1
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
2
|
Ribeiro IMA, Eßbauer W, Kutlesa R, Borst A. Spatial and temporal control of expression with light-gated LOV-LexA. G3 GENES|GENOMES|GENETICS 2022; 12:6649684. [PMID: 35876796 PMCID: PMC9526042 DOI: 10.1093/g3journal/jkac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Wolfgang Eßbauer
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Romina Kutlesa
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| |
Collapse
|
3
|
Korzh V, Kondrychyn I. Origin and development of circumventricular organs in living vertebrate. Semin Cell Dev Biol 2019; 102:13-20. [PMID: 31706729 DOI: 10.1016/j.semcdb.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
The circumventricular organs (CVOs) function by mediating chemical communication between blood and brain across the blood-brain barrier. Their origin and developmental mechanisms involved are not understood in enough detail due to a lack of molecular markers common for CVOs. These rather small and inconspicuous organs are found in close vicinity to the third and fourth brain ventricles suggestive of ancient evolutionary origin. Recently, an integrated approach based on analysis of CVOs development in the enhancer-trap transgenic zebrafish led to an idea that almost all of CVOs could be highlighted by GFP expression in this transgenic line. This in turn suggested that an enhancer along with a set of genes it regulates may illustrate the first common element of developmental regulation of CVOs. It seems to be related to a mechanism of suppression of the canonical Wnt/ β-catenin signaling that functions in development of fenestrated capillaries typical for CVOs. Based on that observation the common molecular elements of the putative developmental mechanism of CVOs will be discussed in this review.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | |
Collapse
|
4
|
Kondo T, Hayashi S. Two-step regulation of trachealess ensures tight coupling of cell fate with morphogenesis in the Drosophila trachea. eLife 2019; 8:45145. [PMID: 31439126 PMCID: PMC6707767 DOI: 10.7554/elife.45145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, inductive signals cause cell differentiation and morphogenesis. However, how these phenomena are coordinated to form functional organs is poorly understood. Here, we show that cell differentiation of the Drosophila trachea is sequentially determined in two steps and that the second step is synchronous with the invagination of the epithelial sheet. The master gene trachealess is dispensable for the initiation of invagination, while it is essential for maintaining the invaginated structure, suggesting that tracheal morphogenesis and differentiation are separately induced. trachealess expression starts in bipotential tracheal/epidermal placode cells. After invagination, its expression is maintained in the invaginated cells but is extinguished in the remaining sheet cells. A trachealess cis-regulatory module that shows both tracheal enhancer activity and silencer activity in the surface epidermal sheet was identified. We propose that the coupling of trachealess expression with the invaginated structure ensures that only invaginated cells canalize robustly into the tracheal fate. Cells in developing organs have two important decisions to make: where to be and what cell type to become. If cells end up in the wrong places, they can stop an organ from working, so it is vital that one decision depends upon the other. The so-called progenitor cells responsible for forming the trachea, for example, can either become part of a flat sheet or part of a tube. The cells on the sheet need to become epidermal cells, while the cells in the tube need to become tracheal cells. Work on fruit flies found that a gene called 'trachealess' plays an important role in this process. Without it, developing flies cannot make a trachea at all. At the start of trachea development, some of the cells form thickened structures called placodes. The progenitor cells in the placodes start to divide, and the structures buckle inwards to form pockets. These pockets then lengthen into tubes. The trachealess gene codes for a protein that works as a genetic switch. It turns other genes on or off, helping the progenitor cells inside the pockets to become tracheal cells. But, it is not clear whether trachealess drives the formation of the pockets: the progenitor cells first decide what to be; or whether pocket formation tells the cells to use trachealess: the progenitor cells first decide where to be. To find out, Kondo and Hayashi imaged developing fly embryos and saw that the trachealess gene does not start pocket formation, but that it is essential to maintain the pockets. Flies without the gene managed to form pockets, but they did not last long. Looking at embryos with defects in other genes involved in pocket formation revealed why. In these flies, some of the progenitor cells using trachealess got left behind when the pockets started to form. But rather than forming pockets of their own (as they might if trachealess were driving pocket formation), they turned their trachealess gene off. Progenitor cells in the fly trachea seem to decide where to be before they decide what cell type to become. This helps to make sure that trachea cells do not form in the wrong places. A question that still remains is how do the cells know when they are inside a pocket? It is possible that the cells are sensing different mechanical forces or different chemical signals. Further research could help scientists to understand how organs form in living animals, and how they might better recreate that process in the laboratory.
Collapse
Affiliation(s)
- Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
5
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
6
|
Kline RA, Kaifer KA, Osman EY, Carella F, Tiberi A, Ross J, Pennetta G, Lorson CL, Murray LM. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases. PLoS Genet 2017; 13:e1006680. [PMID: 28362802 PMCID: PMC5391970 DOI: 10.1371/journal.pgen.1006680] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/14/2017] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The term “motor neuron disease” encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers, and demonstrated SNCA is a modifier of pathology in motor neuron disease. The term “motor neuron disease” refers to a group of disorders, causing progressive paralysis of affected patients due to the degeneration of motor neurons cells which control voluntary movements. Importantly, not all motor neurons appear to be affected in the same way, with those that control the face being affected less that those that control the abdomen. The reason why some motor neurons are more vulnerable is unknown; however, understanding this may provide new targets for therapeutics to slow motor neuron degeneration either as stand-alone therapeutics or in combination with SMN-inducing compounds. In this study, we analysed gene expression in different groups of motor neurons and compared this to previously published expression data to identify commonalities. One of the common transcripts was alpha-synuclein (SNCA), which was consistently expressed at lower levels in vulnerable motor neurons. Importantly, when SNCA levels were increased in a mouse model of motor neuron disease, the disease phenotype was significantly reduced, including an extension in survival and reduction in motor neuron pathology. Collectively, these results demonstrate that this approach can identify disease modifiers that can reduce disease severity in models of motor neuron disease and potentially identify new therapeutic targets.
Collapse
Affiliation(s)
- Rachel A. Kline
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin A. Kaifer
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Erkan Y. Osman
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Francesco Carella
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ariana Tiberi
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jolill Ross
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Giuseppa Pennetta
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Christian L. Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Lyndsay M. Murray
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Liu C, Song G, Mao L, Long Y, Li Q, Cui Z. Generation of an Enhancer-Trapping Vector for Insertional Mutagenesis in Zebrafish. PLoS One 2015; 10:e0139612. [PMID: 26436547 PMCID: PMC4593583 DOI: 10.1371/journal.pone.0139612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Enhancer trapping (ET) is a powerful approach to establish tissue- or cell-specific reporters and identify expression patterns of uncharacterized genes. Although a number of enhancer-trapping vectors have been developed and a large library of fish lines with distinct tissue- or cell-specific expression of reporter genes have been generated, the specificity and efficiency of trapping vectors need to be improved because of the bias interaction of minimal promoters with genomic enhancers. Accordingly, we generated an enhancer-trapping vector pTME that contains a minimal mouse metallothionein gene (mMTI) promoter upstream of EGFP reporter. In the first round of screening, twelve zebrafish lines that carry a single copy of ET cassettes were characterized to have tissue- or cell-specific EGFP expression. One of the highly conserved noncoding elements near an insertion site of trapping cassettes was characterized as an enhancer that can specifically regulate the expression of EGFP in cells of the central nervous system. In addition, the pTME vector contains a mutation-cassette that is able to effectively block the transcription of an endogenous gene in an ET line with ubiquitous EGFP expression. Thus, the pTME vector can be used as an alternative tool for both enhancer trapping and mutagenesis across a target genome.
