1
|
Yamaguchi N, Chang EW, Lin Z, Shekhar A, Bu L, Khodadadi-Jamayran A, Tsirigos A, Cen Y, Phoon CKL, Moskowitz IP, Park DS. An Anterior Second Heart Field Enhancer Regulates the Gene Regulatory Network of the Cardiac Outflow Tract. Circulation 2023; 148:1705-1722. [PMID: 37772400 PMCID: PMC10905423 DOI: 10.1161/circulationaha.123.065700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS We generated mice harboring a 226-nucleotide deletion of a highly conserved cardiac enhancer containing 2 GATA-binding sites located ≈9.4 kb upstream of the transcription start site of Nkx2-5 (Nkx2-5∆enh) using CRISPR-Cas9 gene editing and assessed phenotypes. Cardiac defects in Nkx2-5∆enh/∆enh mice were structurally characterized using histology and scanning electron microscopy, and physiologically assessed using electrocardiography, echocardiography, and optical mapping. Transcriptome analyses were performed using RNA sequencing and single-cell RNA sequencing data sets. Endogenous GATA6 interaction with and activity on the NKX2-5 enhancer was studied using chromatin immunoprecipitation sequencing and transposase-accessible chromatin sequencing in human induced pluripotent stem cell-derived cardiomyocytes. RESULTS Nkx2-5∆enh/∆enh mice recapitulated cyanotic conotruncal defects seen in patients with NKX2-5, GATA6, and TBX1 mutations. Nkx2-5∆enh/∆enh mice also exhibited defects in right Purkinje fiber network formation, resulting in right bundle-branch block. Enhancer deletion reduced embryonic Nkx2-5 expression selectively in the right ventricle and OFT of mutant hearts, indicating that enhancer activity is localized to the anterior second heart field. Transcriptional profiling of the mutant OFT revealed downregulation of important genes involved in OFT rotation and septation, such as Tbx1, Pitx2, and Sema3c. Endogenous GATA6 interacted with the highly conserved enhancer in human induced pluripotent stem cell-derived cardiomyocytes and in wild-type mouse hearts. We found critical dose dependency of cardiac enhancer accessibility on GATA6 gene dosage in human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.
Collapse
Affiliation(s)
- Naoko Yamaguchi
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Ernest W. Chang
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Ziyan Lin
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 East 30th Street, TRB, New York, NY,10016, USA
| | - Akshay Shekhar
- Regeneron Pharmaceuticals, Inc. Biotechnology, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lei Bu
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Alireza Khodadadi-Jamayran
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 East 30th Street, TRB, New York, NY,10016, USA
| | - Aristotelis Tsirigos
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 East 30th Street, TRB, New York, NY,10016, USA
| | - Yiyun Cen
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Colin K. L. Phoon
- Division of Pediatric Cardiology, Hassenfeld Children’s Hospital at NYU Langone, New York University Grossman School of Medicine, Fink Children’s Center, 160 East 32nd Street, 2nd floor/L-3, New York, NY, 10016, USA
| | - Ivan P. Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, 900 East 57th Street, KCBD Room 5102, Chicago, IL, 60637, USA
| | - David S. Park
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| |
Collapse
|
2
|
Restivo A, di Gioia C, Marino B, Putotto C. Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anat Rec (Hoboken) 2023; 306:502-514. [PMID: 36426596 DOI: 10.1002/ar.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
This review examines and discusses the morphology and embryology of two main groups of conotruncal cardiac malformations: (a) transposition of the great arteries (complete transposition and incomplete/partial transposition namely double outlet right ventricle), and (b) aortic dextroposition defects (tetralogy of Fallot and Eisenmenger malformation). In both groups, persistent truncus arteriosus was included because maldevelopment of the neural crest cell supply to the outflow tract, contributing to the production of the persistent truncus arteriosus, is shared by both groups of malformations. The potentially important role of the proximal conal cushions in the rotatory sequence of the conotruncus is emphasized. Most importantly, this study emphasizes the differentiation between the double-outlet right ventricle, which is a partial or incomplete transposition of the great arteries, and the Eisenmenger malformation, which is an aortic dextroposition. Special emphasis is also given to the leftward shift of the conoventricular junction, which covers an important morphogenetic role in both aortic dextropositions and transposition defects as well as in normal development, and whose molecular genetic regulation seems to remain unclear at present. Emphasis is placed on the distinct and overlapping roles of Tbx1 and Pitx2 transcription factors in modulating the development of the cardiac outflow tract.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy.,Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy
