in two different physiological stages: in last instar nymphs, with proliferative follicular cells, and in vitellogenic adults when follicular cells enter in polyploidy and endoreplication. In Chmp4b-depleted specimens, the actin fibers change their distribution, appearing accumulated in the basal pole of the follicular cells, resulting in an excess of actin bundles that surround the basal ovarian follicle and modifying their shape. Depletion of Chmp4b also determines an actin accumulation in follicular cell membranes, resulting in different cell morphologies and sizes. In the end, these changes disrupt the opening of intercellular spaces between the follicular cells (patency) impeding the incorporation of yolk proteins to the growing oocyte and resulting in female sterility. In addition, the nuclei of follicular cells appeared unusually elongated, suggesting an incomplete karyokinesis. CONCLUSIONS These results proved CHMP4B essential in preserving the proper expression of cytoskeleton proteins vital for basal ovarian follicle growth and maturation and for yolk protein incorporation. Moreover, the correct distribution of actin fibers in the basal ovarian follicle emerged as a critical factor for the successful completion of ovulation and oviposition. SIGNIFICANCE The overall results, obtained in two different proliferative stages, suggest that the requirement of CHMP4B in B. germanica follicular epithelium is not related to the proliferative stage of the tissue.
Collapse
Affiliation(s)
- Nuria Farrus
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | - José Luis Maestro
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | | |
Collapse
|
2
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
3
|
Wu J, Zhang Y, Mao S, Li W, Li G, Li H, Sun S. Cross-species analysis and comparison of the inner ear between chickens and mice. J Comp Neurol 2023; 531:1443-1458. [PMID: 37462291 DOI: 10.1002/cne.25524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The inner ear of mammals includes the cochlea and vestibule, which house specialized hair cells that are responsible for hearing and balance, respectively. While cochlear hair cells fail to regenerate following damage, those of the utricle, which is part of the vestibular apparatus, show partial regeneration. In birds, the macula lagena, a unique ear structure in this clade, has the ability to regenerate hair cells similarly to the utricle. Many studies have sought to explain regeneration in terms of evolution and species differences. However, it remains unclear what the cellular and molecular basis is behind the differences in inner ear structures and between avians and mammals. In the present study, we first investigated the anatomical structures of the inner ear of both chickens and rodents. We then performed RNA sequencing (RNA-Seq) and made cross-species analyses of the expression of homologous genes obtained from the inner ear tissue from both chickens and mice. Finally, we focused on the lagena, the basilar papilla, and the utricle in chickens and identified differentially expressed genes between tissues and determined the expression patterns of genes involved in inner ear structure formation by single-cell RNA sequencing and bulk RNA-Seq. We concluded that the cellular and molecular composition of the lagena is more similar to that of the utricle than the cochlea. Taken together, our study provides a valuable resource for the study of inner ear evolution and development.
Collapse
Affiliation(s)
- Jingfang Wu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Yunzhong Zhang
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Shihang Mao
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Guangfei Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Huawei Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, P. R. China
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| |
Collapse
|
4
|
Oyagi S, Nakamura R, Katsuno T, Sogami T, Kawai Y, Kishimoto Y, Omori K. Local coordination of epithelial planar polarity in the maintenance and regeneration of the adult rat airway. Cell Tissue Res 2023; 394:163-175. [PMID: 37460682 DOI: 10.1007/s00441-023-03809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/05/2023] [Indexed: 10/07/2023]
Abstract
The maintenance of planar polarity in airway multiciliated cells (MCCs) has been poorly characterized. We recently reported that the direction of ciliary beating in a surgically inverted tracheal segment remained inverted beyond the time required for the turnover of cells, without adjustment to global distal-to-proximal polarity. We hypothesized that the local maintenance of tissue-level polarity occurs via locally reproduced cells. To provide further insight regarding this hypothetical property, we performed allotransplantation of an inverted tracheal segment between wild-type (donor) and tdTomato-expressing (host) rats, with and without scratching the mucosa of the transplants. The origin of cells in the transplants was assessed using tdTomato-specific immunostaining. Ciliary movement and structures were observed by high-speed video and electron microscopy to analyze MCC orientations. Variabilities in the orientations of closely and distantly located MCCs were analyzed to evaluate the local- and broad-scale coordination of polarity, respectively. The epithelium was maintained by donor-derived cells in the non-scratched inverted transplant over 6 months, beyond one cycle of turnover. The inverted orientation of MCCs was also maintained throughout the non-scratched transplant. MCCs regenerated in the scratched transplant were derived from the host and exhibited diverse orientations across the transplant. However, the orientations of adjacent regenerated MCCs were often coordinated, indicating that airway MCCs can locally coordinate their orientations. A steady-state airway may maintain MCC orientation by locally reproducing MCCs via the local coordination of polarity. This local coordination enables the formation and maintenance of tissue-level polarity in small regions after mucosal injury.
