1
|
Witz IP. The tumor microenvironment: the making of a paradigm. CANCER MICROENVIRONMENT 2009; 2 Suppl 1:9-17. [PMID: 19701697 PMCID: PMC2756342 DOI: 10.1007/s12307-009-0025-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 12/17/2022]
Abstract
What has been will be again, what has been done will be done again; there is nothing new under the sun (Ecclesiastes 1:9) Stephen Paget was the conceptual father of the role played by the Tumor Microenvironment (TME) in tumor progression. The focus of this essay is the developmental phase of the post Paget TME research. Attempts will be made to highlight some of the pioneering work of scientists from the late sixties through the eighties of last century who laid the foundations for the contemporary scientific achievements of TME research but whose ground breaking studies are rarely cited. This review should serve as a small tribute to their great work.
Collapse
Affiliation(s)
- Isaac P Witz
- Faculty of Life Sciences, Department of Cell Research & Immunology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel,
| |
Collapse
|
2
|
Cubitt AB, Reddy I, Lee S, McNally JG, Firtel RA. Coexpression of a constitutively active plasma membrane calcium pump with GFP identifies roles for intracellular calcium in controlling cell sorting during morphogenesis in Dictyostelium. Dev Biol 1998; 196:77-94. [PMID: 9527882 DOI: 10.1006/dbio.1997.8831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the potential role of calcium in regulating Dictyostelium development, we reduced free cytosolic and total cell Ca2+ in Dictyostelium cells by expressing a constitutively active form of a human erythrocyte plasma membrane calcium pump. The pump-expressing cells lacked a thapsigargin-mediated increase in cytoplasmic calcium, consistent with a reduced level of total cellular Ca2+. During aggregation, the cells initially formed a large number of aggregation centers, many of which coalesced to form mounds that were smaller than those of wild-type cells, and the cells did not exhibit the normal formation of elongated aggregation streams. The majority of the mounds either arrested at this stage with the formation of small protrusions or formed very aberrant finger-like structures, indicating an essential role for cellular calcium in morphogenesis. We used pump and wild-type cells differentially labeled by expressing different wavelength (green and blue) forms of green fluorescent protein and three-dimensional (3-D) reconstruction of serial fluorescent imaging to visualize the movement of pump and wild-type cells within the aggregate. The results showed that the pump cells exhibited very aberrant cell movement and sorting within the forming mound, suggesting that the reduced cytosolic calcium affects movement required for tip formation. When allowed to form chimeric organisms with wild-type cells, pump cells preferentially localized to two bands, one at the prestalk/prespore boundary and the other in the very posterior of the organism, suggesting that pump cells are unable to properly sort. Expression of the calcium pump had little effect on the induction of prestalk- or prespore-specific genes, whereas extended treatment with EGTA blocked induction of both classes of cell-type-specific genes. Our results suggest a role for intracellular Ca2+ in controlling cell sorting and morphogenesis in Dictyostelium.
Collapse
Affiliation(s)
- A B Cubitt
- Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, California 92093-0634, USA
| | | | | | | | | |
Collapse
|
3
|
Schnitzler GR, Briscoe C, Brown JM, Firtel RA. Serpentine cAMP receptors may act through a G protein-independent pathway to induce postaggregative development in Dictyostelium. Cell 1995; 81:737-45. [PMID: 7774015 DOI: 10.1016/0092-8674(95)90535-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor G box-binding factor (GBF) is required for the developmental switch between aggregative and postaggregative gene expression, cell-type differentiation, and morphogenesis. We show that constitutive expression of GBF allows ectopic expression of postaggregative genes, but only in response to exogenous cAMP. GBF activation requires the serpentine cAMP receptors required for aggregation, but not the coupled G alpha 2 or the G beta subunit, suggesting a novel signaling pathway. In response to high cAMP, g alpha 2-null cells can bypass the aggregation stage, expressing cell type-specific genes and forming fruiting bodies. Our results demonstrate that the same receptors regulate aggregation and cell-type differentiation, but via distinct pathways depending upon whether the receptor perceives a pulsatile or sustained signal.
