1
|
Abstract
PURPOSE OF REVIEW To evaluate recent developments in nutritional epigenomics and related challenges, opportunities, and implications for cancer control and prevention. RECENT FINDINGS Cancer is one of the leading causes of death worldwide, and understanding the factors that contribute to cancer development may facilitate the development of strategies for cancer prevention and control. Cancer development involves genetic and epigenetic alterations. Genetic marks are permanent, whereas epigenetic marks are dynamic, change with age, and are influenced by the external environment. Thus, epigenetics provides a link between the environment, diet, and cancer development. Proper food selection is imperative for better health and to avoid cancer and other diseases. Nutrients either contribute directly to cancer prevention or support the repair of genomic and epigenomic damage caused by exposure to cancer-causing agents such as toxins, free radicals, radiation, and infectious agents. Nutritional epigenomics provides an opportunity for cancer prevention because selected nutrients have the potential to reverse cancer-associated epigenetic marks in different tumor types. A number of natural foods and their bioactive components have been shown to have methylation-inhibitory and deacetylation-inhibitory properties. SUMMARY Natural foods and bioactive food components have characteristics and functions that are similar to epigenetic inhibitors and therefore have potential in cancer control and prevention.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7324, USA.
| |
Collapse
|
2
|
Abstract
In plants, transgenes often induce rapid turnover of homologous endogenous transcripts. This "cosuppression" of homologous genes is an extremely nonlinear response to small increases in gene expression or dosage, inversely amplifying them into dramatic phenotypic alterations. Pigment transgenes elicit metastable cosuppression patterns organized by flower morphology. Pattern organization and metastability reflect regulatory states (probably transgene transcription states) that respond to morphological features and are labile to physiology and development. Shifts between regulatory states can be highly ordered; for example, a shift may be imposed on a population of cells defining a meristem, which then stably maintains and transmits the new state throughout growth.
Collapse
|
3
|
Abstract
Rapid progress in our understanding of chromatin regulation has fueled considerable interest in epigenetic mechanisms governing the stable inheritance of chromatin states. Findings from several systems reveal small RNAs of the RNAi pathway as critical determinants of epigenetic gene silencing. Notably, recent investigations into the mechanisms of RNAi-mediated heterochromatin assembly in the fission yeast Schizosaccharomyces pombe have yielded new insights regarding the roles of RNAi in chromatin regulation and epigenetic inheritance.
Collapse
Affiliation(s)
- Hugh P Cam
- Boston College, Biology Department, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
4
|
Lempiäinen H, Müller A, Brasa S, Teo SS, Roloff TC, Morawiec L, Zamurovic N, Vicart A, Funhoff E, Couttet P, Schübeler D, Grenet O, Marlowe J, Moggs J, Terranova R. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice. PLoS One 2011; 6:e18216. [PMID: 21455306 PMCID: PMC3063791 DOI: 10.1371/journal.pone.0018216] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
Collapse
Affiliation(s)
- Harri Lempiäinen
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Arne Müller
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sarah Brasa
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Soon-Siong Teo
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Laurent Morawiec
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natasa Zamurovic
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Axel Vicart
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Enrico Funhoff
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Grenet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jennifer Marlowe
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rémi Terranova
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Boix-Chornet M, Fraga MF, Villar-Garea A, Caballero R, Espada J, Nuñez A, Casado J, Largo C, Casal JI, Cigudosa JC, Franco L, Esteller M, Ballestar E. Release of Hypoacetylated and Trimethylated Histone H4 Is an Epigenetic Marker of Early Apoptosis. J Biol Chem 2006; 281:13540-13547. [PMID: 16531610 DOI: 10.1074/jbc.m601136200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear events such as chromatin condensation, DNA cleavage at internucleosomal sites, and histone release from chromatin are recognized as hallmarks of apoptosis. However, there is no complete understanding of the molecular events underlying these changes. It is likely that epigenetic changes such as DNA methylation and histone modifications that are involved in chromatin dynamics and structure are also involved in the nuclear events described. In this report we have shown that apoptosis is associated with global DNA hypomethylation and histone deacetylation events in leukemia cells. Most importantly, we have observed a particular epigenetic signature for early apoptosis defined by a release of hypoacetylated and trimethylated histone H4 and internucleosomal fragmented DNA that is hypermethylated and originates from perinuclear heterochromatin. These findings provide one of the first links between apoptotic nuclear events and epigenetic markers.