| | - Cira di Gioia
- Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
4
|
Hill MC, Kadow ZA, Li L, Tran TT, Wythe JD, Martin JF. A cellular atlas of Pitx2-dependent cardiac development. Development 2019; 146:dev180398. [PMID: 31201182 PMCID: PMC6602352 DOI: 10.1242/dev.180398] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
The Pitx2 gene encodes a homeobox transcription factor that is required for mammalian development. Disruption of PITX2 expression in humans causes congenital heart diseases and is associated with atrial fibrillation; however, the cellular and molecular processes dictated by Pitx2 during cardiac ontogeny remain unclear. To characterize the role of Pitx2 during murine heart development we sequenced over 75,000 single cardiac cell transcriptomes between two key developmental timepoints in control and Pitx2 null embryos. We found that cardiac cell composition was dramatically altered in mutants at both E10.5 and E13.5. Interestingly, the differentiation dynamics of both anterior and posterior second heart field-derived progenitor cells were disrupted in Pitx2 mutants. We also uncovered evidence for defects in left-right asymmetry within atrial cardiomyocyte populations. Furthermore, we were able to detail defects in cardiac outflow tract and valve development associated with Pitx2 Our findings offer insight into Pitx2 function and provide a compilation of gene expression signatures for further detailing the complexities of heart development that will serve as the foundation for future studies of cardiac morphogenesis, congenital heart disease and arrhythmogenesis.
Collapse
Affiliation(s)
- Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary A Kadow
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lele Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tien T Tran
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua D Wythe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Lister R, Chamberlain A, Einstein F, Wu B, Zheng D, Zhou B. Intrauterine Programming of Diabetes Induced Cardiac Embryopathy. DIABETES & OBESITY INTERNATIONAL JOURNAL 2019; 4:202. [PMID: 32537569 PMCID: PMC7293196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maternal hyperglycemia is a well-recognized risk factor for fetal congenital heart disease. However, the underlying cellular and molecular mechanisms are not well characterized. We hypothesize that maternal hyperglycemia leading to congenital heart are linked to abnormal DNA methylation and mRNA expression at cardiac specific loci. METHODS Hyperglycemia was induced in normal 8-week old CD-1 female mice with a one-time intraperitoneal injection of 150 mg/kg of streptozotocin (STZ) 2 weeks prior to mating. Histological analysis of fetal cardiac morphology was evaluated for malformations on embryonic day (E) 16.5 of control pups and pups exposed to maternal hyperglycemia. We used a massively-parallel sequencing-based methylation sensitive restriction based assay to examine genome-wide cytosine methylation levels at >1.65 million loci in neonatal hearts on post-natal (P) day 0. Functional validation was performed with real time quantitative polymerase chain reaction (RT-qPCR). RESULTS Cardiac structural defects occurred in 28% of the pups (n=12/45) of hyperglycemic dams versus 7% (n=4/61) of controls. Notable phenotypes were hypoplastic left or right ventricle, double outlet right ventricle, ventricular septal defect, and left ventricular outflow tract obstruction. A 10-fold increase in DNA methylation of gene promoter regions was seen in many cardiac important genes in the experimental versus control P0 neonates and have corresponding decreases in gene expression in 21/32 genes functionally validated. CONCLUSION Maternal hyperglycemia alters DNA methylation and mRNA expression of some cardiac genes during heart development. Quantitative, genome-wide assessment of cytosine methylation can be used as a discovery platform to gain insight into the mechanisms of hyperglycemia-induced cardiac anomalies.