Collapse
Affiliation(s)
- Seiji Oyagi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Min-iren Chuo Hospital, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryosuke Nakamura
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, USA
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tohru Sogami
- Department of Otolaryngology-Head and Neck Surgery, SOSEIKAI hospital, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Spitzer DC, Sun WY, Rodríguez-Vargas A, Hariharan IK. The cell adhesion molecule Echinoid promotes tissue survival and separately restricts tissue overgrowth in Drosophila imaginal discs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552072. [PMID: 37577631 PMCID: PMC10418178 DOI: 10.1101/2023.08.04.552072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The interactions that cells in Drosophila imaginal discs have with their neighbors are known to regulate their ability to survive. In a screen of genes encoding cell surface proteins for gene knockdowns that affect the size or shape of mutant clones, we found that clones of cells with reduced levels of echinoid (ed) are fewer, smaller, and can be eliminated during development. In contrast, discs composed mostly of ed mutant tissue are overgrown. We find that ed mutant tissue has lower levels of the anti-apoptotic protein Diap1 and has increased levels of apoptosis which is consistent with the observed underrepresentation of ed mutant clones and the slow growth of ed mutant tissue. The eventual overgrowth of ed mutant tissue results not from accelerated growth, but from prolonged growth resulting from a failure to arrest growth at the appropriate final size. Ed has previously been shown to physically interact with multiple Hippo-pathway components and it has been proposed to promote Hippo pathway signaling, to exclude Yorkie (Yki) from the nucleus, and restrain the expression of Yki-target genes. We did not observe changes in Yki localization in ed mutant tissue and found decreased levels of expression of several Yorkie-target genes, findings inconsistent with the proposed effect of Ed on Yki. We did, however, observe increased expression of several Yki-target genes in wild-type cells neighboring ed mutant cells, which may contribute to elimination of ed mutant clones. Thus, ed has two distinct functions: an anti-apoptotic function by maintaining Diap1 levels, and a function to arrest growth at the appropriate final size. Both of these are unlikely to be explained by a simple effect on the Hippo pathway.
Collapse
Affiliation(s)
- Danielle C. Spitzer
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - William Y. Sun
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Anthony Rodríguez-Vargas
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| |
Collapse
|
6
|
Messina B, Lo Sardo F, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Maugeri-Saccà M, Bon G. Hippo pathway dysregulation in gastric cancer: from Helicobacter pylori infection to tumor promotion and progression. Cell Death Dis 2023; 14:21. [PMID: 36635265 PMCID: PMC9837097 DOI: 10.1038/s41419-023-05568-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The Hippo pathway plays a critical role for balancing proliferation and differentiation, thus regulating tissue homeostasis. The pathway acts through a kinase cascade whose final effectors are the Yes-associated protein (YAP) and its paralog transcriptional co‑activator with PDZ‑binding motif (TAZ). In response to a variety of upstream signals, YAP and TAZ activate a transcriptional program that modulates cellular proliferation, tissue repair after injury, stem cell fate decision, and cytoskeletal reorganization. Hippo pathway signaling is often dysregulated in gastric cancer and in Helicobacter pylori-induced infection, suggesting a putative role of its deregulation since the early stages of the disease. In this review, we summarize the architecture and regulation of the Hippo pathway and discuss how its dysregulation fuels the onset and progression of gastric cancer. In this setting, we also focus on the crosstalk between Hippo and other established oncogenic signaling pathways. Lastly, we provide insights into the therapeutic approaches targeting aberrant YAP/TAZ activation and discuss the related clinical perspectives and challenges.
Collapse
Affiliation(s)
- Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
7
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
8
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
9
|
Kong D, Lu JY, Li X, Zhao S, Xu W, Fang J, Wang X, Ma X. Misshapen Disruption Cooperates with RasV12 to Drive Tumorigenesis. Cells 2021; 10:cells10040894. [PMID: 33919765 PMCID: PMC8070713 DOI: 10.3390/cells10040894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Although RAS family genes play essential roles in tumorigenesis, effective treatments targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic screen in Drosophila eye imaginal discs and identified Misshapen (Msn) as a tumor suppressor that synergizes with oncogenic Ras (RasV12) to induce c-Jun N-terminal kinase (JNK) activation and Hippo inactivation, then subsequently leads to tumor overgrowth and invasion. Moreover, ectopic Msn expression activates Hippo signaling pathway and suppresses Hippo signaling disruption-induced overgrowth. Importantly, we further found that Msn acts downstream of protocadherin Fat (Ft) to regulate Hippo signaling. Finally, we identified msn as a Yki/Sd target gene that regulates Hippo pathway in a negative feedback manner. Together, our findings identified Msn as a tumor suppressor and provide a novel insight into RAS-related tumorigenesis that may be relevant to human cancer biology.
Collapse
Affiliation(s)
- Du Kong
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jin-Yu Lu
- Baylor College of Medicine, Hematology & Oncology, Houston, TX 77054, USA;
| | - Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Sihua Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jinan Fang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
- Correspondence: (X.W.); (X.M.)
| | - Xianjue Ma
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Correspondence: (X.W.); (X.M.)
| |
Collapse
|
10
|
Yu JJS, Maugarny-Calès A, Pelletier S, Alexandre C, Bellaiche Y, Vincent JP, McGough IJ. Frizzled-Dependent Planar Cell Polarity without Secreted Wnt Ligands. Dev Cell 2020; 54:583-592.e5. [PMID: 32888416 PMCID: PMC7497783 DOI: 10.1016/j.devcel.2020.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
Planar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has been suggested that Wnt gradients could provide a global cue that coordinates local PCP with tissue axes. Here, we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established system for the study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on the membrane-tethered Wingless for Wnt signaling, suggesting that a Wnt gradient is not required. We then used a nanobody-based approach to trap Wntless in the endoplasmic reticulum, and hence prevent all Wnt secretion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even though Wnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tissue-wide polarization.