Collapse
Affiliation(s)
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Molecular Pathology Programme
| | | | - Rosalia Caballero
- Laboratory 14, Cancer Research Center, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Jesus Espada
- Cancer Epigenetics Laboratory, Molecular Pathology Programme
| | - Antonio Nuñez
- Protein Technology Unit, Biotechnology Programme, 28029 Madrid, Spain
| | - Juan Casado
- Protein Technology Unit, Biotechnology Programme, 28029 Madrid, Spain
| | - Cristina Largo
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - J Ignacio Casal
- Protein Technology Unit, Biotechnology Programme, 28029 Madrid, Spain
| | - Juan C Cigudosa
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Valencia, Spain
| | - Manel Esteller
- Cancer Epigenetics Laboratory, Molecular Pathology Programme.
| | | |
Collapse
|
6
|
Khosla S, Mendiratta G, Brahmachari V. Genomic imprinting in the mealybugs. Cytogenet Genome Res 2006; 113:41-52. [PMID: 16575162 DOI: 10.1159/000090814] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 08/08/2005] [Indexed: 11/19/2022] Open
Abstract
The coccid insects (Hemiptera; Sternorrhyncha; Aphidiformes; Coccoidea; Pseudococcidae) are well suited to study not only the mechanisms of genomic imprinting but also facultative heterochromatization, a phenomenon well exemplified by inactivation of the X chromosome in female mammals. Coccids show sex-specific heterochromatization of an entire set of chromosomes and transcriptional silencing of all the paternally contributed chromosomes in males. Thus, genomic imprinting and the resultant differential regulation operate on 50% of the genome in contrast to the single X chromosome in female mammals. A significant insight into the phenomenon of genomic imprinting has come from very elegant cytological analysis of the coccid system. Recently, efforts have been made to dissect out at the molecular level the phenomenon of genomic imprinting in these insects. The present review summarizes both of these aspects. In light of the accruing experimental evidence for chromatin-based differences in the maternal and paternal genomes, it appears that the mealybug system may provide evidence for stable maintenance of chromatin code not only through mitosis but also through meiosis.
Collapse
Affiliation(s)
- S Khosla
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| | | | | |
Collapse
|
7
|
Benecke A. Chromatin code, local non-equilibrium dynamics, and the emergence of transcription regulatory programs. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 19:353-66. [PMID: 16520898 DOI: 10.1140/epje/i2005-10068-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 01/20/2006] [Indexed: 05/07/2023]
Abstract
Chromatin is a, if not the, hallmark of eukaryotic life. Any molecular process entailing genomic DNA or the nucleus by default provokes or depends on chromatin structural dynamics on various space and time scales. Chromatin dynamics are result of changes in the physico-chemical properties of the chromatin constituents themselves or the nuclear environment. Chromatin has been found in the former case to undergo many different covalent enzyme-mediated chemical modifications. Their identification sheds light on the molecular mechanisms and the physico-chemical properties underlying chromatin dynamics, and allows the development of quantitative models for the chromatin fiber. The abundance of the different modifications, their dynamics, and short- as well as long-range correlation phenomena between different modifications also point to a second layer of genomic coding implemented at the level of chromatin. Especially, gene regulatory coding seems to depend on such a second-level code. The information-theoretical properties of chromatin in the context of gene regulatory coding are discussed. A model for the emergence of cellular differentiation from the intricate interplay between genomic and chromatin code is presented and discussed in light of recent experimental insights.