Collapse
Affiliation(s)
| | | | | | - Bingruo Wu
- MD Albert Einstein College of Medicine, USA
| | - DeYou Zheng
- Phd Albert Einstein College of Medicine, USA
| | - Bin Zhou
- MD Vanderbilt University Medical Center, USA
| |
Collapse
|
6
|
Scherer WJ. Corneal endothelial cell density and cardiovascular mortality: A Global Survey and Correlative Meta-Analysis. Clin Anat 2018; 31:927-936. [PMID: 30168608 DOI: 10.1002/ca.23230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Based on embryological commonalities between eye and heart development, a global, country-specific meta-analysis of normal, adult corneal endothelial cell density (ECD) was performed and correlated against mortality rates secondary to diseases affecting cardiac neural crest cell (CNCC)-derived cardiovascular structures. A country-specific survey of ECD was performed by searching PubMed for studies reporting ECD datasets from normal adults. All eligible datasets were assigned a country of origin. Country-specific weighted mean ECD were calculated based on dataset n. Country-specific disease mortality rates were obtained from the World Health Organization. The correlations between weighted mean ECD and mortality rates secondary to diseases affecting CNCC-derived cardiovascular structures were calculated. As controls, correlations between ECD and noncardiovascular disease mortality were examined. Pearson correlation coefficients (r) corresponding to P-value < 0.05 were considered significant. Three hundred ninety-two datasets (39,762 eyes) from 267 source-studies were assigned to 42 countries. Significant correlations were found between ECD and mortality due to coronary heart disease (r = -0.39, P = 0.011), hypertension (r = -0.33, P = 0.033), and all-cause cardiac disease (r = -0.36, P = 0.019). No significant correlations were found between ECD and mortality secondary to the control conditions: inflammatory heart disease (mesoderm-derived tissues) (r = -0.12, P = 0.45), diabetes (r = -0.13, P = 0.41), lung disease (r = -0.21, P = 0.18), liver disease (r = -0.13, P = 0.41), renal disease (r = -0.10, P = 0.53), lung cancer (r = 0.02, P = 0.90), pancreatic cancer (r = 0.24, P = 0.13), malnutrition (r = -0.07, P = 0.66), or all-cause mortality (r = 0.04, P = 0.81). Negative correlations exist between ECD and mortality due to coronary artery disease and hypertension. On a population-based level, adult ECD is correlated to mortality from certain cardiovascular diseases. Clin. Anat. 31:927-936, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Warren J Scherer
- Envision Eye Specialists, 1250 Belcher Rd. South, Largo, Florida 33771
| |
Collapse
|
7
|
Collins MM, Maischein HM, Dufourcq P, Charpentier M, Blader P, Stainier DY. Pitx2c orchestrates embryonic axis extension via mesendodermal cell migration. eLife 2018; 7:34880. [PMID: 29952749 PMCID: PMC6023614 DOI: 10.7554/elife.34880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Pitx2c, a homeodomain transcription factor, is classically known for its left-right patterning role. However, an early wave of pitx2 expression occurs at the onset of gastrulation in several species, indicating a possible earlier role that remains relatively unexplored. Here we show that in zebrafish, maternal-zygotic (MZ) pitx2c mutants exhibit a shortened body axis indicative of convergence and extension (CE) defects. Live imaging reveals that MZpitx2c mutants display less persistent mesendodermal migration during late stages of gastrulation. Transplant data indicate that Pitx2c functions cell non-autonomously to regulate this cell behavior by modulating cell shape and protrusive activity. Using transcriptomic analyses and candidate gene approaches, we identify transcriptional changes in components of the chemokine-ECM-integrin dependent mesendodermal migration network. Together, our results define pathways downstream of Pitx2c that are required during early embryogenesis and reveal novel functions for Pitx2c as a regulator of morphogenesis.