Collapse
Affiliation(s)
- G R Schnitzler
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
4
|
Schlatterer C, Gollnick F, Schmidt E, Meyer R, Knoll G. Challenge with high concentrations of cyclic AMP induces transient changes in the cytosolic free calcium concentration in Dictyostelium discoideum. J Cell Sci 1994; 107 ( Pt 8):2107-15. [PMID: 7983172 DOI: 10.1242/jcs.107.8.2107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells use cyclic AMP (cAMP) for chemotactic signaling as well as for differentiation. The precise regulation of the cytosolic Ca2+ concentration ([Ca2+]i) seems to play a key role for both processes. We performed single cell measurements of [Ca2+]i in amoebae that were starved in suspension for various times and scrape-loaded with the Ca2+ indicator fura-2. Stimulation of cells with cAMP at the concentration required to induce gene expression (> or = 100 microM) elicited a global transient increase in [Ca2+]i that depended on the presence of external Ca2+. Both vegetative and aggregation-competent cells displayed a rise in [Ca2+]i, with aggregation-competent cells responding more often than vegetative cells. Basal [Ca2+]i in the presence of Ca2+ was high in vegetative cells and declined during development; the cAMP-induced rise in [Ca2+]i was higher and lasted longer in vegetative cells than in aggregative cells. The addition of 2′-deoxy-cAMP, which binds to the cAMP receptor, induced an increase in [Ca2+]i, whereas the membrane-permeant analogue 8-bromo-cAMP that has a low affinity for the receptor but activates cAMP-dependent protein kinase had no effect. This indicates that the change in [Ca2+]i is mediated by the cell surface cAMP receptor. Since HC85 mutant cells, which lack the G alpha 2 subunit of the G-protein that couples the receptor to phospholipase C, also responded to stimulation with cAMP, the Ca2+ influx does not seem to be triggered by the phosphoinositide signaling cascade.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Schlatterer
- Fakultät für Biologie, Universität Konstanz, Germany
| | | | | | | | | |
Collapse
|
5
|
Schnitzler GR, Fischer WH, Firtel RA. Cloning and characterization of the G-box binding factor, an essential component of the developmental switch between early and late development in Dictyostelium. Genes Dev 1994; 8:502-14. [PMID: 8125261 DOI: 10.1101/gad.8.4.502] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During Dictyostelium development, the cAMP-regulated induction of cell-type-specific late genes marks a developmental switch from the initial formation of the multicellular organism to the differentiation of the various cell types that mediate morphogenesis and eventually give rise to the mature fruting body. The G-box binding factor (GBF) is a developmentally regulated Dictyostelium transcription factor whose affinity for a DNA sequence correlates with the ability of that sequence to confer inducibility to late gene promoters in response to high, continuous levels of extracellular cAMP. We report the purification of GBF and cloning of the gene that encodes it, as confirmed by in vitro production of GBF activity. The predicted protein is highly basic and contains two putative zinc fingers. Disruption of the GBF gene by homologous recombination results in the loss of all GBF DNA-binding activity, developmental arrest at the loose aggregate stage, and the loss of late gene induction during development or in response to extracellular cAMP. Constitutive expression of GBF complements the null phenotype and allows for the rapid activation of a class of late genes in response to cAMP. Our results indicate that GBF acts as an extracellular cAMP-responsive transcriptional activator regulating late gene expression and is an essential component of a developmental switch between aggregation and cellular morphogenesis.
Collapse
Affiliation(s)
- G R Schnitzler
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
6
|
Affiliation(s)
- W F Loomis
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
7
|
Okaichi K, Cubitt AB, Pitt GS, Firtel RA. Amino acid substitutions in the Dictyostelium G alpha subunit G alpha 2 produce dominant negative phenotypes and inhibit the activation of adenylyl cyclase, guanylyl cyclase, and phospholipase C. Mol Biol Cell 1992; 3:735-47. [PMID: 1355376 PMCID: PMC275631 DOI: 10.1091/mbc.3.7.735] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies have demonstrated that the Dictyostelium G alpha subunit G alpha 2 is essential for the cAMP-activation of adenylyl cyclase and guanylyl cyclase and that g alpha 2 null mutants do not aggregate. In this manuscript, we extend the analysis of the function of G alpha 2 in regulating downstream effectors by examining the in vivo developmental and physiological phenotypes of both wild-type and g alpha 2 null cells carrying a series of