Collapse
Affiliation(s)
- A Benecke
- Institut des Hautes Etudes Scientifiques-Interdisciplinary Research Institute Lille, CNRS/INSERM, 35 route de Chartres, 91440, Bures-sur-Yvette, France.
| |
Collapse
|
8
|
O'Dor E, Beck SA, Brock HW. Polycomb group mutants exhibit mitotic defects in syncytial cell cycles of Drosophila embryos. Dev Biol 2006; 290:312-22. [PMID: 16388795 DOI: 10.1016/j.ydbio.2005.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/04/2005] [Accepted: 11/09/2005] [Indexed: 01/03/2023]
Abstract
The Polycomb Group (PcG) of epigenetic regulators maintains the repressed state of Hox genes during development of Drosophila, thereby maintaining the correct patterning of the anteroposterior axis. PcG-mediated inheritance of gene expression patterns must be stable to mitosis to ensure faithful transmission of repressed Hox states during cell division. Previously, two PcG mutants, polyhomeotic and Enhancer of zeste, were shown to exhibit mitotic segregation defects in embryos, and condensation defects in imaginal discs, respectively. We show that polyhomeotic(proximal) but not polyhomeotic(distal) is necessary for mitosis. To test if other PcG genes have roles in mitosis, we examined embryos derived from heterozygous PcG mutant females for mitotic defects. Severe defects in sister chromatid segregation and nuclear fallout, but not condensation are exhibited by Polycomb, Posterior sex combs and Additional sex combs. By contrast, mutations in Enhancer of zeste (which encodes the histone methyltransferase subunit of the Polycomb Repressive Complex 2) exhibit condensation but not segregation defects. We propose that these mitotic defects in PcG mutants delay cell cycle progression. We discuss possible mitotic roles for PcG proteins, and suggest that delays in cell cycle progression might lead to failure of maintenance.
Collapse
Affiliation(s)
- Ester O'Dor
- Department of Zoology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
9
|
Doux JD, Yun AJ. When normal is not: The dilemma of interpreting laboratory averages of bioactive molecules subject to heterogeneous regulatory feedback and epigenetic mosaicism. Med Hypotheses 2006; 66:1216-21. [PMID: 16406353 DOI: 10.1016/j.mehy.2005.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 01/30/2023]
Abstract
Complex regulatory systems control the levels of many bioactive molecules in the serum. These systems involve the integration of feedback responses from numerous tissues. End-organs and tissues can manifest epigenetic mosaicism, particularly with aging or disease states. We propose that an isolated lab value may reflect a blended average of inhomogeneous feedback responses from target tissues in various states of dysfunction. Reliance on such data may underestimate the state of systemic dysfunction. Yet in clinical practice, normal serum levels of a given molecule and its associated regulatory machinery are often assumed to reflect normal body homeostasis and tissue function. Organism-wide integration of abnormally high and low levels of bioactivity of a molecule in different tissues may yield apparently normal serum values of the bioactive molecule and known components of its regulatory system. We specifically discuss thyroid hormone regulation and function as a case example. Epigenetic reprogramming of either regulatory loops or tissue responses represents another way in which normal serum levels of the molecule may obscure target-organ dysfunction. The proposed idea has broad implications for disease pathogenesis, diagnosis, and therapies. A model where individual tissues employ illegitimate signaling to subvert the concerns of the organism as a whole is also proposed.
Collapse
Affiliation(s)
- John D Doux
- Palo Alto Institute, Palo Alto, CA 94301, USA.
| | | |
Collapse
|
10
|
Déjardin J, Cavalli G. Epigenetic inheritance of chromatin states mediated by Polycomb and trithorax group proteins in Drosophila. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:31-63. [PMID: 15881890 DOI: 10.1007/3-540-27310-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Proteins of the Polycomb group (PcG) and of the trithorax group (trxG) are involved in the regulation of key developmental genes, such as homeotic genes. PcG proteins maintain silent states of gene expression, while the trxG of genes counteracts silencing with a chromatin opening function. These factors form multimeric complexes that act on their target chromatin by regulating post-translational modifications of histones as well as ATP-dependent remodelling of nucleosome positions. In Drosophila, PcG and trxG complexes are recruited to specific DNA elements named as PcG and trxG response elements (PREs and TREs, respectively). Once recruited, these complexes seem to be able to establish silent or open chromatin states that can be inherited through multiple cell divisions even after decay of the primary silencing or activating signal. In recent years, many components of both groups of factors have been characterized, and the molecular mechanisms underlying their recruitment as well as their mechanism of action on their target genes have been partly elucidated. This chapter summarizes our current knowledge on these aspects and outlines crucial open questions in the field.
