1
|
Xiao Y, Liao G, Luo W, Xia Y, Zeng X. Homology in Sex Determination in Two Distant Spiny Frogs, Nanorana quadranus and Quasipaa yei. Animals (Basel) 2024; 14:1849. [PMID: 38997961 PMCID: PMC11240834 DOI: 10.3390/ani14131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Sex determination is remarkably diverse, with frequent transitions between sex chromosomes, in amphibians. Under these transitions, some chromosomes are more likely to be recurrently co-opted as sex chromosomes, as they are often observed across deeply divergent taxa. However, little is known about the pattern of sex chromosome evolution among closely related groups. Here, we examined sex chromosome and sex determination in two spiny frogs, Nanorana quadranus and Quasipaa yei. We conducted an analysis of genotyping-by-sequencing (GBS) data from a total of 34 individuals to identify sex-specific makers, with the results verified by PCR. The results suggest that chromosome 1 is a homologous sex chromosome with an XY pattern in both species. This chromosome has been evolutionarily conserved across these closely related groups within a period of time. The DMRT1 gene is proposed to be implicated in homology across two distantly related spiny frog species as a putative candidate sex-determining gene. Harboring the DMRT1 gene, chromosome 1 would have been independently co-opted for sex determination in deeply divergent groups of anurans.
Collapse
Affiliation(s)
- Yu Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjiong Liao
- Xiaozhaizigou National Nature Reserve, Beichuan, Mianyang 622750, China;
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China;
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| |
Collapse
|
2
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
3
|
Evans BJ, Mudd AB, Bredeson JV, Furman BLS, Wasonga DV, Lyons JB, Harland RM, Rokhsar DS. New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J Evol Biol 2022; 35:1777-1790. [PMID: 36054077 PMCID: PMC9722552 DOI: 10.1111/jeb.14078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
In many groups, sex chromosomes change frequently but the drivers of their rapid evolution are varied and often poorly characterized. With an aim of further understanding sex chromosome turnover, we investigated the polymorphic sex chromosomes of the Marsabit clawed frog, Xenopus borealis, using genomic data and a new chromosome-scale genome assembly. We confirmed previous findings that 54.1 Mb of chromosome 8L is sex-linked in animals from east Kenya and a laboratory strain, but most (or all) of this region is not sex-linked in natural populations from west Kenya. Previous work suggests possible degeneration of the Z chromosomes in the east population because many sex-linked transcripts of this female heterogametic population have female-biased expression, and we therefore expected this chromosome to not be present in the west population. In contrast, our simulations support a model where most or all of the sex-linked portion of the Z chromosome from the east acquired autosomal segregation in the west, and where much genetic variation specific to the large sex-linked portion of the W chromosome from the east is not present in the west. These recent changes are consistent with the hot-potato model, wherein sex chromosome turnover is favoured by natural selection if it purges a (minimally) degenerate sex-specific sex chromosome, but counterintuitively suggest natural selection failed to purge a Z chromosome that has signs of more advanced and possibly more ancient regulatory degeneration. These findings highlight complex evolutionary dynamics of young, rapidly evolving Xenopus sex chromosomes and set the stage for mechanistic work aimed at pinpointing additional sex-determining genes in this group.
Collapse
Affiliation(s)
- Ben J Evans
- Biology Department, Life Sciences Building Room 328, McMaster University, Hamilton, Ontario, Canada
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Benjamin L S Furman
- Biology Department, Life Sciences Building Room 328, McMaster University, Hamilton, Ontario, Canada
- Canexia Health, Vancouver, British Columbia, Canada
| | | | - Jessica B Lyons
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Dan S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Okinawa Institute of Science and Technology Graduate University, Onna, Japan
- Chan-Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
4