Collapse
Affiliation(s)
- Michelle M Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pascale Dufourcq
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Toulouse III - Paul Sabatier, CNRS, Toulouse, France
| | | | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Toulouse III - Paul Sabatier, CNRS, Toulouse, France
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
8
|
Singh AJ, Chang CN, Ma HY, Ramsey SA, Filtz TM, Kioussi C. FACS-Seq analysis of Pax3-derived cells identifies non-myogenic lineages in the embryonic forelimb. Sci Rep 2018; 8:7670. [PMID: 29769607 PMCID: PMC5956100 DOI: 10.1038/s41598-018-25998-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle in the forelimb develops during embryonic and fetal development and perinatally. While much is known regarding the molecules involved in forelimb myogenesis, little is known about the specific mechanisms and interactions. Migrating skeletal muscle precursor cells express Pax3 as they migrate into the forelimb from the dermomyotome. To compare gene expression profiles of the same cell population over time, we isolated lineage-traced Pax3+ cells (Pax3EGFP) from forelimbs at different embryonic days. We performed whole transcriptome profiling via RNA-Seq of Pax3+ cells to construct gene networks involved in different stages of embryonic and fetal development. With this, we identified genes involved in the skeletal, muscular, vascular, nervous and immune systems. Expression of genes related to the immune, skeletal and vascular systems showed prominent increases over time, suggesting a non-skeletal myogenic context of Pax3-derived cells. Using co-expression analysis, we observed an immune-related gene subnetwork active during fetal myogenesis, further implying that Pax3-derived cells are not a strictly myogenic lineage, and are involved in patterning and three-dimensional formation of the forelimb through multiple systems.
Collapse
Affiliation(s)
- Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA.,Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Hsiao-Yen Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, 97331, USA.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA.
| |
Collapse
|
9
|
Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B. Some Isolated Cardiac Malformations Can Be Related to Laterality Defects. J Cardiovasc Dev Dis 2018; 5:jcdd5020024. [PMID: 29724030 PMCID: PMC6023464 DOI: 10.3390/jcdd5020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Human beings are characterized by a left–right asymmetric arrangement of their internal organs, and the heart is the first organ to break symmetry in the developing embryo. Aberrations in normal left–right axis determination during embryogenesis lead to a wide spectrum of abnormal internal laterality phenotypes, including situs inversus and heterotaxy. In more than 90% of instances, the latter condition is accompanied by complex and severe cardiovascular malformations. Atrioventricular canal defect and transposition of the great arteries—which are particularly frequent in the setting of heterotaxy—are commonly found in situs solitus with or without genetic syndromes. Here, we review current data on morphogenesis of the heart in human beings and animal models, familial recurrence, and upstream genetic pathways of left–right determination in order to highlight how some isolated congenital heart diseases, very common in heterotaxy, even in the setting of situs solitus, may actually be considered in the pathogenetic field of laterality defects.