Collapse
Affiliation(s)
- Jérôme Déjardin
- Institute of Human Genetics, CNRS, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
11
|
Azuara V, Brown KE, Williams RRE, Webb N, Dillon N, Festenstein R, Buckle V, Merkenschlager M, Fisher AG. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat Cell Biol 2003; 5:668-74. [PMID: 12833066 DOI: 10.1038/ncb1006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 04/30/2003] [Indexed: 11/09/2022]
Abstract
Temporal control of DNA replication has been implicated in epigenetic regulation of gene expression on the basis of observations that certain tissue-specific genes replicate earlier in expressing than non-expressing cells. Here, we show evidence that several leukocyte-specific genes replicate early in lymphocytes regardless of their transcription and also in fibroblasts, where these genes are never normally expressed. Instead, the heritable silencing of some genes (Rag-1, TdT, CD8alpha and lambda5) and their spatial recruitment to heterochromatin domains within the nucleus of lymphocytes resulted in a markedly delayed resolution of sister chromatids into doublet signals discernable by 3D fluorescence in situ hybridization (FISH). Integration of transgenes within heterochromatin (in cis) did, however, confer late replication and this was reversed after variegated transgene expression. These findings emphasise that chromosomal location is important for defining the replication timing of genes and show that retarded sister-chromatid resolution is a novel feature of inactive chromatin.
Collapse
Affiliation(s)
- Véronique Azuara
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T. PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 2002; 7:997-1007. [PMID: 12354094 DOI: 10.1046/j.1365-2443.2002.00584.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA) is a ring-shaped protein known as a processivity factor of DNA polymerase delta. In addition to this role, PCNA interacts with a number of other proteins to increase their local concentration at replicated DNA sites. DNA cytosine methyltransferase 1 (Dnmt1), which preserves epigenetic signals by completing the methylation of hemimethylated DNA after DNA replication, has been indicated as one of these PCNA binding proteins by a previous work. However, the molecular mechanisms and functional significance of their association have not yet been studied. RESULTS Dnmt1 can be readily isolated from nuclear extracts by PCNA affinity chromatography. Studies of the interactions between the two proteins demonstrate that the N-terminal region of Dnmt1, which contains a typical PCNA binding motif, has core PCNA binding activity, and that the remaining portion of the protein exerts a negative influence on the interaction of Dnmt1 with PCNA. The affinity of Dnmt1 for DNA is much higher for DNA bound by PCNA than for free DNA. Furthermore, DNA methylation assays with hemimethylated DNA as a substrate revealed that PCNA clamp-bound DNA is methylated more efficiently by Dnmt1 than is free DNA. CONCLUSION These results provide the first biochemical evidence that physical interactions between PCNA and Dnmt1 facilitate the methylation of newly neplicated DNA, on which PCNA remains associated as a functional clamp.
Collapse
Affiliation(s)
- Tetsuo Iida
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In eukaryotes, chromatin is essential for heredity. Chromatin architecture is sometimes "epistatic" over the DNA and imparts a different heritable state to the same DNA sequence or the same functional state to unrelated DNA sequences. This has been documented recently in a wide variety of studies focused on regulation of the yeast mating type, the function of Polycomb and trithorax group proteins, the specification of eukaryotic centromeres and neocentromeres, and genomic imprinting.
Collapse
Affiliation(s)
- Giacomo Cavalli
- Institut de Génétique Humaine-CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
14
|
Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL. Replication dynamics of the yeast genome. Science 2001; 294:115-21. [PMID: 11588253 DOI: 10.1126/science.294.5540.115] [Citation(s) in RCA: 589] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.
