1
|
Corkins ME, Achieng M, DeLay BD, Krneta-Stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney Int 2023; 103:77-86. [PMID: 36055600 PMCID: PMC9822858 DOI: 10.1016/j.kint.2022.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.
Collapse
Affiliation(s)
- Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA.
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genes and Development, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Margo P Cain
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandy L Walker
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
2
|
Harris RE. Regeneration enhancers: a field in development. Am J Physiol Cell Physiol 2022; 323:C1548-C1554. [PMID: 36252130 PMCID: PMC9829460 DOI: 10.1152/ajpcell.00403.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to regenerate tissues and organs following damage is not equally distributed across metazoans, and even highly related species can vary considerably in their regenerative capacity. Studies of animals with high regenerative potential have shown that factors expressed during normal development are often reactivated upon damage and required for successful regeneration. As such, regenerative potential may not be dictated by the presence or absence of the necessary genes, but whether such genes are appropriately activated following injury. The identification of damage-responsive enhancers that regulate regenerative gene expression in multiple species and tissues provides possible mechanistic insight into this phenomenon. Enhancers that are reused from developmental programs, and those that are potentially unique to regeneration, have been characterized individually and at a genome-wide scale. A better understanding of the regulatory events that, direct and in some cases limit, regenerative capacity is an important step in developing new methods to manipulate and augment regeneration, particularly in tissues that do not have this ability, including those of humans.
Collapse
Affiliation(s)
- Robin E. Harris
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
3
|
Adrenergic receptor signaling induced by Klf15, a regulator of regeneration enhancer, promotes kidney reconstruction. Proc Natl Acad Sci U S A 2022; 119:e2204338119. [PMID: 35939709 PMCID: PMC9388080 DOI: 10.1073/pnas.2204338119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent discovery of tissue regeneration enhancers in highly regenerative animals, upstream and downstream genetic programs connected by these enhancers still remain unclear. Here, we performed a genome-wide analysis of enhancers and associated genes in regenerating nephric tubules of Xenopus laevis. Putative enhancers were identified using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) analyses. Their target genes were predicted based on their proximity to enhancers on genomic DNA and consistency of their transcriptome profiles to ATAC-seq/ChIP-seq profiles of the enhancers. Motif enrichment analysis identified the central role of Krüppel-like factors (Klf) in the enhancer. Klf15, a member of the Klf family, directly binds enhancers and stimulates expression of regenerative genes, including adrenoreceptor alpha 1A (adra1a), whereas inhibition of Klf15 activity results in failure of nephric tubule regeneration. Moreover, pharmacological inhibition of Adra1a-signaling suppresses nephric tubule regeneration, while its activation promotes nephric tubule regeneration and restores organ size. These results indicate that Klf15-dependent adrenergic receptor signaling through regeneration enhancers plays a central role in the genetic network for kidney regeneration.
Collapse
|
4
|
Suzuki N, Ochi H. Regeneration enhancers: A clue to reactivation of developmental genes. Dev Growth Differ 2020; 62:343-354. [PMID: 32096563 PMCID: PMC7383998 DOI: 10.1111/dgd.12654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science ResearchFaculty of MedicineYamagata UniversityYamagataJapan
| |
Collapse
|
5
|
Hwang WY, Marquez J, Khokha MK. Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis. Front Physiol 2019; 10:953. [PMID: 31417417 PMCID: PMC6682594 DOI: 10.3389/fphys.2019.00953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Frog model organisms have been appreciated for their utility in exploring physiological phenomena for nearly a century. Now, a vibrant community of biologists that utilize this model organism has poised Xenopus to serve as a high throughput vertebrate organism to model patient-driven genetic diseases. This has facilitated the investigation of effects of patient mutations on specific organs and signaling pathways. This approach promises a rapid investigation into novel mechanisms that disrupt normal organ morphology and function. Considering that many disease states are still interrogated in vitro to determine relevant biological processes for further study, the prospect of interrogating genetic disease in Xenopus in vivo is an attractive alternative. This model may more closely capture important aspects of the pathology under investigation such as cellular micro environments and local forces relevant to a specific organ's development and homeostasis. This review aims to highlight recent methodological advances that allow investigation of genetic disease in organ-specific contexts in Xenopus as well as provide examples of how these methods have led to the identification of novel mechanisms and pathways important for understanding human disease.