mutant G alpha 2 subunits expressed from the cloned G alpha 2 promoter. Our results show that wild-type cells expressing G alpha 2 subunits carrying mutations G40V and Q208L in the highly conserved GAGESG (residues 38-43) and GGQRS (residues 206-210) domains, which are expected to reduce the intrinsic GTPase activity, are blocked in multicellular development. Analysis of down-stream effector pathways essential for mediating aggregation indicates that cAMP-mediated activation of guanylyl cyclase and phosphatidylinositol-phospholipase C (PI-PLC) is almost completely inhibited and that there is a substantial reduction of cAMP-mediated activation of adenylyl cyclase. Moreover, neither mutant G alpha 2 subunit can complement g alpha 2 null mutants. Expression of G alpha 2(G43V) and G alpha 2(G207V) have little or no effect on the effector pathways and can partially complement g alpha 2 null cells. Our results suggest a model in which the dominant negative phenotypes resulting from the expression of G alpha 2(G40V) and G alpha 2(Q208L) are due to a constitutive adaptation of the effectors through a G alpha 2-mediated pathway. Analysis of PI-PLC in g alpha 2 null mutants and in cell lines expressing mutant G alpha 2 proteins also strongly suggests that G alpha 2 is the G alpha subunit that directly activates PI-PLC during aggregation. Moreover, overexpression of wild-type G alpha 2 results in the ability to precociously activate guanylyl cyclase by cAMP in vegetative cells, suggesting that G alpha 2 may be rate limiting in the developmental regulation of guanylyl cyclase activation. In agreement with previous results, the activation of adenylyl cyclase, while requiring G alpha 2 function in vivo, does not appear to be directly carried out by the G alpha 2 subunit. Our data are consistent with adenylyl cyclase being directly activated by either another G alpha subunit or by beta gamma subunits released on activation of the G protein containing G alpha 2.
Collapse
Affiliation(s)
- K Okaichi
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | | | |
Collapse
|
8
|
Abe T, Maeda Y. Cellular Differentiation in Submerged Monolayers of Dictyostelium discoideum: Possible Functions of Cytoplasmic Ca2+and DIF. (cellular slime mold/differentiation/monolayer culture/Ca2+/DIF). Dev Growth Differ 1991. [DOI: 10.1111/j.1440-169x.1991.00469.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kimmel AR, Firtel RA. cAMP signal transduction pathways regulating development of Dictyostelium discoideum. Curr Opin Genet Dev 1991; 1:383-90. [PMID: 1668648 DOI: 10.1016/s0959-437x(05)80304-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.
Collapse
Affiliation(s)
- A R Kimmel
- Laboratory of Cellular and Developmental Biology, NIDDK/NIH, Bethesda, Maryland 20892
| | | |
Collapse
|
10
|
Peters DJ, Cammans M, Smit S, Spek W, van Lookeren Campagne MM, Schaap P. Control of cAMP-induced gene expression by divergent signal transduction pathways. DEVELOPMENTAL GENETICS 1991; 12:25-34. [PMID: 1646693 DOI: 10.1002/dvg.1020120107] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A compilation of literature data and recent experiments led to the following conclusions regarding cyclic adenosine 3':5' monophosphate (cAMP) regulation of gene expression. Several classes of cAMP-induced gene expression can be discriminated by sensitivity to stimulation kinetics. The aggregation-related genes respond only to nanomolar cAMP pulses. The prestalk-related genes respond both to nanomolar pulses and persistent micromolar stimulation. The prespore specific genes respond only to persistent micromolar stimulation. The induction of the aggregation- and prestalk-related genes by nanomolar cAMP pulses may share a common transduction pathway, which does not involve cAMP, while involvement of the inositol 1,4,5-trisphosphate (IP3)/Ca2+ pathway is unlikely. Induction of the expression of prespore and prestalk-related genes by micromolar cAMP stimuli utilizes divergent signal processing mechanisms. cAMP-induced prespore gene expression does not involve cAMP and probably also not cyclic guanosine 3'.5' monophosphate (cGMP) as intracellular intermediate. Involvement of cAMP-induced phospholipase C (PLC) activation in this pathway is suggested by the observation that IP3 and 1,2-diacylglycerol (DAG) can induce prespore gene expression, albeit in a somewhat indirect manner and by the observation that Li+ and Ca2+ antagonists inhibit prespore gene expression. Cyclic AMP induction of prestalk-related gene expression is inhibited by IP3 and DAG and promoted by Li+, and is relatively insensitive to Ca2+ antagonists, which indicates that PLC activation does not mediate prestalk-related gene expression. Neither prespore nor prestalk-related gene expression utilizes the sustained cAMP-induced pHi increase as intracellular intermediate.