Collapse
Affiliation(s)
| | - Aude Maugarny-Calès
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | | | - Yohanns Bellaiche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | | | | |
Collapse
|
11
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
12
|
Mangione F, Martín-Blanco E. The Dachsous/Fat/Four-Jointed Pathway Directs the Uniform Axial Orientation of Epithelial Cells in the Drosophila Abdomen. Cell Rep 2019; 25:2836-2850.e4. [PMID: 30517870 DOI: 10.1016/j.celrep.2018.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The achievement of the final form of an individual requires not only the control of cell size and differentiation but also integrative directional cues to instruct cell movements, positions, and orientations. In Drosophila, the adult epidermis of the abdomen is created de novo by histoblasts. As these expand and fuse, they uniformly orient along the anteroposterior axis. We found that the Dachsous/Fat/Four-jointed (Ds/Ft/Fj) pathway is key for their alignment. The refinement of the tissue-wide expression of the atypical cadherins Ds and Ft result in their polarization and directional adhesiveness. Mechanistically, the axially oriented changes in histoblasts respond to the redesign of the epithelial field. We suggest that the role of Ds/Ft/Fj in long-range oriented cell alignment is a general function and that the regulation of the expression of its components will be crucial in other morphogenetic models or during tissue repair.
Collapse
Affiliation(s)
- Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
13
|
PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat Commun 2019; 10:3993. [PMID: 31488837 PMCID: PMC6728366 DOI: 10.1038/s41467-019-12005-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Planar cell polarity (PCP) plays crucial roles in developmental processes such as gastrulation, neural tube closure and hearing. Wnt pathway mutants are often classified as PCP mutants due to similarities between their phenotypes. Here, we show that in the zebrafish lateral line, disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in the PCP genes vangl2 and scrib cause random orientations of hair cells, mutations in wnt11f1, gpc4 and fzd7a/b induce hair cells to adopt a concentric pattern. This concentric pattern is not caused by defects in PCP but is due to misaligned support cells. The molecular basis of the support cell defect is unknown but we demonstrate that the PCP and Wnt pathways work in parallel to establish proper hair cell orientation. Consequently, hair cell orientation defects are not solely explained by defects in PCP signaling, and some hair cell phenotypes warrant re-evaluation. Planar cell polarity (PCP) regulates hair cell orientation in the zebrafish lateral line. Here, the authors show that mutating Wnt pathway genes (wnt11f1, fzd7a/b, and gpc4) causes concentric hair cell patterns not regulated by PCP, thus showing PCP/Wnt pathway genes have different consequences on hair cell orientation.
Collapse
|
14
|
Sousa B, Pereira J, Paredes J. The Crosstalk Between Cell Adhesion and Cancer Metabolism. Int J Mol Sci 2019; 20:E1933. [PMID: 31010154 PMCID: PMC6515343 DOI: 10.3390/ijms20081933] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells preferentially use aerobic glycolysis over mitochondria oxidative phosphorylation for energy production, and this metabolic reprogramming is currently recognized as a hallmark of cancer. Oncogenic signaling frequently converges with this metabolic shift, increasing cancer cells' ability to produce building blocks and energy, as well as to maintain redox homeostasis. Alterations in cell-cell and cell-extracellular matrix (ECM) adhesion promote cancer cell invasion, intravasation, anchorage-independent survival in circulation, and extravasation, as well as homing in a distant organ. Importantly, during this multi-step metastatic process, cells need to induce metabolic rewiring, in order to produce the energy needed, as well as to impair oxidative stress. Although the individual implications of adhesion molecules and metabolic reprogramming in cancer have been widely explored over the years, the crosstalk between cell adhesion molecular machinery and metabolic pathways is far from being clearly understood, in both normal and cancer contexts. This review summarizes our understanding about the influence of cell-cell and cell-matrix adhesion in the metabolic behavior of cancer cells, with a special focus concerning the role of classical cadherins, such as Epithelial (E)-cadherin and Placental (P)-cadherin.
Collapse
Affiliation(s)
- Bárbara Sousa
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Pereira
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Paredes
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
15
|
Early girl is a novel component of the Fat signaling pathway. PLoS Genet 2019; 15:e1007955. [PMID: 30699121 PMCID: PMC6370246 DOI: 10.1371/journal.pgen.1007955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway. During development, organs grow to achieve a consistent final size. The evolutionarily conserved Hippo signaling network plays a central role in organ size control, and when dysregulated can be associated with cancer and other diseases. Fat signaling is one of several upstream pathways that impinge on Hippo signaling to regulate organ growth. We describe here identification of the Drosophila early girl gene as a new component of the Fat signaling pathway. We show that Early girl controls Fat signaling by regulating the levels of the Dachs protein. However Early girl differs from other Fat signaling regulators in that it doesn’t influence planar cell polarity or control the polarity of Dachs localization. early girl encodes a conserved protein that is predicted to influence protein stability, and it can physically associate with Dachs. We also discovered that Early girl acts together with another protein, called Approximated, to regulate the sub-cellular localization of Dachs and a Dachs-interacting protein called Vamana. Altogether, our observations establish Early girl as an essential component of Fat signaling that acts to regulate the levels and localization of Dachs and Vamana.