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. Int J Mol Sci 2022; 23:ijms23147636. [PMID: 35886982 PMCID: PMC9316214 DOI: 10.3390/ijms23147636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Oreochromis niloticus has been used as a reference genome for studies of tilapia sex determination (SD) revealing segregating genetic loci on linkage groups (LGs) 1, 3, and 23. The master key regulator genes (MKR) underlying the SD regions on LGs 3 and 23 have been already found. To identify the MKR in fish that segregate for the LG1 XX/XY SD-system, we applied short variant discovery within the sequence reads of the genomic libraries of the Amherst hybrid stock, Coptodon zillii and Sarotherodon galilaeus, which were aligned to a 3-Mbp-region of the O. aureus genome. We obtained 66,372 variants of which six were concordant with the XX/XY model of SD and were conserved across these species, disclosing the male specific figla-like gene. We further validated this observation in O. mossambicus and in the Chitralada hybrid stock. Genome alignment of the 1252-bp transcript showed that the figla-like gene’s size was 2664 bp, and that its three exons were capable of encoding 99 amino acids including a 45-amino-acid basic helix–loop–helix domain that is typical of the ovary development regulator—factor-in-the-germline-alpha (FIGLA). In Amherst gonads, the figla-like gene was exclusively expressed in testes. Thus, the figla-like genomic presence determines male fate by interrupting the female developmental program. This indicates that the figla-like gene is the long-sought SD MKR on LG1.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shay Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Correspondence:
| |
Collapse
|
5
|
Steinberg ER, Bressa MJ, Mudry MD. Sex chromosome systems in Neotropical Primates: What have we learnt so far from cytogenetics and genomics? J Evol Biol 2022; 35:1589-1600. [PMID: 35731796 DOI: 10.1111/jeb.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Neotropical Primates (Platyrrhini) show great diversity in their life histories, ecology, behaviour and genetics. This diversity extends to their chromosome complements, both to autosomes and to sex chromosomes. In this contribution, we will review what is currently known about sex chromosomes in this group, both from cytogenetic and from genomic evidence. The X and Y chromosomes in Neotropical Primates, also known as New World Monkeys, have striking structural differences compared with Old World Monkeys when Catarrhini sex chromosomes are considered. The XY bivalent displays a different meiotic behaviour in prophase I, and their Y chromosome shows extensive genomic differences. Even though the most widespread sex chromosome system is the XX/XY and thus considered the ancestral one for Platyrrhini, modifications of this sexual system are observed within this group. Multiple sex chromosome systems originated from Y-autosome translocations were described in several genera (Aotus, Callimico and Alouatta). In the howler monkeys, genus Alouatta, an independent origin of the sexual systems in South American and Mesoamerican species was postulated. All the above-mentioned evidence suggests that the Y chromosome of Platyrrhini has a different evolutionary history compared with the Catarrhini Y. There is still much to understand regarding their sex chromosome systems.
Collapse
Affiliation(s)
- Eliana Ruth Steinberg
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María José Bressa
- Grupo de Citogenética de Insectos. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marta Dolores Mudry
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Pavlova A, Harrisson KA, Turakulov R, Lee YP, Ingram BA, Gilligan D, Sunnucks P, Gan HM. Labile sex chromosomes in the Australian freshwater fish family Percichthyidae. Mol Ecol Resour 2021; 22:1639-1655. [PMID: 34863023 DOI: 10.1111/1755-0998.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022]
Abstract
Sex-specific ecology has management implications, but rapid sex-chromosome turnover in fishes hinders sex-marker development for monomorphic species. We used annotated genomes and reduced-representation sequencing data for two Australian percichthyids, Macquarie perch Macquaria australasica and golden perch M. ambigua, and whole genome resequencing for 50 Macquarie perch of each sex, to identify sex-linked loci and develop an affordable sexing assay. In silico pool-seq tests of 1,492,004 Macquarie perch SNPs revealed that a 275-kb scaffold was enriched for gametologous loci. Within this scaffold, 22 loci were sex-linked in a predominantly XY system, with females being homozygous for the X-linked allele at all 22, and males having the Y-linked allele at >7. Seven XY-gametologous loci (all males, but no females, are heterozygous or homozygous for the male-specific allele) were within a 146-bp region. A PCR-RFLP sexing assay targeting one Y-linked SNP, tested in 66 known-sex Macquarie perch and two of each sex of three confamilial species, plus amplicon sequencing of 400 bp encompassing the 146-bp region, revealed that the few sex-linked positions differ between species and between Macquarie perch populations. This indicates sex-chromosome lability in Percichthyidae, supported by nonhomologous scaffolds containing sex-linked loci for Macquarie- and golden perches. The present resources facilitate genomic research in Percichthyidae, including formulation of hypotheses about candidate genes of interest such as transcription factor SOX1b that occurs in the 275-kb scaffold ~38 kb downstream of the 146-bp region containing seven XY-gametologous loci. Sex-linked markers will be useful for determining genetic sex in some populations and studying sex chromosome turnover.