Collapse
Affiliation(s)
- Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Flaminia Pugnaloni
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marta Unolt
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
10
|
Furtado MB, Merriner DJ, Berger S, Rhodes D, Jamsai D, O'Bryan MK. Mutations in the Katnb1 gene cause left-right asymmetry and heart defects. Dev Dyn 2017; 246:1027-1035. [PMID: 28791777 DOI: 10.1002/dvdy.24564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. RESULTS Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. CONCLUSIONS Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, Maine.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - D Jo Merriner
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,The School of Biological Sciences, 25 Rainforest Walk, Monash University, Melbourne, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Danielle Rhodes
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Duangporn Jamsai
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Moira K O'Bryan
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,The School of Biological Sciences, 25 Rainforest Walk, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
Gentzel M, Schambony A. Dishevelled Paralogs in Vertebrate Development: Redundant or Distinct? Front Cell Dev Biol 2017; 5:59. [PMID: 28603713 PMCID: PMC5445114 DOI: 10.3389/fcell.2017.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 01/21/2023] Open
Abstract
Dishevelled (DVL) proteins are highly conserved in the animal kingdom and are important key players in β-Catenin-dependent and -independent Wnt signaling pathways. Vertebrate genomes typically comprise three DVL genes, DVL1, DVL2, and DVL3. Expression patterns and developmental functions of the three vertebrate DVL proteins however, are only partially redundant in any given species. Moreover, expression and function of DVL isoforms have diverged between different vertebrate species. All DVL proteins share basic functionality in Wnt signal transduction. Additional, paralog-specific interactions and functions combined with context-dependent availability of DVL isoforms may play a central role in defining Wnt signaling specificity and add selectivity toward distinct downstream pathways. In this review, we recapitulate briefly cellular functions of DVL paralogs, their role in vertebrate embryonic development and congenital disease.
Collapse
Affiliation(s)
- Marc Gentzel
- Molecular Analysis-Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), TU DresdenDresden, Germany
| | - Alexandra Schambony
- Developmental Biology, Biology Department, Friedrich-Alexander University Erlangen-NurembergErlangen, Germany
| |
Collapse
|
12
|
Current Perspectives in Cardiac Laterality. J Cardiovasc Dev Dis 2016; 3:jcdd3040034. [PMID: 29367577 PMCID: PMC5715725 DOI: 10.3390/jcdd3040034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The heart is the first organ to break symmetry in the developing embryo and onset of dextral looping is the first indication of this event. Looping is a complex process that progresses concomitantly to cardiac chamber differentiation and ultimately leads to the alignment of the cardiac regions in their final topology. Generation of cardiac asymmetry is crucial to ensuring proper form and consequent functionality of the heart, and therefore it is a highly regulated process. It has long been known that molecular left/right signals originate far before morphological asymmetry and therefore can direct it. The use of several animal models has led to the characterization of a complex regulatory network, which invariably converges on the Tgf-β signaling molecule Nodal and its downstream target, the homeobox transcription factor Pitx2. Here, we review current data on the cellular and molecular bases of cardiac looping and laterality, and discuss the contribution of Nodal and Pitx2 to these processes. A special emphasis will be given to the morphogenetic role of Pitx2 and to its modulation of transcriptional and functional properties, which have also linked laterality to atrial fibrillation.
Collapse
|
13
|
Nakajima Y. Mechanism responsible for D-transposition of the great arteries: Is this part of the spectrum of right isomerism? Congenit Anom (Kyoto) 2016; 56:196-202. [PMID: 27329052 DOI: 10.1111/cga.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
Abstract
D-transposition of the great arteries (TGA) is one of the most common conotruncal heart defects at birth and is characterized by a discordant ventriculoarterial connection with a concordant atrioventricular connection. The morphological etiology of TGA is an inverted or arrested rotation of the heart outflow tract (OFT, conotruncus), by which the aorta is transposed in the right ventral direction to the pulmonary trunk. The rotational defect of the OFT is thought to be attributed to hypoplasia of the subpulmonic conus, which originates from the left anterior heart field (AHF) residing in the mesodermal core of the first and second pharyngeal arches. AHF, especially on the left, at the early looped heart stage (corresponding to Carnegie stage 10-11 in the human embryo) is one of the regions responsible for the impediment that causes TGA morphology. In human or experimentally produced right isomerism, malposition of the great arteries including D-TGA is frequently associated. Mutations in genes involving left-right (L-R) asymmetry, such as NODAL, ACTRIIB and downstream target FOXH1, have been found in patients with right isomerism as well as in isolated TGA. The downstream pathways of Nodal-Foxh1 play a critical role not only in L-R determination in the lateral plate mesoderm but also in myocardial specification and differentiation in the AHF, suggesting that TGA is a phenotype in heterotaxia as well as the primary developmental defect of the AHF.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
14
|
Chamber identity programs drive early functional partitioning of the heart. Nat Commun 2015; 6:8146. [PMID: 26306682 PMCID: PMC4560818 DOI: 10.1038/ncomms9146] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction. The heart forms from combining the first with the second heart field, which in mammals creates left and right ventricle. Here transgenic zebrafish and physiology studies reveal that transcription factors controlling septation in mammals already in teleosts guide muscle coupling by controlling the relative contribution of the two fields to the heart.