Collapse
|
16
|
Hust J, Lavine MD, Worthington AM, Zinna R, Gotoh H, Niimi T, Lavine L. The Fat-Dachsous signaling pathway regulates growth of horns in Trypoxylus dichotomus, but does not affect horn allometry. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:85-94. [PMID: 29366850 DOI: 10.1016/j.jinsphys.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Males of the Asian rhinoceros beetle, Trypoxylus dichotomus, possess exaggerated head and thoracic horns that scale dramatically out of proportion to body size. While studies of insulin signaling suggest that this pathway regulates nutrition-dependent growth including exaggerated horns, what regulates disproportionate growth has yet to be identified. The Fat signaling pathway is a potential candidate for regulating disproportionate growth of sexually-selected traits, a hypothesis we advanced in a previous paper (Gotoh et al., 2015). To investigate the role of Fat signaling in the growth and scaling of the sexually dimorphic, condition-dependent traits of the in the Asian rhinoceros beetle T. dichotomus, we used RNA interference to knock down expression of fat and its co-receptor dachsous. Knockdown of fat, and to a lesser degree dachsous, caused shortening and widening of appendages, including the head and thoracic horns. However, scaling of horns to body size was not affected. Our results show that Fat signaling regulates horn growth in T. dichotomus as it does in appendage growth in other insects. However, we provide evidence that Fat signaling does not mediate the disproportionate, positive allometric growth of horns in T. dichotomus.
Collapse
Affiliation(s)
- James Hust
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Mark D Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Amy M Worthington
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Robert Zinna
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Hiroki Gotoh
- Department of Entomology, Washington State University, Pullman, WA 99164, United States; Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - T Niimi
- Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Laura Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
17
|
|
18
|
Dobens LL, Shipman A, Axelrod JD. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity. Fly (Austin) 2017; 12:23-33. [PMID: 29189094 DOI: 10.1080/19336934.2017.1409927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.
Collapse
Affiliation(s)
- Leonard L Dobens
- a Division of Molecular Biology and Biochemistry, School of Biological Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Anna Shipman
- a Division of Molecular Biology and Biochemistry, School of Biological Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Jeffrey D Axelrod
- b Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
19
|
Integrating planar polarity and tissue mechanics in computational models of epithelial morphogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Difference in Dachsous Levels between Migrating Cells Coordinates the Direction of Collective Cell Migration. Dev Cell 2017; 42:479-497.e10. [DOI: 10.1016/j.devcel.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
21
|
Jülicher F, Eaton S. Emergence of tissue shape changes from collective cell behaviours. Semin Cell Dev Biol 2017; 67:103-112. [DOI: 10.1016/j.semcdb.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
22
|
Configuring a robust nervous system with Fat cadherins. Semin Cell Dev Biol 2017; 69:91-101. [PMID: 28603077 DOI: 10.1016/j.semcdb.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/14/2023]
Abstract
Atypical Fat cadherins represent a small but versatile group of signaling molecules that influence proliferation and tissue polarity. With huge extracellular domains and intracellular domains harboring many independent protein interaction sites, Fat cadherins are poised to translate local cell adhesion events into a variety of cell behaviors. The need for such global coordination is particularly prominent in the nervous system, where millions of morphologically diverse neurons are organized into functional networks. As we learn more about their biological functions and molecular properties, increasing evidence suggests that Fat cadherins mediate contact-induced changes that ultimately impose a structure to developing neuronal circuits.
Collapse
|
23
|
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 2017; 18:375-388. [PMID: 28293032 DOI: 10.1038/nrm.2017.11] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) is an essential feature of animal tissues, whereby distinct polarity is established within the plane of a cell sheet. Tissue-wide establishment of PCP is driven by multiple global cues, including gradients of gene expression, gradients of secreted WNT ligands and anisotropic tissue strain. These cues guide the dynamic, subcellular enrichment of PCP proteins, which can self-assemble into mutually exclusive complexes at opposite sides of a cell. Endocytosis, endosomal trafficking and degradation dynamics of PCP components further regulate planar tissue patterning. This polarization propagates throughout the whole tissue, providing a polarity axis that governs collective morphogenetic events such as the orientation of subcellular structures and cell rearrangements. Reflecting the necessity of polarized cellular behaviours for proper development and function of diverse organs, defects in PCP have been implicated in human pathologies, most notably in severe birth defects.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
24
|
Matakatsu H, Blair SS, Fehon RG. The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. J Cell Biol 2016; 216:265-277. [PMID: 28031421 PMCID: PMC5223609 DOI: 10.1083/jcb.201609094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
The palmitoyl transferase Approximated regulates signaling by the protocadherin Fat to control tissue growth upstream of the Hippo pathway in Drosophila. Matakatsu et al. show that palmitoylation of the intracellular domain of Fat by Approximated negatively regulates Fat and its ability to restrict growth. The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
25
|
Hou L, Chen M, Zhao X, Li J, Deng S, Hu J, Yang H, Jiang J. FAT4 functions as a tumor suppressor in triple-negative breast cancer. Tumour Biol 2016; 37:10.1007/s13277-016-5421-3. [PMID: 27896700 DOI: 10.1007/s13277-016-5421-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is often associated with biologic behavior with frequent distant metastasis. FAT tumor suppressor homolog 4 (FAT4), a cadherin-related protein, is involved in a variety of biological processes as a tumor suppressor; however, the role of FAT4 in TNBC is still unclear. The aim of our study was to identify the role of FAT4 in TNBC and examine the underlying molecular mechanisms. The expression of FAT4 was evaluated by immunohistochemistry, western blotting, and qRT-PCR in a series of TNBC tissues. The effects of FAT4 on the ability of cell proliferation, migration, and invasion were assessed by MTT assay and migration and invasion assays. We demonstrated that the repression of FAT4 by shRNA could promote TNBC progression. Taken together, our findings provide evidence for a role of the FAT4 cluster as a tumor suppressor in TNBC patients and may serve as potential novel targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Lingmi Hou
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
- Department of Thyroid Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
- Institute of Hepatobiliary Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Maoshan Chen
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Xiaobo Zhao
- Department of Thyroid Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jingdong Li
- Institute of Hepatobiliary Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shishan Deng
- Department of Anatomy, The North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, 48331, USA
| | - Hongwei Yang
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, Sichuan, 629000, China.