Collapse
Affiliation(s)
- Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Katherine A Harrisson
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Vic., Australia.,Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Vic., Australia
| | - Rustam Turakulov
- Division of Ecology and Evolution, RSB, Australian National University, Acton, ACT, Australia
| | - Yin Peng Lee
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia.,Deakin Genomics Centre, Deakin University, Geelong, Vic., Australia
| | | | - Dean Gilligan
- Freshwater Ecosystems Research, New South Wales Department of Primary Industries - Fisheries, Batemans Bay, NSW, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Han Ming Gan
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia.,Deakin Genomics Centre, Deakin University, Geelong, Vic., Australia.,GeneSEQ Sdn Bhd, Rawang, Malaysia
| |
Collapse
|
7
|
Maier MC, McInerney MRA, Graves JAM, Charchar FJ. Noncoding Genes on Sex Chromosomes and Their Function in Sex Determination, Dosage Compensation, Male Traits, and Diseases. Sex Dev 2021; 15:432-440. [PMID: 34794153 DOI: 10.1159/000519622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian Y chromosome has evolved in many species into a specialized chromosome that contributes to sex development among other male phenotypes. This function is well studied in terms of protein-coding genes. Less is known about the noncoding genome on the Y chromosome and its contribution to both sex development and other traits. Once considered junk genetic material, noncoding RNAs are now known to contribute to the regulation of gene expression and to play an important role in refining cellular functions. The prime examples are noncoding genes on the X chromosome, which mitigate the differential dosage of genes on sex chromosomes. Here, we discuss the evolution of noncoding RNAs on the Y chromosome and the emerging evidence of how micro, long, and circular noncoding RNAs transcribed from the Y chromosome contribute to sex differentiation. We briefly touch on emerging evidence that these noncoding RNAs also contribute to some other important clinical phenotypes in humans.
Collapse
Affiliation(s)
- Michelle C Maier
- Health Innovation & Transformation Centre, Federation University, Mt Helen, Victoria, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Molly-Rose A McInerney
- Health Innovation & Transformation Centre, Federation University, Mt Helen, Victoria, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | | | - Fadi J Charchar
- Health Innovation & Transformation Centre, Federation University, Mt Helen, Victoria, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Bertho S, Herpin A, Schartl M, Guiguen Y. Lessons from an unusual vertebrate sex-determining gene. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200092. [PMID: 34247499 DOI: 10.1098/rstb.2020.0092] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
So far, very few sex-determining genes have been identified in vertebrates and most of them, the so-called 'usual suspects', evolved from genes which fulfil essential functions during sexual development and are thus already tightly linked to the process that they now govern. The single exception to this 'usual suspects' rule in vertebrates so far is the conserved salmonid sex-determining gene, sdY (sexually dimorphic on the Y chromosome), that evolved from a gene known to be involved in regulation of the immune response. It is contained in a jumping sex locus that has been transposed or translocated into different ancestral autosomes during the evolution of salmonids. This special feature of sdY, i.e. being inserted in a 'jumping sex locus', could explain how salmonid sex chromosomes remain young and undifferentiated to escape degeneration. Recent knowledge on the mechanism of action of sdY demonstrates that it triggers its sex-determining action by deregulating oestrogen synthesis that is a conserved and crucial pathway for ovarian differentiation in vertebrates. This result suggests that sdY has evolved to cope with a pre-existing sex differentiation regulatory network. Therefore, 'limited options' for the emergence of new master sex-determining genes could be more constrained by their need to tightly interact with a conserved sex differentiation regulatory network rather than by being themselves 'usual suspects', already inside this sex regulatory network. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRAE, LPGP, 35000 Rennes, France.,Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
9
|
Curzon AY, Dor L, Shirak A, Meiri-Ashkenazi I, Rosenfeld H, Ron M, Seroussi E. A novel c.1759T>G variant in follicle-stimulating hormone-receptor gene is concordant with male determination in the flathead grey mullet (Mugil cephalus). G3-GENES GENOMES GENETICS 2021; 11:6046932. [PMID: 33589926 PMCID: PMC8022982 DOI: 10.1093/g3journal/jkaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Various master key regulators (MKRs) that control a binary switch of sex determination (SD) have been found in fish; these provide an excellent model for the study of vertebrate genetic SD. The SD region in flathead grey mullet has been previously mapped to a 1 Mbp region harboring 27 genes, of which one is follicle-stimulating hormone receptor (fshr). Although this gene is involved in gonad differentiation and function, it has not been considered as an MKR of SD. We systematically investigated polymorphism in mullet fshr using DNA shotgun sequences, and compared them between males and females. Capable of encoding nonconservative amino acid substitutions, c.1732G>A and c.1759T>G exhibited association with sex on a population level (N = 83; P ≤ 6.7 × 10-19). Hence, 1732 A and 1759 G represent a male-specific haplotype of the gene, designated as "fshry." Additional flanking SNPs showed a weaker degree of association with sex, delimiting the SD critical region to 143 nucleotides on exon 14. Lack of homozygotes for fshry, and the resulting divergence from Hardy-Weinberg equilibrium (N = 170; P ≤ 3.9 × 10-5), were compatible with a male heterogametic model (XY/XX). Capable of replacing a phenylalanine with valine, c.1759T>G alters a conserved position across the sixth transmembrane domain of vertebrate FSHRs. Amino acid substitutions in this position in vertebrates are frequently associated with constant receptor activation and consequently with FSH/FSHR signaling alteration; thus, indicating a potential role of fshr as an MKR of SD.