Collapse
|
15
|
Plein A, Calmont A, Fantin A, Denti L, Anderson NA, Scambler PJ, Ruhrberg C. Neural crest-derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. J Clin Invest 2015; 125:2661-76. [PMID: 26053665 DOI: 10.1172/jci79668] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
In mammals, the outflow tract (OFT) of the developing heart septates into the base of the pulmonary artery and aorta to guide deoxygenated right ventricular blood into the lungs and oxygenated left ventricular blood into the systemic circulation. Accordingly, defective OFT septation is a life-threatening condition that can occur in both syndromic and nonsyndromic congenital heart disease. Even though studies of genetic mouse models have previously revealed a requirement for VEGF-A, the class 3 semaphorin SEMA3C, and their shared receptor neuropilin 1 (NRP1) in OFT development, the precise mechanism by which these proteins orchestrate OFT septation is not yet understood. Here, we have analyzed a complementary set of ligand-specific and tissue-specific mouse mutants to show that neural crest-derived SEMA3C activates NRP1 in the OFT endothelium. Explant assays combined with gene-expression studies and lineage tracing further demonstrated that this signaling pathway promotes an endothelial-to-mesenchymal transition that supplies cells to the endocardial cushions and repositions cardiac neural crest cells (NCCs) within the OFT, 2 processes that are essential for septal bridge formation. These findings elucidate a mechanism by which NCCs cooperate with endothelial cells in the developing OFT to enable the postnatal separation of the pulmonary and systemic circulation.
Collapse
|
16
|
Abstract
The heart is the first organ to form during embryonic development. Given the complex nature of cardiac differentiation and morphogenesis, it is not surprising that some form of congenital heart disease is present in ≈1 percent of newborns. The molecular determinants of heart development have received much attention over the past several decades. This has been driven in large part by an interest in understanding the causes of congenital heart disease coupled with the potential of using knowledge from developmental biology to generate functional cells and tissues that could be used for regenerative medicine purposes. In this review, we highlight the critical signaling pathways and transcription factor networks that regulate cardiomyocyte lineage specification in both in vivo and in vitro models. Special focus will be given to epigenetic regulators that drive the commitment of cardiomyogenic cells from nascent mesoderm and their differentiation into chamber-specific myocytes, as well as regulation of myocardial trabeculation.
Collapse
Affiliation(s)
- Sharon L Paige
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Karolina Plonowska
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Adele Xu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Sean M Wu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
17
|
Franco D, Christoffels VM, Campione M. Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med 2014; 24:23-31. [PMID: 23953978 DOI: 10.1016/j.tcm.2013.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 01/05/2023]
Abstract
The homeobox transcription factor Pitx2 displays a highly specific expression pattern during embryogenesis. Gain and loss of function experiments have unraveled its pivotal role in left-right signaling. Conditional deletion in mice has demonstrated a complex and intricate role for Pitx2 in distinct aspects of cardiac development and more recently a link to atrial fibrillation has been proposed based on genome-wide association studies. In this review we will revise the role of Pitx2 in the developing heart, starting from the early events of left-right determination followed by its role in cardiac morphogenesis and ending with its role in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Diego Franco
- Department of Experimental Biology B3-362, University of Jaén, Jaen 23071, Spain.
| | | | - Marina Campione
- CNR-Institute of Neurosciences, Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|