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China.
| |
Collapse
|
26
|
Ma L, Cui J, Xi H, Bian S, Wei B, Chen L. Fat4 suppression induces Yap translocation accounting for the promoted proliferation and migration of gastric cancer cells. Cancer Biol Ther 2016; 17:36-47. [PMID: 26575609 DOI: 10.1080/15384047.2015.1108488] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fat4 functions as a Hippo signaling regulator which is involved in mammalian tissue development, differentiation and tumorigenesis. Loss of Fat4 due to frequent gene mutation was detected in a variety of tumors including gastric cancer, where Fat4 was recognized as a tumor suppressor, repressing cancer cell proliferation and adhesion. However, the detailed mechanisms linking Fat4 to its diverse functions and clinicopathological characteristics in gastric cancer remain unclear. Here, we silenced Fat4 using Fat4-shRNA in gastric cancer cells and found that this suppression led to the increase in phosphorylated Yap and nuclear accumulation of Yap, which associated to the promoted proliferation, migration and cell cycle progression. Then we transfected a full-length Fat4 into the Fat4-silenced cells, and found the decrease in phosphorylated Yap and inhibition of the cell cycle progression. Intriguingly, Fat4 reduction also leads to the accumulation of cytoplasmic β-catenin via the loss of restraining to cytoplasmic Yap instead of β-catenin transcription promotion. The Fat4-silenced cells which were treated with 5-FU, Cisplatin, Oxaliplatin and Paclitaxel individually demonstrated less sensitivities to these chemotherapy drugs compared with the control cells. Furthermore, immunohistochemical analysis revealed that Fat4 expression was significantly reduced in gastric cancer tissues compared with adjacent noncancerous tissues, and negatively correlated with tumor infiltration, lymph node metastasis and cumulative survival rate. In conclusion, Fat4 expression is deceased in gastric cancer cells, leading to nuclear translocation of Yap and correlates with poor prognosis.
Collapse
Affiliation(s)
| | | | - Hongqing Xi
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| | - Shibo Bian
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| | - Bo Wei
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| | - Lin Chen
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| |
Collapse
|
27
|
Misra JR, Irvine KD. Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 2016; 39:254-266. [PMID: 27746048 DOI: 10.1016/j.devcel.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA.
| |
Collapse
|
28
|
Aw WY, Devenport D. Planar cell polarity: global inputs establishing cellular asymmetry. Curr Opin Cell Biol 2016; 44:110-116. [PMID: 27576155 DOI: 10.1016/j.ceb.2016.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
Many tissues develop coordinated patterns of cell polarity that align with respect to the tissue axes. This phenomenon refers to planar cell polarity (PCP) and is controlled by multiple conserved PCP modules. A key feature of PCP proteins is their asymmetric localization within the tissue plane, whose orientation is guided by global directional cues. Here, we highlight current models and recent findings on the role of tissue-level gradients, local organizer signals, and mechanical forces in establishing the global patterns of PCP.
Collapse
Affiliation(s)
- Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Khan AS, Hojjat-Farsangi M, Daneshmanesh AH, Hansson L, Kokhaei P, Österborg A, Mellstedt H, Moshfegh A. Dishevelled proteins are significantly upregulated in chronic lymphocytic leukaemia. Tumour Biol 2016; 37:11947-11957. [DOI: 10.1007/s13277-016-5039-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/28/2016] [Indexed: 10/21/2022] Open
|
30
|
Devenport D. Tissue morphodynamics: Translating planar polarity cues into polarized cell behaviors. Semin Cell Dev Biol 2016; 55:99-110. [PMID: 26994528 DOI: 10.1016/j.semcdb.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
The ability of cells to collectively orient and align their behaviors is essential in multicellular organisms for unidirectional cilia beating, collective cell movements, oriented cell divisions, and asymmetric cell fate specification. The planar cell polarity pathway coordinates a vast and diverse array of collective cell behaviors by intersecting with downstream pathways that regulate cytoskeletal dynamics and intercellular signaling. How the planar polarity pathway translates directional cues to produce polarized cell behaviors is the focus of this review.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
31
|
Hale R, Strutt D. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annu Rev Genet 2015; 49:529-51. [DOI: 10.1146/annurev-genet-112414-055224] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalind Hale
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - David Strutt
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
32
|
Mao Y, Francis-West P, Irvine KD. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 2015; 142:2574-85. [PMID: 26116666 DOI: 10.1242/dev.122630] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
Abstract
Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.
Collapse
Affiliation(s)
- Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Philippa Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
González-Morales N, Géminard C, Lebreton G, Cerezo D, Coutelis JB, Noselli S. The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila. Dev Cell 2015; 33:675-89. [PMID: 26073018 DOI: 10.1016/j.devcel.2015.04.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022]
Abstract
Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry.