Collapse
Affiliation(s)
- M K Raghuraman
- Department of Genetics, Department of Mathematics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI, Lobanenkov VV, Klenova EM. Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J Biol Chem 2000; 275:29915-21. [PMID: 10906122 DOI: 10.1074/jbc.m001538200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTCF is a unique, highly conserved, and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple DNA site specificities. It is able to bind to varying target sequences to perform different regulatory roles, including promoter activation or repression, creating hormone-responsive gene silencing elements, and functional block of enhancer-promoter interactions. Because different sets of ZFs are utilized to recognize different CTCF target DNA sites, each of the diverse DNA.CTCF complexes might engage different essential protein partners to define distinct functional readouts. To identify such proteins, we developed an affinity chromatography method based on matrix-immobilized purified recombinant CTCF. This approach resulted in isolation of several CTCF protein partners. One of these was identified as the multifunctional Y-box DNA/RNA-binding factor, YB-1, known to be involved in transcription, replication, and RNA processing. We examined CTCF/YB-1 interaction by reciprocal immunoprecipitation experiments with anti-CTCF and anti-YB-1 antibodies, and found that CTCF and YB-1 form complexes in vivo. We show that the bacterially expressed ZF domain of CTCF is fully sufficient to retain YB-1 in vitro. To assess possible functional significance of CTCF/YB-1 binding, we employed the very first identified by us, negatively regulated, target for CTCF (c-myc oncogene promoter) as a model in co-transfection assays with both CTCF and YB-1 expression vectors. Although expression of YB-1 alone had no effect, co-expression with CTCF resulted in a marked enhancement of CTCF-driven c-myc transcriptional repression. Thus our findings demonstrate, for the first time, the biological relevance of the CTCF/YB-1 interaction.
Collapse
Affiliation(s)
- I V Chernukhin
- Genetics Laboratory, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rapp A, Bock C, Dittmar H, Greulich KO. UV-A breakage sensitivity of human chromosomes as measured by COMET-FISH depends on gene density and not on the chromosome size. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 56:109-17. [PMID: 11079471 DOI: 10.1016/s1011-1344(00)00052-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
COMET-FISH, a single cell-based combination of COMET-assay (also known as single cell gel electrophoresis (SCGE)) with fluorescence in situ hybridization (FISH) allows region specific studies on DNA stability and damage. COMET-FISH can be used to investigate UV-A-induced DNA damage of selected whole chromosomes. In the present work, a modified COMET-FISH protocol with whole chromosome painting probes was used to study whether UV-A-induced DNA damage is distributed randomly over the whole genome or occurs at preferred sites. The study was performed with 12 different chromosome painting probes (for chromosomes 1, 2, 3, 8, 9, 11, 14, 18, 19, 21, X and Y). The results on human lymphocytes irradiated with 500 kJ/m2 at a wavelength of 365 nm indicate that the induced number of chromatin strand breaks does not correlate with the chromosome size. They therefore are distributed in a non-random manner. For example, fragments of the gene-rich chromosome chromosome 1 were found in the comet tail in only 3% of the examined cells, and thus chromosome 1 is rather stable, whereas fragmentation of the gene-poor chromosome 8 was observed in 25% of all comets. On the basis of all 12 chromosomes analyzed, an inverse correlation between the density of active genes and the sensitivity toward UV-A radiation is found.
Collapse
Affiliation(s)
- A Rapp
- Institut für Molekulare Biotechnologie, Jena, Germany.
| | | | | | | |
Collapse
|
18
|
Abstract
The acetylation of the core histone N-terminal "tail" domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks.