Collapse
Affiliation(s)
- Chunyan Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Lin Mao
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- * E-mail: (ZC); (QL)
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- * E-mail: (ZC); (QL)
| |
Collapse
|
9
|
Sánchez Ó, Calvo J, Ibáñez C, Guerrero I, Soler J. Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms. Methods Mol Biol 2015; 1322:19-33. [PMID: 26179036 DOI: 10.1007/978-1-4939-2772-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hedgehog (Hh) molecules act as morphogens directing cell fate during development by activating various target genes in a concentration dependent manner. Hitherto, modeling morphogen gradient formation in multicellular systems has employed linear diffusion, which is very far from physical reality and needs to be replaced by a deeper understanding of nonlinearities. We have developed a novel mathematical approach by applying flux-limited spreading (FLS) to Hh morphogenetic actions. In the new model, the characteristic velocity of propagation of each morphogen is a new key biological parameter. Unlike in linear diffusion models, FLS modeling predicts concentration fronts and correct patterns and cellular responses over time. In addition, FLS considers not only extracellular binding partners influence, but also channels or bridges of information transfer, such as specialized filopodia or cytonemes as a mechanism of Hh transport. We detect and measure morphogen particle velocity in cytonemes in the Drosophila wing imaginal disc. Indeed, this novel approach to morphogen gradient formation can contribute to future research in the field.
Collapse
Affiliation(s)
- Óscar Sánchez
- Departamento de Matemática Aplicada, Universidad de Granada, Campus de Fuentenueva, Granada, 18071, Spain
| | | | | | | | | |
Collapse
|
10
|
Matsuda R, Hosono C, Saigo K, Samakovlis C. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways. PLoS Genet 2015; 11:e1004929. [PMID: 25615601 PMCID: PMC4304712 DOI: 10.1371/journal.pgen.1004929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 01/04/2023] Open
Abstract
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. Tubes are common structural elements of many internal organs,
facilitating fluid flow and material exchange. To meet the local needs of diverse tissues, the branching patterns and tube shapes vary regionally. Diametric tapering and specialized branch targeting to the brain represent two common examples of variations with organismal benefits in the Drosophila airways and our vascular system. Several extrinsic signals instruct tube diversifications but the impact of intrinsic factors remains underexplored. Here, we show that the local, tube-intrinsic Hox code instructs the pattern and shape of the dorsal trunk (DT), the main Drosophila airway. In the cephalic part (DT1), where Bithorax Complex (BX-C) Hox genes are not expressed, the extrinsic Hedgehog signal is epistatic to WNT/Wingless signals. Hedgehog instructs anterior DT1 cells to take a long and narrow tube fate targeting the brain. In more posterior metameres, BX-C genes make the extrinsic WNT/Wingless signals epistatic over Hedgehog. There, WNT/Wingless instruct all DT cells to take the thick and short tube fate. Moreover, BX-C genes modulate the outputs of WNT/wingless signaling, making the DT tubes thicker in more posterior metameres. We provide a model for how intrinsic factors modify extrinsic signaling to control regional tube morphologies in a network.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ECCPS, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
11
|
Interaction between Nm23 and the tumor suppressor VHL. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:143-52. [PMID: 24915993 DOI: 10.1007/s00210-014-1002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023]
Abstract
Among the anti-tumor genes (tumor suppressors and metastasis suppressors), the von-Hippel Lindau gene and the Nm23 family of genes are among the more intriguing ones. Both are small (long and short forms of VHL are 30 and 19 kD, respectively, and Nm23 is ~17 kD), and both possess diverse molecular and cellular functions. Despite extensive studies, the entire spectra of functions and the molecular function-phenotype correlation of these two proteins have not been completely elucidated. In this report, we present data showing these two proteins interact physically. We also summarize and confirm the previous studies that demonstrated the endocytic function of these two genes and further show that the endocytic function of VHL is mediated through the activity of Nm23. These functional and molecular interactions are evolutionarily conserved from Drosophila to human.
Collapse
|
12
|
Kondo T, Sakuma T, Wada H, Akimoto-Kato A, Yamamoto T, Hayashi S. TALEN-induced gene knock out in Drosophila. Dev Growth Differ 2013; 56:86-91. [PMID: 24172335 DOI: 10.1111/dgd.12097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
We report here a case study of TALEN-induced gene knock out of the trachealess gene of Drosophila. Two pairs of TALEN constructs caused targeted mutation in the germ line of 39% and 17% of injected animals, respectively. In the extreme case 100% of the progeny of TALEN-injected fly was mutated, suggesting that highly efficient biallelic germ line mutagenesis was achieved. The mutagenic efficiency of the TALEN pairs paralleled their activity of single strand annealing (SSA) assay in cultured cells. All mutations were deletion of 1 to 20 base pairs. Merit and demerit of TALEN-based gene knockout approach compared to other genome editing technologies is discussed.
Collapse
Affiliation(s)
- Takefumi Kondo
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Chu WC, Lee YM, Henry Sun Y. FGF /FGFR signal induces trachea extension in the drosophila visual system. PLoS One 2013; 8:e73878. [PMID: 23991208 PMCID: PMC3753266 DOI: 10.1371/journal.pone.0073878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea.
Collapse
Affiliation(s)
- Wei-Chen Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi Henry Sun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Mayer LR, Diegelmann S, Abassi Y, Eichinger F, Pflugfelder GO. Enhancer trap infidelity in Drosophila optomotor-blind. Fly (Austin) 2013; 7:118-28. [PMID: 23519069 DOI: 10.4161/fly.23657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reporter gene activity in enhancer trap lines is often implicitly assumed to mirror quite faithfully the endogenous expression of the "trapped" gene, even though there are numerous examples of enhancer trap infidelity. optomotor-blind (omb) is a 160 kb gene in which 16 independent P-element enhancer trap insertions of three different types have been mapped in a range of more than 60 kb. We have determined the expression pattern of these elements in wing, eye-antennal and leg imaginal discs as well as in the pupal tergites. We noted that one pGawB insertion (omb (P4) ) selectively failed to report parts of the omb pattern even though the missing pattern elements were apparent in all other 15 lines. We ruled out that omb (P4) was defective in the Gal4 promoter region or had inactivated genomic enhancers in the integration process. We propose that the Gal4 reporter gene in pGawB may be sensitive to orientation or promoter proximity effects.