Collapse
Affiliation(s)
- Nicanor González-Morales
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Charles Géminard
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Gaëlle Lebreton
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Delphine Cerezo
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Jean-Baptiste Coutelis
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Stéphane Noselli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France.
| |
Collapse
|
34
|
Spratford CM, Kumar JP. Extramacrochaetae functions in dorsal-ventral patterning of Drosophila imaginal discs. Development 2015; 142:1006-15. [PMID: 25715400 DOI: 10.1242/dev.120618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the seminal events in the history of a tissue is the establishment of the anterior-posterior, dorsal-ventral (D/V) and proximal-distal axes. Axis formation is important for the regional specification of a tissue and allows cells along the different axes to obtain directional and positional information. Within the Drosophila retina, D/V axis formation is essential to ensure that each unit eye first adopts the proper chiral form and then rotates precisely 90° in the correct direction. These two steps are important because the photoreceptor array must be correctly aligned with the neurons of the optic lobe. Defects in chirality and/or ommatidial rotation will lead to disorganization of the photoreceptor array, misalignment of retinal and optic lobe neurons, and loss of visual acuity. Loss of the helix-loop-helix protein Extramacrochaetae (Emc) leads to defects in both ommatidial chirality and rotation. Here, we describe a new role for emc in eye development in patterning the D/V axis. We show that the juxtaposition of dorsal and ventral fated tissue in the eye leads to an enrichment of emc expression at the D/V midline. emc expression at the midline can be eliminated when D/V patterning is disrupted and can be induced in situations in which ectopic boundaries are artificially generated. We also show that emc functions downstream of Notch signaling to maintain the expression of four-jointed along the midline.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
35
|
Newman-Smith E, Kourakis MJ, Reeves W, Veeman M, Smith WC. Reciprocal and dynamic polarization of planar cell polarity core components and myosin. eLife 2015; 4:e05361. [PMID: 25866928 PMCID: PMC4417934 DOI: 10.7554/elife.05361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/10/2015] [Indexed: 12/05/2022] Open
Abstract
The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI:http://dx.doi.org/10.7554/eLife.05361.001 Animal cells that form flat layers of a tissue, such as the skin or the lining of internal cavities, are often orientated in the same direction. The same is true for structures such as hairs or feathers, which are attached to the skin. This phenomenon is known as ‘planar cell polarity’ (or ‘PCP’ for short). Many different organisms use similar mechanisms to establish this kind of tissue pattern. The best-studied mechanism involves the so-called ‘core PCP pathway’. Signaling proteins in this pathway coordinate the polarity of neighboring cells. Other ‘global signaling pathways’ are thought to first ensure that tissues are correctly orientated within the embryo as a whole, and to do this, the global pathways are thought to align a network of filament-like structures within the cells in a particular direction. Once correctly orientated, these filaments—known as microtubules—have been proposed to help position the components of the core PCP pathway such that they can correctly orientate the rest of the cell. Now Newman-Smith, Kourakis et al. have identified another network of filaments within cells that interacts with components of the core PCP pathway in a sea squirt called Ciona savignyi. This organism begins life as a tadpole-like larva that has a flexible rod-shaped structure, called a ‘notochord’, running along the length of its body. The cells of the notochord become polarized as they develop. When microtubules are disrupted, their planar polarity remains unaffected. However, when another network of filaments—called the actomyosin network––is chemically disrupted, the polarity of certain core PCP components is lost. The findings of Newman-Smith, Kourakis et al. reveal that the core PCP components and the actomyosin network in this sea squirt reinforce each other's polarity. This represents an alternative to the previously described models of planar polarity in which the core PCP components are thought to drive the polarization of the actomyosin network. Whether this model extends to planar cell polarity mechanisms in other organisms, such humans and other animals with backbones, remains a question for future work. DOI:http://dx.doi.org/10.7554/eLife.05361.002
Collapse
Affiliation(s)
- Erin Newman-Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Matthew J Kourakis
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Wendy Reeves
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Michael Veeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
36
|
Galic M, Matis M. Polarized trafficking provides spatial cues for planar cell polarization within a tissue. Bioessays 2015; 37:678-86. [PMID: 25845311 DOI: 10.1002/bies.201400196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Planar cell polarity, the polarization of cells within the plane of the epithelium, orthogonal to the apical-basal axis, is essential for a growing list of developmental events, and - over the last 15 years - has evolved from a little-studied curiosity in Drosophila to the subject of a substantial research enterprise. In that time, it has been recognized that two molecular systems are responsible for polarization of most tissues: Both the "core" Frizzled system and the "global" Fat/Dachsous/Four-jointed system produce molecular asymmetry within cells, and contribute to morphological polarization. In this review, we discuss recent findings on the molecular mechanism that links "global" directional signals with local coordinated polarity.