Collapse
Affiliation(s)
- A T Annunziato
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
19
|
Affiliation(s)
- K M Karrer
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
20
|
Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 1998; 9:765-75. [PMID: 9881967 DOI: 10.1016/s1074-7613(00)80642-1] [Citation(s) in RCA: 578] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Differentiating cells undergo programmed alterations in their patterns of gene expression, which are often regulated by structural changes in chromatin. Here we demonstrate that T cell differentiation results in long-range changes in the chromatin structure of effector cytokine genes, which persist in resting Th1 and Th2 cells in the absence of further stimulation. Differentiation of naive T helper cells into mature Th2 cells is associated with chromatin remodeling of the IL-4 and IL-13 genes, whereas differentiation into Th1 cells evokes remodeling of the IFNgamma but not IL-4 or IL-13 genes. IL-4 locus remodeling is accompanied by demethylation and requires both antigen stimulation and STAT6 activation. We propose that chromatin remodeling of cytokine gene loci is functionally associated with productive T cell differentiation and may explain the coordinate regulation of Th2 cytokine genes.
Collapse
Affiliation(s)
- S Agarwal
- Department of Pathology, Harvard Medical School, Center for Blood Research, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
21
|
Jones AL, Thomas CL, Maule AJ. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J 1998; 17:6385-93. [PMID: 9799246 PMCID: PMC1170963 DOI: 10.1093/emboj/17.21.6385] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The relationship between co-suppression and DNA methylation was explored in transgenic plants showing inducible co-suppression following infection with a cytoplasmically replicating RNA virus. Induction resulted in a loss of transgene mRNA and resistance to further infection, factors typical of post-transcriptional gene silencing. In infected plants, de novo methylation of the transgene appeared to precede the onset of resistance and only occurred in plants where the outcome was co-suppression. The methylation was limited to sequences homologous to the viral RNA and occurred at both symmetric and non-symmetric sites on the DNA. Although methylation is predicted to occur in mitotic cells, the virus was found not to access the meristem. A diffusible sequence-specific signal may account for the epigenetic changes in those tissues.
Collapse
Affiliation(s)
- A L Jones
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
22
|
Abstract
The allele-specific epigenetic markings of endogenously imprinted genes in placental mammals occur during gametogenesis. The identification of the molecular nature of gametic imprints is the first step towards understanding the mechanistic basis of epigenesis in embryonic and adult somatic tissues. The specific question addressed in this work is whether the closely positioned but oppositely imprinted insulin-like growth factor 2 (IGF 2) and H19 genes, which have similar temporal regulation during development, differ in chromatin structure in mammalian spermatozoa. During terminal differentiation of mammalian spermatozoa, about 3-15% of the haploid genome retains a quasisomatic-type chromatin structure, whereas the remaining genomes interact with protamines that are further cross-linked by-S-S- bridges. Micrococcal nuclease (MNase) and DNase I digestions of human (HSN) and porcine sperm nuclei (PSN) showed that the IGF 2 gene in both types of nuclei retained somatic-type nucleosomes that were close-packed with a periodicity of 150 bp. However, the H19 gene in both species was predominantly organised by unique structural repeats, which were 650-674 bp in PSN and 438-522 bp in HSN, condensing at least 20 kb of chromatin. These results, together with previous studies, suggest that epigenetic chromatin modification leading to preferential condensation of the paternal H19 allele in embryonic tissues is already present in the germ cells.
Collapse
Affiliation(s)
- S Banerjee
- Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, United Kingdom.
| | | |
Collapse
|
23
|
Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 1998; 18:3350-6. [PMID: 9584175 PMCID: PMC108916 DOI: 10.1128/mcb.18.6.3350] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most DNA in human sperm is bound to highly basic proteins called protamines, but a small proportion is complexed with histones similar to those found in active chromatin. This raises the intriguing possibility that histones in sperm are marking sets of genes that will be preferentially activated during early development. We have examined the chromatin structure of members of the beta-globin gene family, which are expressed at different times in development, and the protamine 2 gene, which is expressed in spermatids prior to the widespread displacement of histones by transition proteins. The genes coding for epsilon and gamma globin, which are active in the embryonic yolk sac, contain regions which are histone associated in the sperm. No histone-associated regions are present at the sites tested within the beta- and delta-globin genes which are silent in the embryonic yolk sac. The trends of histone or protamine association are consistent for samples from the same person, and no significant between-subject variations in these trends are found for 13 of the 15 fragments analyzed in the two donors. The results suggest that sperm chromatin structures are generally similar in different men but that the length of the histone-associated regions can vary. The association of sperm DNA with histones or protamines sometimes changes within as little as 400 bp of DNA, suggesting that there is fine control over the retention of histones.