Collapse
Affiliation(s)
- Lisa R Mayer
- Institute of Genetics, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | |
Collapse
|
15
|
Mortimer NT, Moberg KH. The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression. PLoS Genet 2013; 9:e1003314. [PMID: 23459416 PMCID: PMC3573119 DOI: 10.1371/journal.pgen.1003314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/22/2012] [Indexed: 12/20/2022] Open
Abstract
The Drosophila melanogaster gene archipelago (ago) encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box)-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia). Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl), and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL) factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Nathan T. Mortimer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- ¤ Current address: Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kelsch W, Stolfi A, Lois C. Genetic labeling of neuronal subsets through enhancer trapping in mice. PLoS One 2012; 7:e38593. [PMID: 22685588 PMCID: PMC3369840 DOI: 10.1371/journal.pone.0038593] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets.
Collapse
Affiliation(s)
- Wolfgang Kelsch
- Bernstein Center for Computational Neuroscience, CIMH, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany
| | - Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Carlos Lois
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
17
|
Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Mol Cell Biol 2010; 30:3779-94. [PMID: 20516215 DOI: 10.1128/mcb.01578-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mutations in the human von Hippel-Lindau (VHL) gene are the cause of VHL disease that displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF-alpha). However, many HIF-independent functions of VHL have been identified. Recent evidence also indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes, although it is still unclear how many of these noncanonical functions relate to the pathophysiological processes because of a lack of tractable genetic systems. Here, we report the first genomic mutant phenotype of Drosophila melanogaster VHL (dVHL) in the epithelial tubule network, the trachea, and show that dVHL regulates branch migration and lumen formation via its endocytic function. The endocytic function regulates the surface level of the chemotactic signaling receptor Breathless and promotes clearing of the lumen matrix during maturation of the tracheal tubes. Importantly, the regulatory function in tubular morphogenesis is conserved in the mammalian system, as conditional knockout of Vhl in mouse kidney also resulted in similar cell motility and lumen phenotypes.
Collapse
|
18
|
Szuplewski S, Fraisse-Véron I, George H, Terracol R. vrille is required to ensure tracheal integrity in Drosophila embryo. Dev Growth Differ 2010; 52:409-18. [DOI: 10.1111/j.1440-169x.2010.01186.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
The role of apoptosis in shaping the tracheal system in the Drosophila embryo. Mech Dev 2009; 127:28-35. [PMID: 19995601 DOI: 10.1016/j.mod.2009.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
The tubular network of the tracheal system in the Drosophila embryo is created from a set of epithelial placodes by cell migration, rearrangements, fusions and shape changes. A designated number of cells is initially allocated to each branch of the system. We show here that the final cell number in the dorsal branches is not only determined by early patterning events and subsequent cell rearrangements but also by elimination of cells from the developing branch. Extruded cells die and are engulfed by macrophages. Our results suggest that the pattern of cell extrusion and death is not hard-wired, but is determined by environmental cues.
Collapse
|
20
|
Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L, Hayashi S. Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 2008; 135:1355-64. [PMID: 18305002 DOI: 10.1242/dev.015982] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The downregulation of E-cadherin by Src promotes epithelial to mesenchymal transition and tumorigenesis. However, a simple loss of cell adhesion is not sufficient to explain the diverse developmental roles of Src and metastatic behavior of viral Src-transformed cells. Here, we studied the functions of endogenous and activated forms of Drosophila Src in the context of tracheal epithelial development, during which extensive remodeling of adherens junctions takes place. We show that Src42A is selectively activated in the adherens junctions of epithelia undergoing morphogenesis. Src42A and Src64B are required for tracheal development and to increase the rate of adherens junction turnover. The activation of Src42A caused opposing effects: it reduced the E-cadherin protein level but stimulated transcription of the E-cadherin gene through the activation of Armadillo and TCF. This TCF-dependent pathway was essential for the maintenance of E-cadherin expression and for tissue integrity under conditions of high Src activity. Our data suggest that the two opposing outcomes of Src activation on E-cadherin facilitate the efficient exchange of adherens junctions, demonstrating the key role of Src in the maintenance of epithelial integrity.
Collapse
Affiliation(s)
- Masayo Shindo
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Mortimer NT, Moberg KH. The Drosophila F-box protein Archipelago controls levels of the Trachealess transcription factor in the embryonic tracheal system. Dev Biol 2007; 312:560-71. [PMID: 17976568 DOI: 10.1016/j.ydbio.2007.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
The archipelago gene (ago) encodes the F-box specificity subunit of an SCF(skp-cullin-f box) ubiquitin ligase that inhibits cell proliferation in Drosophila melanogaster and suppresses tumorigenesis in mammals. ago limits mitotic activity by targeting cell cycle and cell growth proteins for ubiquitin-dependent degradation, but the diverse developmental roles of other F-box proteins suggests that it is likely to have additional protein targets. Here we show that ago is required for the post-mitotic shaping of the Drosophila embryonic tracheal system, and that it acts in this tissue by targeting the Trachealess (Trh) protein, a conserved bHLH-PAS transcription factor. ago restricts Trh levels in vivo and antagonizes transcription of the breathless FGF receptor, a known target of Trh in the tracheal system. At a molecular level, the Ago protein binds Trh and is required for proteasome-dependent elimination of Trh in response to expression of the Dysfusion protein. ago mutations that elevate Trh levels in vivo are defective in binding forms of Trh found in Dysfusion-positive cells. These data identify a novel function for the ago ubiquitin-ligase in tracheal morphogenesis via Trh and its target breathless, and suggest that ago has distinct functions in mitotic and post-mitotic cells that influence its role in development and disease.
Collapse
Affiliation(s)
- Nathan T Mortimer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael St. WBRB 442, Atlanta, GA 30322, USA
| | | |
Collapse
|
22
|
Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis. Dev Biol 2007; 312:203-16. [PMID: 17959166 DOI: 10.1016/j.ydbio.2007.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/09/2007] [Accepted: 09/12/2007] [Indexed: 11/23/2022]
Abstract
Previous studies in Drosophila have shown that heparan sulfate proteoglycans (HSPGs) are involved in both breathless (btl)- and heartless (htl)-mediated FGF signaling during embryogenesis. However, the mechanism(s) by which HSPGs control Btl and Htl signaling is unknown. Here we show that dally-like (dlp, a Drosophila glypican) mutant embryos exhibit severe defects in tracheal morphogenesis and show a reduction in btl-mediated FGF signaling activity. However, htl-dependent mesodermal cell migration is not affected in dlp mutant embryos. Furthermore, expression of Dlp, but not other Drosophila HSPGs, can restore effectively the tracheal morphogenesis in dlp embryos. Rescue experiments in dlp embryos demonstrate that Dlp functions only in Bnl/FGF receiving cells in a cell-autonomous manner, but is not essential for Bnl/FGF expression cells. To further dissect the mechanism(s) of Dlp in Btl signaling, we analyzed the role of Dlp in Btl-mediated air sac tracheoblast formation in wing discs. Mosaic analysis experiments show that removal of HSPG activity in FGF-producing or other surrounding cells does not affect tracheoblasts migration, while HSPG mutant tracheoblast cells fail to receive FGF signaling. Together, our results argue strongly that HSPGs regulate Btl signaling exclusively in FGF-receiving cells as co-receptors, but are not essential for the secretion and distribution of the FGF ligand. This mechanism is distinct from HSPG functions in morphogen distribution, and is likely a general paradigm for HSPG functions in FGF signaling in Drosophila.