Collapse
Affiliation(s)
- Arie Y Curzon
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lior Dor
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Iris Meiri-Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Micha Ron
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Eyal Seroussi
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| |
Collapse
|
10
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
11
|
Kuwana C, Fujita H, Tagami M, Matsuo T, Miura I. Evolution of Sex Chromosome Heteromorphy in Geographic Populations of the Japanese Tago's Brown Frog Complex. Cytogenet Genome Res 2021; 161:23-31. [PMID: 33735859 DOI: 10.1159/000512964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
The sex chromosomes of most anuran amphibians are characterized by homomorphy in both sexes, and evolution to heteromorphy rarely occurs at the species or geographic population level. Here, we report sex chromosome heteromorphy in geographic populations of the Japanese Tago's brown frog complex (2n = 26), comprising Rana sakuraii and R. tagoi. The sex chromosomes of R. sakuraii from the populations in western Japan were homomorphic in both sexes, whereas chromosome 7 from the populations in eastern Japan were heteromorphic in males. Chromosome 7 of R. tagoi, which is distributed close to R. sakuraii in eastern Japan, was highly similar in morphology to the Y chromosome of R. sakuraii. Based on this and on mitochondrial gene sequence analysis, we hypothesize that in the R. sakuraii populations from eastern Japan the XY heteromorphic sex chromosome system was established by the introduction of chromosome 7 from R. tagoi via interspecies hybridization. In contrast, chromosome 13 of R. tagoi from the 2 large islands in western Japan, Shikoku and Kyushu, showed a heteromorphic pattern of constitutive heterochromatin distribution in males, while this pattern was homomorphic in females. Our study reveals that sex chromosome heteromorphy evolved independently at the geographic lineage level in this species complex.
Collapse
Affiliation(s)
- Chiao Kuwana
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama, Japan
| | | | | | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan,
| |
Collapse
|
12
|
Zafar I, Iftikhar R, Ahmad SU, Rather MA. Genome wide identification, phylogeny, and synteny analysis of sox gene family in common carp ( Cyprinus carpio). ACTA ACUST UNITED AC 2021; 30:e00607. [PMID: 33936955 PMCID: PMC8076717 DOI: 10.1016/j.btre.2021.e00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
27 SOX (high-mobility group HMG-box) genes were identified in the C. carp genome. SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative protein series from 307 to 509 amino acids. Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %. Chromosomal location and synteny analysis display all SOX gene are located on different chromosomes.
Common carp (Cyprinus carpio) is a commercial fish species valuable for nutritious components and plays a vital role in human healthy nutrition. The SOX (SRY-related genes systematically characterized by a high-mobility group HMG-box) encoded important gene regulatory proteins, a family of transcription factors found in a broad range of animal taxa and extensively known for its contribution in multiple developmental processes including contribution in sex determination across phyla. In our current study, we initially accomplished a genome-wide analysis to report the SOX gene family in common carp fish based on available genomic sequences of zebrafish retrieved from gene repository databases, we focused on the global identification of the Sox gene family in Common carp among wide range of vertebrates and teleosts based on bioinformatics tools and techniques and explore the evolutionary relationships. In our results, a total of 27 SOX (high-mobility group HMG-box) domain genes were identified in the C. carp genome. The full length sequences of SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative proteins series from 307 to 509 amino acids and all gene having exon number expect SOX9 and SOX13. All the SOX proteins contained at least one conserved DNA-binding HMG-box domain and two (SOX7 and SOX18) were found C terminal. The Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %, average in biological regulation 45.188 %, biosynthetic process (19.992 %), regulation of cellular process 39.68, 45.508 % organic substance metabolic process, multicellular organismal process 23.23 %,developmental process 21.74 %, system development 16.59 %, gene expression 16.05 % and 14.337 % of RNA metabolic process. Chromosomal location and syntanic analysis show all SOX gene are located on different chromosomes and apparently does not fallow the unique pattern. The maximum linkage of chromosome is (2) on Unplaced Scaffold region. Finally, our results provide important genomic suggestion for upcoming studies of biochemical, physiological, and phylogenetic understanding on SOX genes among teleost.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Rida Iftikhar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Fauclty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
- Corresponding author.
| |
Collapse
|
13
|
Carey S, Yu Q, Harkess A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes (Basel) 2021; 12:381. [PMID: 33800038 PMCID: PMC8000587 DOI: 10.3390/genes12030381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.