Collapse
Affiliation(s)
- M Gardiner-Garden
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | | | | | | |
Collapse
|
24
|
Gericke GS. Chromosomal fragility may be indicative of altered higher-order DNA organization as the underlying genetic diathesis in complex neurobehavioral disorders. Med Hypotheses 1998; 50:319-26. [PMID: 9690767 DOI: 10.1016/s0306-9877(98)90004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preliminary observations concerning increased chromosomal fragility in association with behavioural disorders in humans allow an opportunity to suggest a cohesive theory regarding the possible importance of higher-order DNA modifications in the coordination of gene function in brain evolution and during development. Visible or submicroscopic acentric chromosomal fragments are formed as an accompaniment to chromosomal breakage and are associated with sequence amplification. During genomic reintegration of extrachromosomally amplified repeat sequence elements, functional consequences could include unequal crossing over with gain-of-function, and/or deletion with loss-of-function. This process could result in regulatory changes in gene function in association with normal coding regions, since fragile sites appear to be located at or near upstream DNaseI-hypersensitive areas. Earlier research on chromosomal breakage in relation to transposon behaviour in maize has set a precedent by which many elements in a network could be coordinately controlled, a principle which may allow transcriptional control over multiple areas in the genome simultaneously. The hypothesis proposed in this paper implies that a small number of fundamental higher-order changes may be responsible for influencing a wide range of genetic alterations leading to complex phenotypes, sometimes segregating as distinct entities within pedigrees, or alternatively, and perhaps more commonly, presenting with several overlapping phenotypes in some other families. Studying only pure multiplex families in psychiatric genetics may not be sufficient for an understanding of the underlying genetic diathesis in this group of disorders. Validation of the fragile site hypothesis for complex neurobehavioural disorders may offer additional avenues for gene therapy based either on preferential integration of exogenous DNA at fragile sites, or utilizing the acentric fragments to modify sequence amplification extrachromosomally.
Collapse
Affiliation(s)
- G S Gericke
- MRC Neurogenetics Research Laboratory, Pretoria, South Africa.
| |
Collapse
|
25
|
Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998. [PMID: 9338076 DOI: 10.1016/s0065-230x(08)60702-2] [Citation(s) in RCA: 1202] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neoplastic cells simultaneously harbor widespread genomic hypomethylation, more regional areas of hypermethylation, and increased DNA-methyltransferase (DNA-MTase) activity. Each component of this "methylation imbalance" may fundamentally contribute to tumor progression. The precise role of the hypomethylation is unclear, but this change may well be involved in the widespread chromosomal alterations in tumor cells. A main target of the regional hypermethylation are normally unmethylated CpG islands located in gene promoter regions. This hypermethylation correlates with transcriptional repression that can serve as an alternative to coding region mutations for inactivation of tumor suppressor genes, including p16, p15, VHL, and E-cad. Each gene can be partially reactivated by demethylation, and the selective advantage for loss of gene function is identical to that seen for loss by classic mutations. How abnormal methylation, in general, and hypermethylation, in particular, evolve during tumorigenesis are just beginning to be defined. Normally, unmethylated CpG islands appear protected from dense methylation affecting immediate flanking regions. In neoplastic cells, this protection is lost, possibly by chronic exposure to increased DNA-MTase activity and/or disruption of local protective mechanisms. Hypermethylation of some genes appears to occur only after onset of neoplastic evolution, whereas others, including the estrogen receptor, become hypermethylated in normal cells during aging. This latter change may predispose to neoplasia because tumors frequently are hypermethylated for these same genes. A model is proposed wherein tumor progression results from episodic clonal expansion of heterogeneous cell populations driven by continuous interaction between these methylation abnormalities and classic genetic changes.