Collapse
|
23
|
Hsouna A, Lawal HO, Izevbaye I, Hsu T, O'Donnell JM. Drosophila dopamine synthesis pathway genes regulate tracheal morphogenesis. Dev Biol 2007; 308:30-43. [PMID: 17585895 PMCID: PMC1995089 DOI: 10.1016/j.ydbio.2007.04.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/16/2007] [Accepted: 04/30/2007] [Indexed: 01/11/2023]
Abstract
While studying the developmental functions of the Drosophila dopamine synthesis pathway genes, we noted interesting and unexpected mutant phenotypes in the developing trachea, a tubule network that has been studied as a model for branching morphogenesis. Specifically, Punch (Pu) and pale (ple) mutants with reduced dopamine synthesis show ectopic/aberrant migration, while Catecholamines up (Catsup) mutants that over-express dopamine show a characteristic loss of migration phenotype. We also demonstrate expression of Punch, Ple, Catsup and dopamine in tracheal cells. The dopamine pathway mutant phenotypes can be reproduced by pharmacological treatments of dopamine and a pathway inhibitor 3-iodotyrosine (3-IT), implicating dopamine as a direct mediator of the regulatory function. Furthermore, we show that these mutants genetically interact with components of the endocytic pathway, namely shibire/dynamin and awd/nm23, that promote endocytosis of the chemotactic signaling receptor Btl/FGFR. Consistent with the genetic results, the surface and total cellular levels of a Btl-GFP fusion protein in the tracheal cells and in cultured S2 cells are reduced upon dopamine treatment, and increased in the presence of 3-IT. Moreover, the transducer of Btl signaling, MAP kinase, is hyper-activated throughout the tracheal tube in the Pu mutant. Finally we show that dopamine regulates endocytosis via controlling the dynamin protein level.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
24
|
Stahl M, Schuh R, Adryan B. Identification of FGF-dependent genes in the Drosophila tracheal system. Gene Expr Patterns 2006; 7:202-9. [PMID: 16949886 DOI: 10.1016/j.modgep.2006.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/12/2006] [Accepted: 07/14/2006] [Indexed: 12/13/2022]
Abstract
The embryonic development of the tracheal system of the fruit fly Drosophila provides a paradigm for genetic studies of branching morphogenesis. Efforts of many laboratories have identified Branchless (Bnl, a fibroblast growth factor homologue) and Breathless (Btl, the receptor homologue) as crucial factors at many stages of tracheal system development. The downstream targets of the Bnl/Btl signalling cascade, however, remain mostly unknown. Misexpression of the bnl gene results in specific tracheal phenotypes that lead to larval death. We characterised the transcriptional profiles of targeted over-expression of bnl in the embryonic trachea and of loss-of-function bnl(P1) mutant embryos. Gene expression data was mapped to high-throughput in situ hybridisation based ImaGO-annotation. Thus, we identified and confirmed by quantitative PCR 13 Bnl-dependent genes that are expressed in cells within and outside of the tracheal system.
Collapse
Affiliation(s)
- Markus Stahl
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | | | | |
Collapse
|
25
|
Krause C, Wolf C, Hemphälä J, Samakovlis C, Schuh R. Distinct functions of the leucine-rich repeat transmembrane proteins capricious and tartan in the Drosophila tracheal morphogenesis. Dev Biol 2006; 296:253-64. [PMID: 16764850 DOI: 10.1016/j.ydbio.2006.04.462] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
A key step in organogenesis of the Drosophila tracheal system is the integration of isolated tracheal metameres into a connected tubular network. The interaction of tracheal cells with surrounding mesodermal cells is crucial in this process. In particular, single mesodermal cells called bridge-cells are essential for the guided outgrowth of dorsal trunk branches to direct formation of the main airway, the dorsal trunk. Here, we present evidence that the two leucine-rich repeat transmembrane proteins Capricious and Tartan contribute differently to the formation of branch interconnections during tracheal development. Capricious is specifically localized on the surface of bridge-cells and facilitates the outgrowing dorsal trunk cells of adjacent metameres toward each other. We show that Capricious requires both extracellular and intracellular domains during tracheal branch outgrowth. In contrast, Tartan is expressed broadly in mesodermal cells and exerts its role in tracheal branch outgrowth through its extracellular domain. We propose that Capricious contributes to the instructive role of bridge-cells whereas Tartan provides permissive substrate for the migrating tracheal cells during the network formation.
Collapse
Affiliation(s)
- Cindy Krause
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
26
|
Franch-Marro X, Martín N, Averof M, Casanova J. Association of tracheal placodes with leg primordia inDrosophilaand implications for the origin of insect tracheal systems. Development 2006; 133:785-90. [PMID: 16469971 DOI: 10.1242/dev.02260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adaptation to diverse habitats has prompted the development of distinct organs in different animals to better exploit their living conditions. This is the case for the respiratory organs of arthropods, ranging from tracheae in terrestrial insects to gills in aquatic crustaceans. Although Drosophila tracheal development has been studied extensively, the origin of the tracheal system has been a long-standing mystery. Here, we show that tracheal placodes and leg primordia arise from a common pool of cells in Drosophila, with differences in their fate controlled by the activation state of the wingless signalling pathway. We have also been able to elucidate early events that trigger leg specification and to show that cryptic appendage primordia are associated with the tracheal placodes even in abdominal segments. The association between tracheal and appendage primordia in Drosophila is reminiscent of the association between gills and appendages in crustaceans. This similarity is strengthened by the finding that homologues of tracheal inducer genes are specifically expressed in the gills of crustaceans. We conclude that crustacean gills and insect tracheae share a number of features that raise the possibility of an evolutionary relationship between these structures. We propose an evolutionary scenario that accommodates the available data.
Collapse
Affiliation(s)
- Xavier Franch-Marro
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, C/Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Parinov S, Kondrichin I, Korzh V, Emelyanov A. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 2005; 231:449-59. [PMID: 15366023 DOI: 10.1002/dvdy.20157] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have used the Tol2 transposable element to design and perform effective enhancer trapping in zebrafish. Modified transposon DNA and transposase RNA were delivered into zebrafish embryos by microinjection to produce heritable insertions in the zebrafish genome. The enhancer trap construct carries the EGFP gene controlled by a partial epithelial promoter from the keratin8 gene. Enhanced green fluorescent protein (EGFP) is used as a marker to select F1 transgenic fish and as a reporter to trap enhancers. We have isolated 28 transgenic lines that were derived from the 37 GFP-positive F0 founders and displayed various specific EGFP expression patterns in addition to basal expression from the modified keratin 8 promoter. Analyses of expression by whole-mount RNA in situ hybridization demonstrated that these patterns could recapitulate the expression of the tagged genes to a variable extent and, therefore, confirmed that our construct worked effectively as an enhancer trap. Transgenic offspring from the 37 F0 EGFP-positive founders have been genetically analyzed up to the F2 generation. Flanking sequences from 65 separate transposon insertion sites were identified by thermal asymmetric interlaced polymerase chain reaction. Injection of the transposase RNA into transgenic embryos induced remobilization of genomic Tol2 copies producing novel insertions including some in the germ line. The approach has great potential for developmental and anatomical studies of teleosts.