Collapse
Affiliation(s)
- Sarah Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
14
|
Cai M, Li YY, Zhu M, Li JB, Qin ZF. Evaluation of the effects of low concentrations of bisphenol AF on gonadal development using the Xenopus laevis model: A finding of testicular differentiation inhibition coupled with feminization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113980. [PMID: 31991354 DOI: 10.1016/j.envpol.2020.113980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Developmental exposures to estrogenic chemicals possibly cause structural and functional abnormalities of reproductive organs in vertebrates. Bisphenol AF (BPAF), a bisphenol A (BPA) analogue, has been shown to have higher estrogenic activity than BPA, but little is known about the effects of BPAF on gonadal development, particularly gonadal differentiation. We aimed to determine whether low concentrations of BPAF could disrupt gonadal differentiation and subsequent development using Xenopus laevis, a model species for studying feminizing effects of estrogenic chemicals. X. laevis tadpoles were exposed to BPAF (1, 10, 100 nM) or 17β-estradiol (E2, positive control) from stages 45/46 to 53 and 66 in a semi-static exposure system, with a prolonged treatment with the highest concentration to the eighth week post-metamorphosis (WPM8). Gonadal morphology and histology as well as sexually dimorphic gene expression were examined to evaluate the effects of BPAF. All concentrations of BPAF caused changes in testicular morphology at different developmental stages compared with controls. Specifically, at stage 53, BPAF like E2 resulted in decreases in both the size and the number of gonadal metameres (gonomeres) in testes, looking like ovaries. Some of BPAF-treated testes remained segmented and even became discontinuous and fragmented at subsequent stages. Histological abnormalities were also observed in BPAF-treated testes, such as ovarian cavity at stages 53 and 66 and poorly developed seminiferous tubules on WPM8. At the molecular level, BPAF inhibited expression of male highly expressed genes in testes at stage 53. Correspondingly, BPAF, like E2, inhibited cell proliferation in testes at stage 50. All results show that low concentrations of BPAF inhibited testicular differentiation and subsequent development in X. laevis, along with feminizing effects to some degree. Our finding implies a risk of BPAF to the male reproductive system of vertebrates including humans.
Collapse
Affiliation(s)
- Man Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Sánchez L, Chaouiya C. Logical modelling uncovers developmental constraints for primary sex determination of chicken gonads. J R Soc Interface 2019; 15:rsif.2018.0165. [PMID: 29792308 PMCID: PMC6000168 DOI: 10.1098/rsif.2018.0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
In the chicken, sex determination relies on a ZZ (male)/ZW (female) chromosomal system, but underlying mechanisms are still not fully understood. The Z-dosage and the dominant W-chromosome hypotheses have been proposed to underlie primary sex determination. We present a modelling approach, which assembles the current knowledge and permits exploration of the regulation of this process in chickens. Relying on published experimental data, we assembled a gene network, which led to a logical model that integrates both the Z-dosage and dominant W hypotheses. This model showed that the sexual fate of chicken gonads results from the resolution of the mutual inhibition between DMRT1 and FOXL2, where the initial amount of DMRT1 product determines the development of the gonads. In this respect, at the initiation step, a W-factor would function as a secondary device, by reducing the amount of DMRT1 in ZW gonads when the sexual fate of the gonad is settled, that is when the SOX9 functional level is established. Developmental constraints that are instrumental in this resolution were identified. These constraints establish qualitative restrictions regarding the relative transcription rates of the genes DMRT1, FOXL2 and HEMGN. Our model further clarified the role of OESTROGEN in maintaining FOXL2 function during ovary development.
Collapse
Affiliation(s)
- Lucas Sánchez
- Dpto. Biología Celular y Molecular, Centro de Investigaciones Biológicas (C. S. I. C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Claudine Chaouiya
- Instituto Gulbenkian de Ciência - IGC, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
16
|
Bao L, Tian C, Liu S, Zhang Y, Elaswad A, Yuan Z, Khalil K, Sun F, Yang Y, Zhou T, Li N, Tan S, Zeng Q, Liu Y, Li Y, Li Y, Gao D, Dunham R, Davis K, Waldbieser G, Liu Z. The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish. BMC Biol 2019; 17:6. [PMID: 30683095 PMCID: PMC6346536 DOI: 10.1186/s12915-019-0627-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/09/2019] [Indexed: 11/30/2022] Open
Abstract