Collapse
Affiliation(s)
| | | | - Mustafa K. Khokha
- Department of Pediatrics and Genetics, The Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech 2019; 12:12/4/dmm038604. [PMID: 30967415 PMCID: PMC6505484 DOI: 10.1242/dmm.038604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in ∼1/500 live births and are a leading cause of pediatric kidney failure. With an average wait time of 3-5 years for a kidney transplant, the need is high for the development of new strategies aimed at reducing the incidence of CAKUT and preserving renal function. Next-generation sequencing has uncovered a significant number of putative causal genes, but a simple and efficient model system to examine the function of CAKUT genes is needed. Xenopus laevis (frog) embryos are well-suited to model congenital kidney diseases and to explore the mechanisms that cause these developmental defects. Xenopus has many advantages for studying the kidney: the embryos develop externally and are easily manipulated with microinjections, they have a functional kidney in ∼2 days, and 79% of identified human disease genes have a verified ortholog in Xenopus. This facilitates high-throughput screening of candidate CAKUT-causing genes. In this Review, we present the similarities between Xenopus and mammalian kidneys, highlight studies of CAKUT-causing genes in Xenopus and describe how common kidney diseases have been modeled successfully in this model organism. Additionally, we discuss several molecular pathways associated with kidney disease that have been studied in Xenopus and demonstrate why it is a useful model for studying human kidney diseases. Summary: Understanding how congenital kidney diseases arise is imperative to their treatment. Using Xenopus as a model will aid in elucidating kidney development and congenital kidney diseases.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Rachel K Miller
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry and Cell Biology Houston, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Jewhurst K, McLaughlin KA. Recovery of the Xenopus laevis heart from ROS-induced stress utilizes conserved pathways of cardiac regeneration. Dev Growth Differ 2019; 61:212-227. [PMID: 30924142 DOI: 10.1111/dgd.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/22/2023]
Abstract
Urodele amphibians and some fish are capable of regenerating up to a quarter of their heart tissue after cardiac injury. While many anuran amphibians like Xenopus laevis are not capable of such feats, they are able to repair lesser levels of cardiac damage, such as that caused by oxidative stress, to a far greater degree than mammals. Using an optogenetic stress induction model that utilizes the protein KillerRed, we have investigated the extent to which mechanisms of cardiac regeneration are conserved during the restoration of normal heart morphology post oxidative stress in X. laevis tadpoles. We focused particularly on the processes of cardiomyocyte proliferation and dedifferentiation, as well as the pathways that facilitate the regulation of these processes. The cardiac response to KillerRed-induced injury in X. laevis tadpole hearts consists of a phase dominated by indicators of cardiac stress, followed by a repair-like phase with characteristics similar to mechanisms of cardiac regeneration in urodeles and fish. In the latter phase, we found markers associated with partial dedifferentiation and cardiomyocyte proliferation in the injured tadpole heart, which, unlike in regenerating hearts, are not dependent on Notch or retinoic acid signaling. Ultimately, the X. laevis cardiac response to KillerRed-induced oxidative stress shares characteristics with both mammalian and urodele/fish repair mechanisms, but is nonetheless a unique form of recovery, occupying an intermediate place on the spectrum of cardiac regenerative ability. An understanding of how Xenopus repairs cardiac damage can help bridge the gap between mammals and urodeles and contribute to new methods of treating heart disease.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Kelly A McLaughlin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
8
|