Collapse
Affiliation(s)
- Milos Galic
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Cell Biology, ZMBE, University of Münster, Germany
| |
Collapse
|
37
|
Matamoro-Vidal A, Salazar-Ciudad I, Houle D. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Dev Dyn 2015; 244:1058-1073. [PMID: 25619644 DOI: 10.1002/dvdy.24255] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. Developmental Dynamics 244:1058-1073, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.,Center of Excellence in Experimental and Computational Developmental Biology, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
38
|
Gaspar P, Holder MV, Aerne BL, Janody F, Tapon N. Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth. Curr Biol 2015; 25:679-689. [PMID: 25728696 DOI: 10.1016/j.cub.2015.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Coordinated multicellular growth during development is achieved by the sensing of spatial and nutritional boundaries. The conserved Hippo (Hpo) signaling pathway has been proposed to restrict tissue growth by perceiving mechanical constraints through actin cytoskeleton networks. The actin-associated LIM proteins Zyxin (Zyx) and Ajuba (Jub) have been linked to the control of tissue growth via regulation of Hpo signaling, but the study of Zyx has been hampered by a lack of genetic tools. RESULTS We generated a zyx mutant in Drosophila using TALEN endonucleases and used this to show that Zyx antagonizes the FERM-domain protein Expanded (Ex) to control tissue growth, eye differentiation, and F-actin accumulation. Zyx membrane targeting promotes the interaction between the transcriptional co-activator Yorkie (Yki) and the transcription factor Scalloped (Sd), leading to activation of Yki target gene expression and promoting tissue growth. Finally, we show that Zyx's growth-promoting function is dependent on its interaction with the actin-associated protein Enabled (Ena) via a conserved LPPPP motif and is antagonized by Capping Protein (CP). CONCLUSIONS Our results show that Zyx is a functional antagonist of Ex in growth control and establish a link between actin filament polymerization and Yki activity.
Collapse
Affiliation(s)
- Pedro Gaspar
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Maxine V Holder
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
39
|
Lu Q, Adler PN. The diaphanous gene of Drosophila interacts antagonistically with multiple wing hairs and plays a key role in wing hair morphogenesis. PLoS One 2015; 10:e0115623. [PMID: 25730111 PMCID: PMC4346269 DOI: 10.1371/journal.pone.0115623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
The Drosophila wing is covered by an array of distally pointing hairs that has served as a key model system for studying planar cell polarity (PCP). The adult cuticular hairs are formed in the pupae from cell extensions that contain extensive actin filaments and microtubules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin proteins promote the formation of long actin filaments of the sort thought to be important for hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role in hair morphogenesis. Both loss of function mutations and the expression of a constitutively active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and activation of the cytoskeleton to the distal most part of wing cells. It also ensures the formation of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may be part of this mechanism. We found the expression of constitutively active Dia greatly expands the region for activation of the cytoskeleton and that dia functions antagonistically with multiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Further we established that purified fragments of Dia and Mwh could be co-immunoprecipitated suggesting the genetic interaction could reflect a direct physical interaction.
Collapse
Affiliation(s)
- Qiuheng Lu
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul N. Adler
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- Cell Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Rovira M, Saavedra P, Casal J, Lawrence PA. Regions within a single epidermal cell of Drosophila can be planar polarised independently. eLife 2015; 4:e06303. [PMID: 25671242 PMCID: PMC4341236 DOI: 10.7554/elife.06303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/07/2015] [Indexed: 12/20/2022] Open
Abstract
Planar cell polarity (PCP), the coordinated and consistent orientation of cells in the plane of epithelial sheets, is a fundamental and conserved property of animals and plants. Up to now, the smallest unit expressing PCP has been considered to be an entire single cell. We report that, in the larval epidermis of Drosophila, different subdomains of one cell can have opposite polarities. In larvae, PCP is driven by the Dachsous/Fat system; we show that the polarity of a subdomain within one cell is its response to levels of Dachsous/Fat in the membranes of contacting cells. During larval development, cells rearrange (Saavedra et al., 2014) and when two subdomains of a single cell have different types of neighbouring cells, then these subdomains can become polarised in opposite directions. We conclude that polarisation depends on a local comparison of the amounts of Dachsous and Fat within opposing regions of a cell's membrane.
Collapse
Affiliation(s)
- Miguel Rovira
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pedro Saavedra
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - José Casal
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Friedman LG, Benson DL, Huntley GW. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top Dev Biol 2015; 112:415-65. [PMID: 25733148 DOI: 10.1016/bs.ctdb.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.
Collapse
Affiliation(s)
- Lauren G Friedman
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
42
|
Abstract
Planar cell polarity (PCP) refers to the coordinated alignment of cell polarity across the tissue plane. Key to the establishment of PCP is asymmetric partitioning of cortical PCP components and intercellular communication to coordinate polarity between neighboring cells. Recent progress has been made toward understanding how protein transport, endocytosis, and intercellular interactions contribute to asymmetric PCP protein localization. Additionally, the functions of gradients and mechanical forces as global cues that bias PCP orientation are beginning to be elucidated. Together, these findings are shedding light on how global cues integrate with local cell interactions to organize cellular polarity at the tissue level.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
43
|
Kong D, Zhao Y, Men T, Teng CB. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy. J Drug Target 2014; 23:125-33. [DOI: 10.3109/1061186x.2014.983522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Abstract
Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.