Collapse
|
28
|
Lundström A, Gallio M, Englund C, Steneberg P, Hemphälä J, Aspenström P, Keleman K, Falileeva L, Dickson BJ, Samakovlis C. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 2004; 18:2161-71. [PMID: 15342493 PMCID: PMC515293 DOI: 10.1101/gad.310204] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 06/21/2004] [Indexed: 11/25/2022]
Abstract
Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.
Collapse
Affiliation(s)
- Annika Lundström
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 96 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dammai V, Adryan B, Lavenburg KR, Hsu T. Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev 2003; 17:2812-24. [PMID: 14630942 PMCID: PMC280629 DOI: 10.1101/gad.1096903] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human nm23 has been implicated in suppression of metastasis in various cancers, but the underlying mechanism of such activity has not been fully understood. Using Drosophila tracheal system as a genetic model, we examined the function of the Drosophila homolog of nm23, the awd gene, in cell migration. We show that loss of Drosophila awd results in dysregulated tracheal cell motility. This phenotype can be suppressed by reducing the dosage of the chemotactic FGF receptor (FGFR) homolog, breathless (btl), indicating that btl and awd are functionally antagonists. In addition, mutants of shi/dynamin show similar tracheal phenotypes as in awd and exacerbate those in awd mutant, suggesting defects in vesicle-mediated turnover of FGFR in the awd mutant. Consistent with this, Btl-GFP chimera expressed from a cognate btl promoter-driven system accumulate at high levels on tracheal cell membrane of awd mutants as well as in awd RNA duplex-treated cultured cells. Thus, we propose that awd regulates tracheal cell motility by modulating the FGFR levels, through a dynamin-mediated pathway.
Collapse
Affiliation(s)
- Vincent Dammai
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
30
|
Lavenburg KR, Hsu T, Muise-Helmericks RC. Coordinated functions of Akt/PKB and ETS1 in tubule formation. FASEB J 2003; 17:2278-80. [PMID: 14525946 PMCID: PMC2276577 DOI: 10.1096/fj.03-0040fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the inter-relationship between two downstream effectors of vascular endothelial growth factor (VEGF), the serine threonine kinase Akt (also known as protein kinase B) and the transcription factor ETS1, during tubulogenesis. Human endothelial cell culture and the in vivo Drosophila tracheal systems are employed in comparative analysis. We show that VEGF stimulates the expression of ETS1 through a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent pathway in primary endothelial cells. Activation of Akt results in vessel formation in vitro, a process that is blocked by expression of antisense ETS1. The functional relationship between ETS and Akt was then tested in the homologous tubular system in Drosophila. Contrary to expectation, ETS1 and Akt did not form a linear positive regulatory pathway in vivo. Instead, genetic analyses suggest that the Drosophila ETS1 homologue Pointed is required for cell motility per se while Drosophila Akt (Dakt1) is responsible for organized and restricted cell movement that is essential for tubule formation. Taken together, our results show that ETS1 and Akt control different aspects of cell motility that are integrated in the precise regulation of vascular tubule formation.
Collapse
Affiliation(s)
| | - Tien Hsu
- Corresponding authors. E-MAIL ; Fax (843) 792-3940
| | | |
Collapse
|
31
|
Abstract
Myosins are a superfamily of actin-dependent molecular motor proteins, among which the bipolar filament forming myosins II have been the most studied. The activity of smooth muscle/non-muscle myosin II is regulated by phosphorylation of the regulatory light chains, that in turn is modulated by the antagonistic activity of myosin light chain kinase and myosin light chain phosphatase. The phosphatase activity is mainly regulated through phosphorylation of its myosin binding subunit MYPT. To identify the function of these phosphorylation events, we have molecularly characterized the Drosophila homologue of MYPT, and analyzed its mutant phenotypes. We find that Drosophila MYPT is required for cell sheet movement during dorsal closure, morphogenesis of the eye, and ring canal growth during oogenesis. Our results indicate that the regulation of the phosphorylation of myosin regulatory light chains, or dynamic activation and inactivation of myosin II, is essential for its various functions during many developmental processes.
Collapse
Affiliation(s)
- Change Tan
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Beth Stronach
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA
- Author for correspondence ()
| |
Collapse
|
32
|
Kambris Z, Hoffmann JA, Imler JL, Capovilla M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr Patterns 2002; 2:311-7. [PMID: 12617819 DOI: 10.1016/s1567-133x(02)00020-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Drosophila transmembrane receptor Toll plays a key role in specifying the dorsoventral axis of the embryo. At later stages of development, it controls the immune response of the fly to fungal and Gram-positive bacterial infections. The Drosophila genome has a total of nine Toll-like genes, including the previously characterized Toll (Toll-1) and 18-wheeler (Toll-2). Here we describe the embryonic expression patterns of the seven Toll-like genes Toll-3 through Toll-9. We find that these genes have distinct expression domains and that their expression is dynamically changing throughout embryonic development. This complex and tissue-specific regulation of Toll-like gene expression strongly suggests a role in embryonic development for most Drosophila Tolls. The evolving picture on the Toll family members in Drosophila contrasts with that of mammalian Toll-like receptors, which are predominantly expressed in immune responsive cells where their activation occurs via microbial structural determinants.
Collapse
Affiliation(s)
- Zakaria Kambris
- Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, 15, rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
33
|
Englund C, Steneberg P, Falileeva L, Xylourgidis N, Samakovlis C. Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development 2002; 129:4941-51. [PMID: 12397103 DOI: 10.1242/dev.129.21.4941] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxygen delivery in many animals is enabled by the formation of unicellular capillary tubes that penetrate target tissues to facilitate gas exchange. We show that the tortuous outgrowth of tracheal unicellular branches towards their target tissues is controlled by complex local interactions with target cells. Slit, a phylogenetically conserved axonal guidance signal, is expressed in several tracheal targets and is required both for attraction and repulsion of tracheal branches. Robo and Robo2 are expressed in different branches, and are both necessary for the correct orientation of branch outgrowth. At the CNS midline, Slit functions as a repellent for tracheal branches and this function is mediated primarily by Robo. Robo2 is necessary for the tracheal response to the attractive Slit signal and its function is antagonized by Robo. We propose that the attractive and repulsive tracheal responses to Slit are mediated by different combinations of Robo and Robo2 receptors on the cell surface.