Suzuki N, Hirano K, Ogino H, Ochi H. Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. eLife 2019; 8:43186. [PMID: 30616715 PMCID: PMC6324879 DOI: 10.7554/elife.43186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Amphibians and fish have the ability to regenerate numerous tissues, whereas mammals have a limited regenerative capacity. Despite numerous developmental genes becoming reactivated during regeneration, an extensive analysis is yet to be performed on whether highly regenerative animals utilize unique cis-regulatory elements for the reactivation of genes during regeneration and how such cis-regulatory elements become activated. Here, we screened regeneration signal-response enhancers at the lhx1 locus using Xenopus and found that the noncoding elements conserved from fish to human function as enhancers in the regenerating nephric tubules. A DNA-binding motif of Arid3a, a component of H3K9me3 demethylases, was commonly found in RSREs. Arid3a binds to RSREs and reduces the H3K9me3 levels. It promotes cell cycle progression and causes the outgrowth of nephric tubules, whereas the conditional knockdown of arid3a using photo-morpholino inhibits regeneration. These results suggest that Arid3a contributes to the regeneration of nephric tubules by decreasing H3K9me3 on RSREs.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Kodai Hirano
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Higashi-hiroshima, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
9
|
Pinet K, Deolankar M, Leung B, McLaughlin KA. Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling. Development 2019; 146:dev.175893. [DOI: 10.1242/dev.175893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
While it is well-established that some organisms can regenerate lost structures, the ability to remodel existing malformed structures has been less well studied. Thus, in this study we examined the ability of pre-metamorphic Xenopus laevis tadpoles to self-correct malformed craniofacial tissues and found that tadpoles can adaptively improve and normalize abnormal craniofacial morphology caused by numerous developmental perturbations. We then investigated the tissue-level and molecular mechanisms that mediate the self-correction of craniofacial defects in pre-metamorphic X. laevis tadpoles. Our studies revealed that this adaptive response involves morphological changes and the remodeling of cartilage tissue, prior to metamorphosis. RT-qPCR and RNA-Seq analysis of gene expression suggests a thyroid hormone-independent endocrine signaling pathway as the potential mechanism responsible for triggering the adaptive and corrective remodeling response in these larvae that involves mmp1 and mmp13 upregulation. Thus, investigating how malformed craniofacial tissues are naturally corrected in X. laevis tadpoles has led us to valuable insights regarding the maintenance and manipulation of craniofacial morphology in a vertebrate system. These insights may help in the development of novel therapies for developmental craniofacial anomalies in humans.
Collapse
Affiliation(s)
- Kaylinnette Pinet
- Allen Discovery Center at Tufts University, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155-4243, USA
| | - Manas Deolankar
- Allen Discovery Center at Tufts University, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155-4243, USA
| | - Brian Leung
- Allen Discovery Center at Tufts University, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155-4243, USA
| | - Kelly A. McLaughlin
- Allen Discovery Center at Tufts University, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155-4243, USA
| |
Collapse
|
10
|
Busse SM, McMillen PT, Levin M. Cross-limb communication during Xenopus hind-limb regenerative response: non-local bioelectric injury signals. Development 2018; 145:dev.164210. [DOI: 10.1242/dev.164210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
Regeneration of damaged body-parts requires coordination of size, shape, location, and orientation of tissue with the rest of the body. It is not currently known how far injury sites communicate with the remaining soma during repair, or what information may emanate from the injury site to other regions. We examined the bioelectric properties (resting potential gradients in the epidermis) of Xenopus froglets undergoing hind-limb amputation and observed that the contralateral (un-damaged) limb exhibits apparent depolarization signals immediately after the opposite hind-limb is amputated. The pattern of depolarization matches that of the amputated limb and is correlated to the position and type of injury, revealing that information about damage is available to remote body tissues and is detectable non-invasively in vivo by monitoring of the bioelectric state. These data extend knowledge about the electrophysiology of regenerative response, identify a novel communication process via long-range spread of injury signaling, a phenomenon which we call bioelectric injury mirroring (BIM), and suggests revisions to regenerative medicine and diagnostic strategies focused entirely on the wound site and to the use of contralateral limbs as controls.