Collapse
Affiliation(s)
- D J Peters
- Cell Biology and Genetics Unit, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Blumberg DD. Dictyostelium discoideum: a simple eukaryotic microorganism with a complex network of regulation. DEVELOPMENTAL GENETICS 1991; 12:63-4. [PMID: 2049881 DOI: 10.1002/dvg.1020120112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D D Blumberg
- Dept. of Biological Science, Univ. of Maryland, Baltimore 21228
| |
Collapse
|
12
|
Haribabu B, Pavlovic J, Bodduluri SR, Doody JF, Ortiz BD, Mullings S, Moon B, Dottin RP. Signal transduction pathways involved in the expression of the uridine diphosphoglucose pyrophosphorylase gene of Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1991; 12:35-44. [PMID: 2049878 DOI: 10.1002/dvg.1020120108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The uridine diphosphoglucose pyrophosphorylase (UDPGP1) gene of Dictyostelium discoideum is an excellent marker to study the pathways that control the expression of genes during development. We have previously shown that the UDPGP1 gene is regulated by exogenous cAMP acting on cell-surface cAMP receptors. Various steps in the signal transduction pathway between receptor stimulation and the induction of the gene can now be studied. Induction does not require the synthesis of intracellular cAMP, but does require new protein synthesis. By deletion and transformation with altered genes, two cis-acting sequences that are required for UDPGP1 expression have been identified. A GC-rich palindromic sequence located between -410 and -374 is essential for induction of the gene by extracellular cAMP, but not for its basal expression. A sequence element located between -374 and -337 is required for any basal expression of this gene. When the polarity of the palindromic sequence was reversed such that it resembled the H2K enhancer element, the gene could still be induced by exogenous cAMP. Two DNA binding activities were detected in gel mobility shift assays using a fragment containing both of the regulatory sequence elements of UDPGP1 gene. Transformation with a vector that resulted in the synthesis of anti-sense UDPGP1 RNA led to almost total elimination of the enzyme antigen and no detectable enzyme activity. However, these transformants developed normally, indicating that either UDPGP is not required for development or residual synthesis of UDPGP may be sufficient for normal development.
Collapse
Affiliation(s)
- B Haribabu
- Department of Biological Sciences, Hunter College, CUNY, NY 10021
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kwong L, Weeks G. The effects of presumptive morphogens on prestalk and prespore gene expression in monolayers of Dictyostelium discoideum. Differentiation 1990. [DOI: 10.1111/j.1432-0436.1990.tb00541.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Haberstroh L, Firtel RA. A spatial gradient of expression of a cAMP-regulated prespore cell-type-specific gene in Dictyostelium. Genes Dev 1990; 4:596-612. [PMID: 2163344 DOI: 10.1101/gad.4.4.596] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, we identified a class of genes in Dictyostelium that are prespore cell-type specific in their expression in the multicellular aggregate and are inducible by cAMP acting through cell-surface cAMP receptors. In this paper, we report the cloning and analysis of the regulatory regions controlling the expression of one such gene that encodes a spore coat protein, SP60. By use of a fusion of the firefly luciferase gene and Escherichia coli lacZ [expresses beta-galactosidase (beta-gal)], we have identified cis-acting regions required for proper spatial and temporal expression in multicellular aggregates and for cAMP induction in shaking cell culture. Deletion analysis suggests that a CA-rich element (CAE) and surrounding sequences present three times within the 5'-flanking sequence are required for proper regulation. SP60-lacZ fusions that include all three of these regions express lacZ only in the posterior approximately 85% of migrating slugs (prespore zone). Studies show that SP60 is expressed during mid to late aggregation, and SP60-lacZ-positive cells are spatially localized as a doughnut-shaped ring within the forming aggregate. Cells within the skirt that surrounds the aggregate and that are still migrating into the aggregate do not stain. Sequential 5' deletions of CAEs and surrounding regions affect the expression level of SP60-luciferase in response to developmental signals and cAMP, as well as the spatial pattern of SP60-lacZ. Deletion of the first (most 5') of these regions restricts the spatial expression of SP60-lacZ fusions to the anterior of the prespore zone. When both the first and second regions are removed, the expression level drops, and the staining is restricted to the prespore/prestalk boundary. Furthermore, the staining pattern that is seen with these two deletions is present as a gradient from anterior to posterior within the prespore zone. Deletion of all three regions results in a loss of both cAMP and developmentally induced expression. These results suggest the presence of a gradient within the prespore zone that differentially affects the activity of promoters containing different numbers of response elements.