Collapse
Affiliation(s)
- Camilla Englund
- Umeå Centre for Molecular Pathogenesis, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
34
|
Takaesu NT, Johnson AN, Newfeld SJ. Posterior spiracle specific GAL4 lines: new reagents for developmental biology and respiratory physiology. Genesis 2002; 34:16-8. [PMID: 12324940 DOI: 10.1002/gene.10109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- N T Takaesu
- Department of Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
35
|
Takaesu NT, Johnson AN, Sultani OH, Newfeld SJ. Combinatorial signaling by an unconventional Wg pathway and the Dpp pathway requires Nejire (CBP/p300) to regulate dpp expression in posterior tracheal branches. Dev Biol 2002; 247:225-36. [PMID: 12086463 DOI: 10.1006/dbio.2002.0693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The decapentaplegic (dpp) gene influences many developmental events in Drosophila melanogaster. We have been analyzing dpp expression in two groups of dorsal ectoderm cells at the posterior end of the embryo, in abdominal segment 8 and the telson. These dpp-expressing cells become tracheal cells in the posterior-most branches of the tracheal system (Dorsal Branch10, Spiracular Branch10, and the Posterior Spiracle). These branches are not identified by reagents typically used in analyses of tracheal development, suggesting that dpp expression confers a distinct identity upon posterior tracheal cells. We have determined that dpp posterior ectoderm expression begins during germ band extension and continues throughout development. We have isolated the sequences responsible for these aspects of dpp expression in a reporter gene. We have determined that an unconventional form of Wingless (Wg) signaling, Dpp signaling, and the transcriptional coactivator Nejire (CBP/p300) are required for the initiation and maintenance of dpp expression in the posterior-most branches of the tracheal system. Our data suggest a model for the integration of Wg and Dpp signals that may be applicable to branching morphogenesis in other developmental systems.
Collapse
Affiliation(s)
- N T Takaesu
- Department of Biology, Arizona State University, Tempe, Arizona, 85287-1501, USA
| | | | | | | |
Collapse
|
36
|
Wolf C, Gerlach N, Schuh R. Drosophila tracheal system formation involves FGF-dependent cell extensions contacting bridge-cells. EMBO Rep 2002; 3:563-8. [PMID: 12034756 PMCID: PMC1084149 DOI: 10.1093/embo-reports/kvf115] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Development of the ectodermally derived Drosophila tracheal system is based on branch outgrowth and fusion that interconnect metamerically arranged tracheal subunits into a highly stereotyped three-dimensional tubular structure. Recent studies have revealed that this process involves a specialized cell type of mesodermal origin, termed bridge-cell. Single bridge-cells are located between adjacent tracheal subunits and serve as guiding posts for the outgrowing dorsal trunk branches. We show that bridge-cell-approaching tracheal cells form filopodia-like cell extensions, which attach to the bridge-cell surface and are essential for the tracheal subunit interconnection. The results of both dominant-negative and gain-of-function experiments suggest that the formation of cell extensions require Cdc42-mediated Drosophila fibroblast growth factor activity.
Collapse
Affiliation(s)
- Christian Wolf
- Max-Planck-Institut für biophysikalische Chemie, Abt. Molekulare Entwicklungsbiologie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
37
|
Chen HW, Chen X, Oh SW, Marinissen MJ, Gutkind JS, Hou SX. mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family. Genes Dev 2002; 16:388-98. [PMID: 11825879 PMCID: PMC155335 DOI: 10.1101/gad.955202] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom's function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway.
Collapse
Affiliation(s)
- Hua-Wei Chen
- The Laboratory of Immunobiology, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
38
|
Llimargas M, Lawrence PA. Seven Wnt homologues in Drosophila: a case study of the developing tracheae. Proc Natl Acad Sci U S A 2001; 98:14487-92. [PMID: 11717401 PMCID: PMC64708 DOI: 10.1073/pnas.251304398] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequencing of the Drosophila genome has revealed that there are "silent" homologues of many important genes-family members that were not detected by classic genetic approaches. Why have so many homologues been conserved during evolution? Perhaps each one has a different but important function in every system. Perhaps each one works independently in a different part of the body. Or, perhaps some are redundant. Here, we take one well known gene family and analyze how the individual members contribute to the making of one system, the tracheae. There are seven DWnt genes in the Drosophila genome, including wingless (wg). The wg gene helps to pattern the developing trachea but is not responsible for all Wnt functions there. We test each one of the seven DWnts in several ways and find evidence that wg and DWnt2 can function in the developing trachea: when both genes are removed together, the phenotype is identical or very similar to that observed when the Wnt pathway is shut down. DWnt2 is expressed near the tracheal cells in the embryo in a different pattern to wg but is also transduced through the canonical Wnt pathway. We find that the seven DWnt genes vary in their effectiveness in specific tissues, such as the tracheae, and, moreover, the epidermis and the tracheae respond to DWnt2 and Wg differently. We suggest that the main advantage of retaining a number of similar genes is that it allows more subtle forms of control and more flexibility during evolution.
Collapse
Affiliation(s)
- M Llimargas
- Institut de Biologia Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Cientificas (CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | |
Collapse
|
39
|
Shim K, Blake KJ, Jack J, Krasnow MA. TheDrosophila ribbongene encodes a nuclear BTB domain protein that promotes epithelial migration and morphogenesis. Development 2001; 128:4923-33. [PMID: 11731471 DOI: 10.1242/dev.128.23.4923] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical and basal surfaces of the tracheal epithelium normally move in concert as new branches bud and grow out to form tubes. We show that mutations in the Drosophila ribbon (rib) gene disrupt this coupling: the basal surface continues to extend towards its normal targets, but movement and morphogenesis of the tracheal cell bodies and apical surface is severely impaired, resulting in long basal membrane protrusions but little net movement or branch formation. rib mutant tracheal cells are still responsive to the Branchless fibroblast growth factor (FGF) that guides branch outgrowth, and they express apical membrane markers normally. This suggests that the defect lies either in transmission of the FGF signal from the basal surface to the rest of the cell or in the apical cell migration and tubulogenesis machinery. rib encodes a nuclear protein with a BTB/POZ domain and Pipsqueak DNA-binding motif. It is expressed in the developing tracheal system and other morphogenetically active epithelia, many of which are also affected in rib mutants. We propose that Rib is a key regulator of epithelial morphogenesis that promotes migration and morphogenesis of the tracheal cell bodies and apical surface and other morphogenetic movements.
Collapse
Affiliation(s)
- K Shim
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
40
|
Harris KL, Whitington PM. Pathfinding by sensory axons in Drosophila: substrates and choice points in early lch5 axon outgrowth. JOURNAL OF NEUROBIOLOGY 2001; 48:243-55. [PMID: 11500838 DOI: 10.1002/neu.1054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have examined the pattern of axon growth from the lateral chordotonal (lch5) neurons in the body wall of the Drosophila embryo and identified cellular substrates and choice points involved in early axon pathfinding by these sensory neurons. At the first choice point (TP1), the lch5 growth cones contact the most distal cells of the spiracular branch (SB) of the trachea. The SB provides a substrate along which the axons extend internally to the level of the intersegmental nerve (ISN). In the absence of the SB, the lch5 axons often stall near TP1 or follow aberrant routes towards the CNS. At the second choice point (TP2), the lch5 growth cones make their first contact with other axons and turn ventrally toward the CNS, fasciculating specifically with the motor axons of the ISN.