Collapse
|
45
|
Baker NE, Jenny A. Metabolism and the other fat: a protocadherin in mitochondria. Cell 2014; 158:1240-1241. [PMID: 25215484 DOI: 10.1016/j.cell.2014.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The protocadherin Fat is known as a tumor suppressor regulating growth in Drosophila and for its conserved function during planar cell polarity establishment. McNeill and colleagues now identify an unsuspected role for a C-terminal proteolytic product of Fat in mitochondria: regulating the electron transport machinery and metabolism.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophtalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Andreas Jenny
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
46
|
The Atypical Cadherin Fat Directly Regulates Mitochondrial Function and Metabolic State. Cell 2014; 158:1293-1308. [DOI: 10.1016/j.cell.2014.07.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/09/2014] [Accepted: 07/10/2014] [Indexed: 11/21/2022]
|
47
|
Kourakis MJ, Reeves W, Newman-Smith E, Maury B, Abdul-Wajid S, Smith WC. A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona. Dev Biol 2014; 395:120-30. [PMID: 25173874 DOI: 10.1016/j.ydbio.2014.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
Despite its importance in development and physiology the planar cell polarity (PCP) pathway remains one of the most enigmatic signaling mechanisms. The notochord of the ascidian Ciona provides a unique model for investigating the PCP pathway. Interestingly, the notochord appears to be the only embryonic structure in Ciona activating the PCP pathway. Moreover, the Ciona notochord as a single-file array of forty polarized cells is a uniquely tractable system for the study of polarization dynamics and the transmission of the PCP pathway. Here, we test models for propagation of a polarizing signal, interrogating temporal, spatial and signaling requirements. A simple cell-cell relay cascading through the entire length of the notochord is not supported; instead a more complex mechanism is revealed, with interactions influencing polarity between neighboring cells, but not distant ones. Mechanisms coordinating notochord-wide polarity remain elusive, but appear to entrain general (i.e., global) polarity even while local interactions remain important. However, this global polarizer does not appear to act as a localized, spatially-restricted determinant. Coordination of polarity along the long axis of the notochord requires the PCP pathway, a role we demonstrate is temporally distinct from this pathway's earlier role in convergent extension and intercalation. We also reveal polarity in the notochord to be dynamic: a cell's polarity state can be changed and then restored, underscoring the Ciona notochord's amenability for in vivo studies of PCP.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Wendy Reeves
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erin Newman-Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Benoit Maury
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sarah Abdul-Wajid
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
48
|
Sadeqzadeh E, de Bock CE, O'Donnell MR, Timofeeva A, Burns GF, Thorne RF. FAT1 cadherin is multiply phosphorylated on its ectodomain but phosphorylation is not catalysed by the four-jointed homologue. FEBS Lett 2014; 588:3511-7. [PMID: 25150169 DOI: 10.1016/j.febslet.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023]
Abstract
The interaction between the Drosophila cadherins fat and dachsous is regulated by phosphorylation of their respective ectodomains, a process catalysed by the atypical kinase four-jointed. Given that many signalling functions are conserved between Drosophila and vertebrate Fat cadherins, we sought to determine whether ectodomain phosphorylation is conserved in FAT1 cadherin, and also whether FJX1, the vertebrate orthologue of four-jointed, was involved in such phosphorylation events. Potential Fj consensus phosphorylation motifs were identified in FAT1 and biochemical experiments revealed the presence of phosphoserine and phosphothreonine residues in its extracellular domain. However, silencing FJX1 did not influence the levels of FAT1 ectodomain phosphorylation, indicating that other mechanisms are likely responsible.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Charles E de Bock
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maureen R O'Donnell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anna Timofeeva
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gordon F Burns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| |
Collapse
|
49
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
50
|
Bosch JA, Sumabat TM, Hafezi Y, Pellock BJ, Gandhi KD, Hariharan IK. The Drosophila F-box protein Fbxl7 binds to the protocadherin fat and regulates Dachs localization and Hippo signaling. eLife 2014; 3:e03383. [PMID: 25107277 PMCID: PMC4144329 DOI: 10.7554/elife.03383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization. DOI:http://dx.doi.org/10.7554/eLife.03383.001 Multi-cellular organisms are made up of cells that are organized into tissues and organs that reach a predictable size and shape at the end of their development. To do this, cells must be able to sense their position and orientation within the body and know when to stop growing. Epithelial cells—which make up the outer surface of an animal's body and line the cavities of its internal organs—connect to each other to form flat sheets. These sheets of cells contain structures that are oriented along the plane of the sheet. However, how this so-called ‘planar cell polarity’ coordinates with cell growth in order to build complex tissues and organs remains to be discovered. A protein called Fat is a major player in both planar cell polarity and the Hippo signaling pathway, which controls cell growth. As such, the Fat protein appears to be crucial for controlling the size and shape of organs. Mutations in the Fat protein cause massive tissue overgrowth, prevent planar cell polarity being established correctly, and stop the legs and wings of fruit flies developing normally. The Fat protein also plays a role in distributing another protein called Dachs—which is also part of the Hippo signaling pathway. In epithelial cells of the developing wing, Dachs is mostly located on the side of the cell that is closest to the tip of the developing wing (the so-called ‘distal surface’). How Fat and Dachs work together is not understood, but it is known that they do not bind to each other directly. Now, Bosch et al. show that in the fruit fly Drosophila, the Fat protein binds to another protein called Fbxl7. Flies that cannot produce working Fbxl7 have defects in some aspects of planar cell polarity and a modest increase in tissue growth. Fbxl7 seems to account for part, but not all, of the ability of Fat to restrict tissue growth. Furthermore, a lack of the Fbxl7 protein results in a spreading of Dachs protein across the apical surface—which faces out of the epithelial sheet—of epithelial cells. On the other hand, if Fbxl7 is over-expressed, Dachs is driven to the interior of each cell. Hence, a normal level of Fbxl7 protein restricts the Dachs protein to the correct parts of the cell surface. Together, the findings of Bosch et al. show that the Fbxl7 protein is a key link between the Fat and Dachs proteins. These results also provide an understanding of how growth and planar cell polarity—two processes that are essential for normal development of all multi-cellular organisms—are coordinated. DOI:http://dx.doi.org/10.7554/eLife.03383.002
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Taryn M Sumabat
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yassi Hafezi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Brett J Pellock
- Department of Biology, Providence College, Providence, United States
| | - Kevin D Gandhi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|