Background Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish. Results Using a YY channel catfish as the sequencing template, we generated, assembled, and annotated the Y genome sequence of channel catfish. The genome sequence assembly had a contig N50 size of 2.7 Mb and a scaffold N50 size of 26.7 Mb. Genetic linkage and GWAS analyses placed the sex determination locus within a genetic distance less than 0.5 cM and physical distance of 8.9 Mb. However, comparison of the channel catfish X and Y chromosome sequences showed no sex-specific genes. Instead, comparative RNA-Seq analysis between females and males revealed exclusive sex-specific expression of an isoform of the breast cancer anti-resistance 1 (BCAR1) gene in the male during early sex differentiation. Experimental knockout of BCAR1 gene converted genetic males (XY) to phenotypic females, suggesting BCAR1 as a putative sex determination gene. Conclusions We present the first Y chromosome sequence among teleost fish, and one of the few whole Y chromosome sequences among vertebrate species. Comparative analyses suggest that sex-specific isoform expression through alternative splicing may underlie sex determination processes in the channel catfish, and we identify BCAR1 as a potential sex determination gene. Electronic supplementary material The online version of this article (10.1186/s12915-019-0627-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ahmed Elaswad
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yueru Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kenneth Davis
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Geoffrey Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
17
|
The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc Natl Acad Sci U S A 2018; 115:12781-12786. [PMID: 30463951 DOI: 10.1073/pnas.1803826115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Evolutionary novelties require rewiring of transcriptional networks and/or the evolution of new gene functions. Sex determination (SD), one of the most plastic evolutionary processes, requires such novelties. Studies on the evolution of vertebrate SD revealed that new master SD genes are generally recruited from genes involved in the downstream SD regulatory genetic network. Only a single exception to this rule is currently known in vertebrates: the intriguing case of the salmonid master SD gene (sdY), which arose from duplication of an immune-related gene. This exception immediately posed the question of how a gene outside from the classical sex differentiation cascade could acquire its function as a male SD gene. Here we show that SdY became integrated in the classical vertebrate sex differentiation cascade by interacting with the Forkhead box domain of the female-determining transcription factor, Foxl2. In the presence of Foxl2, SdY is translocated to the nucleus where the SdY:Foxl2 complex prevents activation of the aromatase (cyp19a1a) promoter in cooperation with Nr5a1 (Sf1). Hence, by blocking a positive loop of regulation needed for the synthesis of estrogens in the early differentiating gonad, SdY disrupts a preset female differentiation pathway, consequently allowing testicular differentiation to proceed. These results also suggest that the evolution of unusual vertebrate master sex determination genes recruited from outside the classical pathway like sdY is strongly constrained by their ability to interact with the canonical gonadal differentiation pathway.
Collapse
|
18
|
Trukhina AV, Lukina NA, Smirnov AF. Hormonal Sex Inversion and Some Aspects of Its Genetic Determination in Chicken. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Zheng S, Long J, Liu Z, Tao W, Wang D. Identification and Evolution of TGF-β Signaling Pathway Members in Twenty-Four Animal Species and Expression in Tilapia. Int J Mol Sci 2018; 19:E1154. [PMID: 29641448 PMCID: PMC5979292 DOI: 10.3390/ijms19041154] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling controls diverse cellular processes during embryogenesis as well as in mature tissues of multicellular animals. Here we carried out a comprehensive analysis of TGF-β pathway members in 24 representative animal species. The appearance of the TGF-β pathway was intrinsically linked to the emergence of metazoan. The total number of TGF-β ligands, receptors, and smads changed slightly in all invertebrates and jawless vertebrates analyzed. In contrast, expansion of the pathway members, especially ligands, was observed in jawed vertebrates most likely due to the second round of whole genome duplication (2R) and additional rounds in teleosts. Duplications of TGFB2, TGFBR2, ACVR1, SMAD4 and SMAD6, which were resulted from 2R, were first isolated. Type II receptors may be originated from the ACVR2-like ancestor. Interestingly, AMHR2 was not identified in Chimaeriformes and Cypriniformes even though they had the ligand AMH. Based on transcriptome data, TGF-β ligands exhibited a tissue-specific expression especially in the heart and gonads. However, most receptors and smads were expressed in multiple tissues indicating they were shared by different ligands. Spatial and temporal expression profiles of 8 genes in gonads of different developmental stages provided a fundamental clue for understanding their important roles in sex determination and reproduction. Taken together, our findings provided a global insight into the phylogeny and expression patterns of the TGF-β pathway genes, and hence contribute to the greater understanding of their biological roles in the organism especially in teleosts.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Juan Long
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Abstract
Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.