Collapse
Affiliation(s)
- Sera M. Busse
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Patrick T. McMillen
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
11
|
Notch-mediated Sox9 + cell activation contributes to kidney repair after partial nephrectomy. Life Sci 2017; 193:104-109. [PMID: 29198839 DOI: 10.1016/j.lfs.2017.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
AIMS Partial nephrectomy is a surgical technique as an alternative for traditional radical nephrectomy. The advantage of partial nephrectomy technique is nephron-sparing, however, whether the remaining kidney tissue could regenerate the lost nephron is still unknown. The current work is to investigate the kidney tissue repair process and the related cellular and molecular mechanism. MAIN METHODS We used a novel unilateral partial nephrectomy mouse model to study kidney repair, and focused on a population of Sox9+ progenitor cells to study their pivotal role in the regenerative process. Kidney function after nephrectomy was measured using creatinine and urea nitrogen assay kit. Wound healing was assessed by Masson Trichrome Staining. Tissue regeneration was tested by Sox9+ cells immunofluorescence staining. The differentiation potential of Sox9+ cells were assessed by immunoanalysis with various tubular cell markers. Notch activation was determined by qPCR and Western blotting. KEY FINDINGS After partial nephrectomy, we found that massive Sox9+ cells emerged one day after the surgery and lasted for up to 20days. The Sox9+ cells had proliferative capacity and could give rise to epithelial cells of proximal tubule, Henle's loop, distal tubule, collecting duct, and the parietal layer of glomerulus. We also found that the activation of Sox9+ cells was mediated by Notch signaling pathway. SIGNIFICANCE The current study reveals that Notch-mediated Sox9+ cell activation can contribute to kidney tubule regeneration after unilateral partial nephrectomy in mice.
Collapse
|
12
|
Toolbox in a tadpole: Xenopus for kidney research. Cell Tissue Res 2017; 369:143-157. [PMID: 28401306 DOI: 10.1007/s00441-017-2611-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Xenopus is a versatile model organism increasingly used to study organogenesis and genetic diseases. The rapid embryonic development, targeted injections, loss- and gain-of-function experiments and an increasing supply of tools for functional in vivo analysis are unique advantages of the Xenopus system. Here, we review the vast array of methods available that have facilitated its transition into a translational model. We will focus primarily on how these methods have been employed in the study of kidney development, renal function and kidney disease. Future advances in the fields of genome editing, imaging and quantitative 'omics approaches are likely to enable exciting and novel applications for Xenopus to deepen our understanding of core principles of renal development and molecular mechanisms of human kidney disease. Thus, using Xenopus in clinically relevant research diversifies the narrowing pool of "standard" model organisms and provides unique opportunities for translational research.
Collapse
|
13
|
Krneta-Stankic V, DeLay BD, Miller RK. Xenopus: leaping forward in kidney organogenesis. Pediatr Nephrol 2017; 32:547-555. [PMID: 27099217 PMCID: PMC5074909 DOI: 10.1007/s00467-016-3372-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
While kidney donations stagnate, the number of people in need of kidney transplants continues to grow. Although transplanting culture-grown organs is years away, pursuing the engineering of the kidney de novo is a valid means of closing the gap between the supply and demand of kidneys for transplantation. The structural organization of a mouse kidney is similar to that of humans. Therefore, mice have traditionally served as the primary model system for the study of kidney development. The mouse is an ideal model organism for understanding the complexity of the human kidney. Nonetheless, the elaborate structure of the mammalian kidney makes the discovery of new therapies based on de novo engineered kidneys more challenging. In contrast to mammals, amphibians have a kidney that is anatomically less complex and develops faster. Given that analogous genetic networks regulate the development of mammalian and amphibian nephric organs, using embryonic kidneys of Xenopus laevis (African clawed frog) to analyze inductive cell signaling events and morphogenesis has many advantages. Pioneering work that led to the ability to generate kidney organoids from embryonic cells was carried out in Xenopus. In this review, we discuss how Xenopus can be utilized to compliment the work performed in mammalian systems to understand kidney development.