Collapse
Affiliation(s)
- L Haberstroh
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
15
|
Expression and organization of BP74, a cyclic AMP-regulated gene expressed during Dictyostelium discoideum development. Mol Cell Biol 1989. [PMID: 2555685 DOI: 10.1128/mcb.9.10.4170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a cDNA and the corresponding gene for a cyclic AMP-inducible gene expressed during Dictyostelium development. This gene, BP74, was found to be first expressed about the time of aggregate formation, approximately 6 h after starvation. Accumulation of BP74 mRNA did not occur in Dictyostelium cells that had been starved in fast-shaken suspension cultures but was induced in similar cultures to which cyclic AMP pulses had been added. The BP74 cDNA and gene were characterized by DNA sequence analysis and transcriptional mapping. When the BP74 promoter region was fused with a chloramphenicol acetyltransferase reporter gene and reintroduced into Dictyostelium cells, the transfected chloramphenicol acetyltransferase gene displayed the same developmentally regulated pattern of expression as did the endogenous BP74 gene, suggesting that all of the cis-acting elements required for regulated expression were carried by a 2-kilobase cloned genomic fragment. On the basis of sequence analysis, the gene appeared to encode a protein containing a 20-residue hydrophobic sequence at the amino-terminal end and 26 copies of a 20-amino-acid repeat.
Collapse
|
16
|
Ginsburg G, Kimmel AR. Inositol trisphosphate and diacylglycerol can differentially modulate gene expression in Dictyostelium. Proc Natl Acad Sci U S A 1989; 86:9332-6. [PMID: 2556709 PMCID: PMC298489 DOI: 10.1073/pnas.86.23.9332] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that several genes expressed during Dictyostelium development could be induced in shaking culture by exogenous cAMP, even though the accumulation of intracellular cAMP was inhibited. The use of selected cAMP analogs indicated that the exogenous cAMP functioned by activating the cell surface cAMP receptor and not by interacting with the regulatory subunit of the intracellular cAMP-dependent protein kinase. Although some genes in Dictyostelium appear to be regulated by intracellular cAMP, these data suggest that this is not the case for all genes regulated by cAMP. Intracellular second messengers other than cAMP may, therefore, promote the expression of these other genes. Here, we have examined inositol trisphosphate and diacylglycerol as candidates for such mediators of signal transduction. We have studied three genes that exhibit disparate modes of temporal and spatial expression during development of Dictyostelium. In shaking cultures, maximal levels of expression of each are dependent on the accumulation of or exposure to extracellular cAMP. We show that the addition of inositol trisphosphate and/or diacylglycerol to cells in shaking culture has distinct effects on the expression of each gene and, under specific conditions, can bypass the requirement for extracellular cAMP. These data suggest that extracellular cAMP interacting with its cell surface receptor may promote synthesis of inositol trisphosphate and diacylglycerol to regulate gene expression and aspects of differentiation in Dictyostelium.
Collapse
Affiliation(s)
- G Ginsburg
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | |
Collapse
|
17
|
Hopkinson SB, Pollenz RS, Drummond I, Chisholm RL. Expression and organization of BP74, a cyclic AMP-regulated gene expressed during Dictyostelium discoideum development. Mol Cell Biol 1989; 9:4170-8. [PMID: 2555685 PMCID: PMC362495 DOI: 10.1128/mcb.9.10.4170-4178.1989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have characterized a cDNA and the corresponding gene for a cyclic AMP-inducible gene expressed during Dictyostelium development. This gene, BP74, was found to be first expressed about the time of aggregate formation, approximately 6 h after starvation. Accumulation of BP74 mRNA did not occur in Dictyostelium cells that had been starved in fast-shaken suspension cultures but was induced in similar cultures to which cyclic AMP pulses had been added. The BP74 cDNA and gene were characterized by DNA sequence analysis and transcriptional mapping. When the BP74 promoter region was fused with a chloramphenicol acetyltransferase reporter gene and reintroduced into Dictyostelium cells, the transfected chloramphenicol acetyltransferase gene displayed the same developmentally regulated pattern of expression as did the endogenous BP74 gene, suggesting that all of the cis-acting elements required for regulated expression were carried by a 2-kilobase cloned genomic fragment. On the basis of sequence analysis, the gene appeared to encode a protein containing a 20-residue hydrophobic sequence at the amino-terminal end and 26 copies of a 20-amino-acid repeat.
Collapse
Affiliation(s)
- S B Hopkinson
- Department of Cell Biology and Anatomy, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | | | |
Collapse
|