Collapse
Affiliation(s)
- Jennifer A. Marshall Graves
- School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Australia Institute of Applied Ecology, University of Canberra, ACT 2617, Australia
| |
Collapse
|
21
|
Affiliation(s)
- Kenneth H. Wolfe
- School of Medicine, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
22
|
Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 2017; 18:675-689. [DOI: 10.1038/nrg.2017.60] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Abstract
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics of Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
24
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
25
|
Racca JD, Chen YS, Yang Y, Phillips NB, Weiss MA. Human Sex Determination at the Edge of Ambiguity: INHERITED XY SEX REVERSAL DUE TO ENHANCED UBIQUITINATION AND PROTEASOMAL DEGRADATION OF A MASTER TRANSCRIPTION FACTOR. J Biol Chem 2016; 291:22173-22195. [PMID: 27576690 DOI: 10.1074/jbc.m116.741959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Indexed: 12/15/2022] Open
Abstract
A general problem is posed by analysis of transcriptional thresholds governing cell fate decisions in metazoan development. A model is provided by testis determination in therian mammals. Its key step, Sertoli cell differentiation in the embryonic gonadal ridge, is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in human SRY cause gonadal dysgenesis leading to XY female development (Swyer syndrome). Here, we have characterized an inherited mutation compatible with either male or female somatic phenotypes as observed in an XY father and XY daughter, respectively. The mutation (a crevice-forming substitution at a conserved back surface of the SRY high mobility group box) markedly destabilizes the domain but preserves specific DNA affinity and induced DNA bend angle. On transient transfection of diverse human and rodent cell lines, the variant SRY exhibited accelerated proteasomal degradation (relative to wild type) associated with increased ubiquitination; in vitro susceptibility to ubiquitin-independent ("default") cleavage by the 20S core proteasome was unchanged. The variant's gene regulatory activity (as assessed in a cellular model of the rat embryonic XY gonadal ridge) was reduced by 2-fold relative to wild-type SRY at similar levels of mRNA expression. Chemical proteasome inhibition restored native-like SRY expression and transcriptional activity in association with restored occupancy of a sex-specific enhancer element in principal downstream gene Sox9, demonstrating that the variant SRY exhibits essentially native activity on a per molecule basis. Our findings define a novel mechanism of impaired organogenesis, accelerated ubiquitin-directed proteasomal degradation of a master transcription factor leading to a developmental decision poised at the edge of ambiguity.
Collapse
Affiliation(s)
- Joseph D Racca
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yen-Shan Chen
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nelson B Phillips
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
26
|
Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA. Mol Genet Genomics 2016; 291:1955-66. [DOI: 10.1007/s00438-016-1230-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
|
27
|
Sessions SK, Bizjak Mali L, Green DM, Trifonov V, Ferguson-Smith M. Evidence for Sex Chromosome Turnover in Proteid Salamanders. Cytogenet Genome Res 2016; 148:305-13. [PMID: 27351721 DOI: 10.1159/000446882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
A major goal of genomic and reproductive biology is to understand the evolution of sex determination and sex chromosomes. Species of the 2 genera of the Salamander family Proteidae - Necturus of eastern North America, and Proteus of Southern Europe - have similar-looking karyotypes with the same chromosome number (2n = 38), which differentiates them from all other salamanders. However, Necturus possesses strongly heteromorphic X and Y sex chromosomes that Proteus lacks. Since the heteromorphic sex chromosomes of Necturus were detectable only with C-banding, we hypothesized that we could use C-banding to find sex chromosomes in Proteus. We examined mitotic material from colchicine-treated intestinal epithelium, and meiotic material from testes in specimens of Proteus, representing 3 genetically distinct populations in Slovenia. We compared these results with those from Necturus. We performed FISH to visualize telomeric sequences in meiotic bivalents. Our results provide evidence that Proteus represents an example of sex chromosome turnover in which a Necturus-like Y-chromosome has become permanently translocated to another chromosome converting heteromorphic sex chromosomes to homomorphic sex chromosomes. These results may be key to understanding some unusual aspects of demographics and reproductive biology of Proteus, and are discussed in the context of models of the evolution of sex chromosomes in amphibians.
Collapse
|
28
|
Abstract
Flowers with only one sexual function typically result from the developmental suppression of the other. A recent study that shows how this is achieved has important implications for models of the evolution of separate sexes in plants.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
29
|
Graves JAM. Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals. Bioessays 2016; 38:734-43. [PMID: 27334831 PMCID: PMC5094562 DOI: 10.1002/bies.201600019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract.
Collapse
Affiliation(s)
- Jennifer A M Graves
- School of Life Science, La Trobe University, Melbourne, Australia.,Institute of Applied Ecology, University of Canberra, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
30
|
Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, Schartl M, Guiguen Y. Vertebrate sex-determining genes play musical chairs. C R Biol 2016; 339:258-62. [PMID: 27291506 PMCID: PMC5393452 DOI: 10.1016/j.crvi.2016.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome.