Collapse
Affiliation(s)
- K L Harris
- School of Biological Sciences, University of New England, Armidale, NSW, Australia
| | | |
Collapse
|
41
|
Guillemin K, Williams T, Krasnow MA. A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nat Cell Biol 2001; 3:848-51. [PMID: 11533666 DOI: 10.1038/ncb0901-848] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear lamins are intermediate filaments that compose the nuclear lamina--the filamentous meshwork underlying the inner nuclear membrane--and are required for nuclear assembly, organization and maintenance. Here we present evidence that a nuclear lamin is also required for cytoplasmic organization in two highly polarized cell types. Zygotic loss-of-function mutations in the Drosophila gene encoding the principal lamin (Dm(0)) disrupt the directed outgrowth of cytoplasmic extensions from terminal cells of the tracheal system. Germline mutant clones disrupt dorsal-ventral polarity of the oocyte. In mutant oocytes, transcripts of the dorsal determinant Gurken, a transforming growth factor-alpha homologue, fail to localize properly around the anterodorsal surface of the oocyte nucleus; their ventral spread results in dorsalized eggs that resemble those of the classical dorsalizing mutations squid and fs(1)K10. The requirement of a nuclear lamin for cytoplasmic as well as nuclear organization has important implications for both the cellular functions of lamins and the pathogenesis of human diseases caused by lamin mutations.
Collapse
Affiliation(s)
- K Guillemin
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | |
Collapse
|
42
|
Boube M, Martin-Bermudo MD, Brown NH, Casanova J. Specific tracheal migration is mediated by complementary expression of cell surface proteins. Genes Dev 2001; 15:1554-62. [PMID: 11410535 PMCID: PMC312719 DOI: 10.1101/gad.195501] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Migration of the Drosophila tracheal cells relies on cues provided by nearby cells; however, little is known about how these signals specify a migratory path. Here we investigate the role of cell surface proteins in the definition of such a pathway. We have found that the PS1 integrin is required in the tracheal cells of the visceral branch, whereas the PS2 integrin is required in the visceral mesoderm; both integrins are necessary for the spreading of the visceral branch over its substratum. This is the first identification of a cell surface molecule with expression restricted to a subset of tracheal cells that all migrate in a given direction. We have also found that expression of PS1 in the visceral branch is regulated by the genes that direct tracheal cell migration, showing that integrin expression is part of the cell-fate program that they specify. These results support a model in which signal transduction determines the tracheal migratory pathways by regulating the expression of cell surface proteins, which in turn interact with surface molecules on the surrounding cell population.
Collapse
Affiliation(s)
- M Boube
- Institut de Biologia de Biologia Molecular de Barcelona (CSIC), 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Stewart BA, Mohtashami M, Zhou L, Trimble WS, Boulianne GL. SNARE-Dependent Signaling at the Drosophila Wing Margin. Dev Biol 2001; 234:13-23. [PMID: 11356016 DOI: 10.1006/dbio.2001.0228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The wing of Drosophila melanogaster has long been used as a model system to characterize intermolecular interactions important in development. Implicit in our understanding of developmental processes is the proper trafficking and sorting of signaling molecules, although the precise mechanisms that regulate membrane trafficking in a developmental context are not well studied. We have therefore chosen the Drosophila wing to assess the importance of SNARE-dependent membrane trafficking during development. N-Ethylmaleimide-sensitive fusion protein (NSF) is a key component of the membrane-trafficking machinery and we constructed a mutant form of NSF whose expression we directed to the developing wing margin. This resulted in a notched-wing phenotype, the severity of which was enhanced when combined with mutants of VAMP/Synaptobrevin or Syntaxin, indicating that it results from impaired membrane trafficking. Importantly, we find that the phenotype is also enhanced by mutations in genes for wingless and components of the Notch signaling pathway, suggesting that these signaling pathways were disrupted. Finally, we used this phenotype to conduct a screen for interacting genes, uncovering two Notch pathway components that had not previously been linked to wing development. We conclude that SNARE-mediated membrane trafficking is an important component of wing margin development and that dosage-sensitive developmental pathways will act as a sensitive reporter of partial membrane-trafficking disruption.
Collapse
Affiliation(s)
- B A Stewart
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | |
Collapse
|
44
|
Kamimura K, Fujise M, Villa F, Izumi S, Habuchi H, Kimata K, Nakato H. Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST) gene. Structure, expression, and function in the formation of the tracheal system. J Biol Chem 2001; 276:17014-21. [PMID: 11278892 DOI: 10.1074/jbc.m011354200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate, one of the most abundant components of the cell surface and the extracellular matrix, is involved in a variety of biological processes such as growth factor signaling, cell adhesion, and enzymatic catalysis. The heparan sulfate chains have markedly heterogeneous structures in which distinct sequences of sulfate groups determine specific binding properties. Sulfation at each different position of heparan sulfate is catalyzed by distinct enzymes, sulfotransferases. In this study, we identified and characterized Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST). The deduced primary structure of dHS6ST exhibited several common features found in those of mammalian HS6STs. We confirmed that, when the protein encoded by the cDNA was expressed in COS-7 cells, it showed HS6ST activity. Whole mount in situ hybridization revealed highly specific expression of dHS6ST mRNA in embryonic tracheal cells. The spatial and temporal pattern of dHS6ST expression in these cells clearly resembles that of the Drosophila fibroblast growth factor (FGF) receptor, breathless (btl). RNA interference experiments demonstrated that reduced dHS6ST activity caused embryonic lethality and disruption of the primary branching of the tracheal system. These phenotypes were reminiscent of the defects observed in mutants of FGF signaling components. We also show that FGF-dependent mitogen-activated protein kinase activation is significantly reduced in dHS6ST double-stranded RNA-injected embryos. These findings indicate that dHS6ST is required for tracheal development in Drosophila and suggest the evolutionally conserved roles of 6-O-sulfated heparan sulfate in FGF signaling.
Collapse
Affiliation(s)
- K Kamimura
- Department of Biology, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The tubular epithelium of the Drosophila tracheal system forms a network with a stereotyped pattern consisting of cells and branches with distinct identity. The tracheal primordium undergoes primary branching induced by the FGF homolog Branchless, differentiates cells with specialized functions such as fusion cells, which perform target recognition and adhesion during branch fusion, and extends branches toward specific targets. Specification of a unique identity for each primary branch is essential for directed migration, as a defect in either the EGFR or the Dpp pathway leads to a loss of branch identity and the misguidance of tracheal cell migration. Here, we investigate the role of Wingless signaling in the specification of cell and branch identity in the tracheal system. Wingless and its intracellular signal transducer, Armadillo, have multiple functions, including specifying the dorsal trunk through activation of Spalt expression and inducing differentiation of fusion cells in all fusion branches. Moreover, we show that Wingless signaling regulates Notch signaling by stimulating delta expression at the tip of primary branches. These activities of Wingless signaling together specify the shape of the dorsal trunk and other fusion branches.