Collapse
Affiliation(s)
- Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 6431 Fannin Street, MSE R413, Houston, TX, 77030, USA
- Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 6431 Fannin Street, MSE R413, Houston, TX, 77030, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 6431 Fannin Street, MSE R413, Houston, TX, 77030, USA.
- Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
- Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Abstract
The Xenopus genus includes several members of aquatic frogs native to Africa but is perhaps best known for the species Xenopus laevis and Xenopus tropicalis. These species were popularized as model organisms from as early as the 1800s and have been instrumental in expanding several biological fields including cell biology, environmental toxicology, regenerative biology, and developmental biology. In fact, much of what we know about the formation and maturation of the vertebrate renal system has been acquired by examining the intricate genetic and morphological patterns that epitomize nephrogenesis in Xenopus. From these numerous reports, we have learned that the process of kidney development is as unique among organs as it is conserved among vertebrates. While development of most organs involves increases in size at a single location, development of the kidney occurs through a series of three increasingly complex nephric structures that are temporally distinct from one another and which occupy discrete spatial locales within the body. These three renal systems all serve to provide homeostatic, osmoregulatory, and excretory functions in animals. Importantly, the kidneys in amphibians, such as Xenopus, are less complex and more easily accessed than those in mammals, and thus tadpoles and frogs provide useful models for understanding our own kidney development. Several descriptive and mechanistic studies conducted with the Xenopus model system have allowed us to elucidate the cellular and molecular mediators of renal patterning and have also laid the foundation for our current understanding of kidney repair mechanisms in vertebrates. While some species-specific responses to renal injury have been observed, we still recognize the advantage of the Xenopus system due to its distinctive similarity to mammalian wound healing, reparative, and regenerative responses. In addition, the first evidence of renal regeneration in an amphibian system was recently demonstrated in Xenopus laevis. As genetic and molecular tools continue to advance, our appreciation for and utilization of this amphibian model organism can only intensify and will certainly provide ample opportunities to further our understanding of renal development and repair.
Collapse
|
15
|
Lienkamp SS. Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 2016; 51:117-24. [PMID: 26851624 DOI: 10.1016/j.semcdb.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.
Collapse
Affiliation(s)
- Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
Jewhurst K, Levin M, McLaughlin KA. Optogenetic Control of Apoptosis in Targeted Tissues of Xenopus laevis Embryos. J Cell Death 2014; 7:25-31. [PMID: 25374461 PMCID: PMC4213186 DOI: 10.4137/jcd.s18368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 11/05/2022] Open
Abstract
KillerRed (KR) is a recently discovered fluorescent protein that, when activated with green light, releases reactive oxygen species (ROS) into the cytoplasm, triggering apoptosis in a KR-expressing cell. This property allows for the use of KR as a means of killing cells in an organism with great temporal and spatial specificity, while minimizing the nonspecific effects that can result from mechanical or chemical exposure damage techniques. Such optogenetic control of cell death, and the resulting ability to induce the targeted death of specific tissues, is invaluable for regeneration/repair studies-particularly in Xenopus laevis, where apoptosis plays a key role in regeneration and repair. We here describe a method by which membrane-bound KR, introduced to Xenopus embryos by mRNA microinjection, can be activated with green light to induce apoptosis in specific organs and tissues, with a focus on the developing eye and pronephric kidney.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | - Kelly A McLaughlin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
17
|
Morales EE, Wingert RA. Renal stem cell reprogramming: Prospects in regenerative medicine. World J Stem Cells 2014; 6:458-466. [PMID: 25258667 PMCID: PMC4172674 DOI: 10.4252/wjsc.v6.i4.458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of gene activity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease.
Collapse
|