Collapse
Affiliation(s)
- Qiaowei Pan
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France
| | | | - Sylvain Bertho
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France; University of Wuerzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany
| | - Amaury Herpin
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France
| | - Catherine Wilson
- University of Oregon, Institute of Neuroscience, Eugene, OR 97403, USA
| | | | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital, 97080 Würzburg, Germany; Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Yann Guiguen
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France.
| |
Collapse
|
31
|
Graves JAM. How Australian mammals contributed to our understanding of sex determination and sex chromosomes. AUST J ZOOL 2016. [DOI: 10.1071/zo16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Marsupials and monotremes can be thought of as independent experiments in mammalian evolution. The discovery of the human male-determining gene, SRY, how it works, how it evolved and defined our sex chromosomes, well illustrates the value of comparing distantly related animals and the folly of relying on humans and mice for an understanding of the most fundamental aspects of mammalian biology. The 25th anniversary of the discovery of SRY seems a good time to review the contributions of Australian mammals to these discoveries.
The discovery of the mammalian sex determining gene, SRY, was a milestone in the history of human genetics. SRY opened up investigations into the pathway by which the genital ridge (bipotential gonad) becomes a testis. Studies of Australian mammals were important in the story of the discovery of SRY, not only in refuting the qualifications of the first candidate sex-determining gene, but also in confirming the ubiquity of SRY and raising questions as to how it works. Studies in marsupials also led to understanding of how SRY evolved from a gene on an autosome with functions in the brain and germ cells, and to identifying the ancestors of other genes on the human Y. The discovery that platypus have sex chromosomes homologous, not to the human XY, but to the bird ZW, dated the origin of the therian SRY and the XY chromosomes it defined. This led to important new models of how our sex chromosomes function, how they evolved, and what might befall this gene and the Y chromosome it defines.
Collapse
|
32
|
Booth W, Schuett GW. The emerging phylogenetic pattern of parthenogenesis in snakes. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12744] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Warren Booth
- Department of Biological Sciences; The University of Tulsa; Tulsa OK 74104 USA
- The Copperhead Institute; PO Box 6755 Spartanburg SC 29304 USA
- Chiricahua Desert Museum; PO Box 376 Rodeo NM 88056 USA
| | - Gordon W. Schuett
- The Copperhead Institute; PO Box 6755 Spartanburg SC 29304 USA
- Chiricahua Desert Museum; PO Box 376 Rodeo NM 88056 USA
- Department of Biology and Neuroscience Institute; Georgia State University; Atlanta GA 30303 USA
| |
Collapse
|
33
|
Herpin A, Schartl M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 2015; 16:1260-74. [PMID: 26358957 DOI: 10.15252/embr.201540667] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves.
Collapse
Affiliation(s)
- Amaury Herpin
- Department Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany INRA, UR1037 Fish Physiology and Genomics, Sex Differentiation and Oogenesis Group (SDOG), Rennes, France
| | - Manfred Schartl
- Department Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Expression characterization of testicular DMRT1 in both Sertoli cells and spermatogenic cells of polyploid gibel carp. Gene 2014; 548:119-25. [DOI: 10.1016/j.gene.2014.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022]
|
35
|
Abstract
Sex chromosomes in mammals, birds, reptiles and fish represent many independent evolutionary events, but there is spectacular convergence and stunning parallels. A new study details the early stages of ZW differentiation and sex determination in a flatfish and the establishment of dosage compensation and sex reversal by epigenetic mechanisms including DNA methylation.
Collapse
|
36
|
|
37
|
Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Q, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 2014; 46:253-60. [DOI: 10.1038/ng.2890] [Citation(s) in RCA: 551] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
|
38
|
The variety of vertebrate mechanisms of sex determination. BIOMED RESEARCH INTERNATIONAL 2013; 2013:587460. [PMID: 24369014 PMCID: PMC3867867 DOI: 10.1155/2013/587460] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 09/26/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates.
Collapse
|
39
|
Rodríguez-Marí A, Cañestro C, BreMiller RA, Catchen JM, Yan YL, Postlethwait JH. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 2013; 8:e73951. [PMID: 24040125 PMCID: PMC3769385 DOI: 10.1371/journal.pone.0073951] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish.
Collapse
Affiliation(s)
- Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (JHP); (CC)
| | - Ruth A. BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (JHP); (CC)
| |
Collapse
|
40
|
Brelsford A, Stöck M, Betto-Colliard C, Dubey S, Dufresnes C, Jourdan-Pineau H, Rodrigues N, Savary R, Sermier R, Perrin N. HOMOLOGOUS SEX CHROMOSOMES IN THREE DEEPLY DIVERGENT ANURAN SPECIES. Evolution 2013; 67:2434-40. [DOI: 10.1111/evo.12151] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Matthias Stöck
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB); Müggelseedamm; 310, D-12587 Berlin Germany
| | | | - Sylvain Dubey
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Hélène Jourdan-Pineau
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Romain Savary
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| |
Collapse
|
41
|
Capel B, Tanaka M. Forward to the special issue on sex determination. Dev Dyn 2013; 242:303-6. [PMID: 23404452 DOI: 10.1002/dvdy.23937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 02/04/2023] Open
|