Collapse
Affiliation(s)
- T Chihara
- Genetic Strain Research Center and The Graduate University for Advanced Studies, National Institute of Genetics, Mishima 411-8540, Japan
| | | |
Collapse
|
46
|
Wolf C, Schuh R. Single mesodermal cells guide outgrowth of ectodermal tubular structures in Drosophila. Genes Dev 2000; 14:2140-5. [PMID: 10970878 PMCID: PMC316895 DOI: 10.1101/gad.180900] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila tracheal system, a tubular network, is formed from isolated ectodermal metameres by guided branch outgrowth and branch fusion. Branch outgrowth is triggered by the localized and transient activity of Branchless (Bnl/dFGF). Here, we report the discovery of a mesodermal cell that links the leading cells of outgrowing main branches 2.5 hr before they fuse. This bridge-cell serves as an essential guidance post and needs Hunchback (Hb) activity to exert its function. The bridge-cell provides cues acting in concert with Bnl/dFGF signaling to mediate directed branch outgrowth that ultimately leads to position-specific branch fusion.
Collapse
Affiliation(s)
- C Wolf
- Max Planck Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg, D-37077 Göttingen, Germany
| | | |
Collapse
|
47
|
Beitel GJ, Krasnow MA. Genetic control of epithelial tube size in the Drosophila tracheal system. Development 2000; 127:3271-82. [PMID: 10887083 DOI: 10.1242/dev.127.15.3271] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular system and other organs, but the genetic and cellular mechanisms that control epithelial tube size are unknown. We investigated tube size control in the embryonic and larval tracheal (respiratory) system of Drosophila. A morphometric analysis showed that primary tracheal branches have characteristic sizes that undergo programmed changes during development. Branches grow at different rates and their diameters and lengths are regulated independently: tube length increases gradually throughout development, whereas tube diameter increases abruptly at discrete times in development. Cellular analysis and manipulation of tracheal cell number using cell-cycle mutations demonstrated that tube size is not dictated by the specific number or shape of the tracheal cells that constitute it. Rather, tube size appears to be controlled by coordinately regulating the apical (lumenal) surface of tracheal cells. Genetic analysis showed that tube sizes are specified early by branch identity genes, and the subsequent enlargement of branches to their mature sizes and maintenance of the expanded tubes involves a new set of genes described here, which we call tube expansion genes. This work establishes a genetic system for investigating tube size regulation, and provides an outline of the genetic program and cellular events underlying tracheal tube size control.
Collapse
Affiliation(s)
- G J Beitel
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University, Stanford, CA 94305-5307 USA
| | | |
Collapse
|
48
|
Li Y, Musacchio M, Finkelstein R. A homologue of the calcium-binding disulfide isomerase CaBP1 is expressed in the developing CNS of Drosophila melanogaster. DEVELOPMENTAL GENETICS 2000; 23:104-10. [PMID: 9770267 DOI: 10.1002/(sici)1520-6408(1998)23:2<104::aid-dvg2>3.0.co;2-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies identified a group of proteins localized to the endoplasmic reticulum (ER) that bind calcium and direct protein folding. Three of these proteins, CaBP1, CaBP2, and protein disulfide isomerase, have been purified from rat microsomes and analyzed biochemically. However, their function in vivo has not been determined. Here, we report the isolation of a homologue of the CaBP1 gene from the fruitfly Drosophila melanogaster (DmCaBP1). The predicted sequence of the Drosophila protein is very similar to that of rat CaBP1 and retains motifs thought to be functionally important in the mammalian protein. We show that DmCaBP1 is expressed in a specific spatiotemporal pattern during embryogenesis. In particular, it is expressed in midline precursor cells in the developing CNS. This is the first demonstration of tissue-specific expression for a member of this group of ER proteins and suggests a possible role for DmCABP1 as a molecular chaperone involved in nervous system development. The identification of the DmCaBP1 gene provides a basis for future genetic studies of its function.
Collapse
Affiliation(s)
- Y Li
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia 19104,
| | | | | |
Collapse
|
49
|
Boedigheimer MJ, Nguyen KP, Bryant PJ. Expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. DEVELOPMENTAL GENETICS 2000; 20:103-10. [PMID: 9144921 DOI: 10.1002/(sici)1520-6408(1997)20:2<103::aid-dvg3>3.0.co;2-b] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Drosophila expanded (ex) gene encodes a product (Ex) that shares homology with the Protein 4.1 family of proteins, many of which are enriched at specific lateral cell junctions and the apical cellular domain. Ex colocalizes with actin in the apical domain of imaginal disc epithelial cells, where it partially overlaps the distribution of phosphotyrosine (PY)-containing proteins. This suggests that Ex is present in or associated with adherens junctions. Genetic studies show that Ex is necessary for proper regulation of final cell number in adult wings and for the formation of eyes, distal leg, and distal antennal segments. We have generated mitotic clones that lack Ex using the twin spot technique, and demonstrated that the primary function of Ex is to regulate cell proliferation. Overexpressing Ex protein results in a decrease in final cell number in wings, suggesting a direct relationship between Ex function and proliferation rate.
Collapse
Affiliation(s)
- M J Boedigheimer
- Developmental Biological Center, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
50
|
Wilk R, Reed BH, Tepass U, Lipshitz HD. The hindsight gene is required for epithelial maintenance and differentiation of the tracheal system in Drosophila. Dev Biol 2000; 219:183-96. [PMID: 10694415 DOI: 10.1006/dbio.2000.9619] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During animal development, morphogenesis of tissues and organs requires dynamic cell shape changes and movements that are accomplished without loss of epithelial integrity. Data from vertebrate and invertebrate systems have implicated several cell surface and cytoskeleton-associated molecules in the establishment and maintenance of epithelial architecture, but there has been little analysis of the genetic regulatory hierarchies that control epithelial morphogenesis in specific tissues. Here we show that the Drosophila Hindsight nuclear zinc-finger protein is required during tracheal morphogenesis for the maintenance of epithelial integrity and assembly of apical extracellular structures known as taenidia. In hindsight (hnt) mutants tracheal placodes form, invaginate, and undergo primary branching as well as early fusion events. Starting at midembryogenesis, however, the tracheal epithelium collapses or expands to give rise to sacs of tissue. While a subset of hnt mutant tracheal cells enters the apoptotic pathway, genetic suppression of apoptosis indicates that this is not the cause of the epithelial defects. Surviving hnt mutant tracheal cells retain cell-cell junctions and a normal subcellular distribution of apical markers such as Crumbs and DE-Cadherin. However, taenidia do not form on the lumenal surface of tracheal cells. While loss of epithelial integrity is a common feature of crumbs, stardust, and hnt mutants, defective assembly of taenidia is unique to hnt mutants. These data suggest that HNT is a tissue-specific factor that regulates maintenance of the tracheal epithelium as well as differentiation of taenidia.
Collapse
Affiliation(s)
- R Wilk
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | |
Collapse
|