Collapse
Affiliation(s)
- S B Baylin
- Johns Hopkins Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
26
|
Monson EK, de Bruin D, Zakian VA. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci U S A 1997; 94:13081-6. [PMID: 9371803 PMCID: PMC24266 DOI: 10.1073/pnas.94.24.13081] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cac1p is a subunit of yeast chromatin assembly factor I (yCAF-I) that is thought to assemble nucleosomes containing diacetylated histones onto newly replicated DNA [Kaufman, P. D., Kobayashi, R. & Stillman, B. (1997) Genes Dev. 11, 345-357]. Although cac1 delta cells could establish and maintain transcriptional repression at telomeres, they displayed a reduced heritability of the repressed state. Single-cell analysis revealed that individual cac1 delta cells switch from transcriptionally "off" to transcriptionally "on" more often per cell cycle than wild-type cells. In addition, cac1 delta cells were defective for transcriptional silencing near internal tracts of C(1-3)A sequence, but they showed no defect in silencing at the silent mating type loci when analyzed by a reverse transcription-PCR assay. Despite the loss of transcriptional silencing at telomeres and internal C(1-3)A tracts, subtelomeric DNA was organized into nucleosomes that had all of the features characteristic of silent chromatin, such as hypoacetylation of histone H4 and protection from methylation by the Escherichia coli dam methylase. Thus, these features of silent chromatin are not sufficient for stable maintenance of a silent chromatin state. We propose that the inheritance of the transcriptionally repressed state requires the specific pattern of histone acetylation conferred by yCAF-I-mediated nucleosome assembly.
Collapse
Affiliation(s)
- E K Monson
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | | | |
Collapse
|
27
|
Abstract
One of the most prevalent products of oxygen radical injury in DNA is 8-hydroxyguanosine. Cells must be able to withstand damage by oxygen radicals and possess specific repair mechanisms that correct this oxidative lesion. However, when these defenses are oversaturated, such as under conditions of high oxidative stress, or when repair is inefficient, the miscoding potential of this lesion can result in mutations in the mammalian genome. In addition to causing genetic changes, active oxygen species can lead to epigenetic alterations in DNA methylation, without changing the DNA base sequence. Such changes in DNA methylation patterns can strongly affect the regulation of expression of many genes. Although DNA methylation patterns have been found to be altered during carcinogenesis, little is known about the mechanism(s) that produce this loss of epigenetic controls of gene expression in tumors. Replacement of guanine with the oxygen radical adduct 8-hydroxyguanine profoundly alters methylation of adjacent cytosines, suggesting a role for oxidative injury in the formation of aberrant DNA methylation patterns during carcinogenesis. In this paper, we review both the genetic and epigenetic mechanisms of oxidative DNA damage and its association with the carcinogenic process, with special emphasis on the influence of free radical injury on DNA methylation.
Collapse
Affiliation(s)
- S Cerda
- Department of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
28
|
Jeppesen P. Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays 1997; 19:67-74. [PMID: 9008418 DOI: 10.1002/bies.950190111] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunofluorescent labelling demonstrates that human metaphase chromosomes contain hyperacetylated histone H4. With the exception of the inactive X chromosome in female cells, where the bulk of histone H4 is underacetylated, H4 hyperacetylation is non-uniformly distributed along the chromosomes and clustered in cytologically resolvable chromatin domains that correspond, in general, with the R-bands of conventional staining. The strongest immunolabelling is often found in T-bands, the subset of intense R-bands having the highest GC content. The majority of mapped genes also occurs in R-band regions, with the highest gene density in T-bands. These observations are consistent with a model in which hyperacetylation of histone H4 marks the position of potentially active gene sequences on metaphase chromosomes. Since acetylation is maintained during mitosis, progeny cells receive an imprint of the histone H4 acetylation pattern that was present on the parental chromosomes before cell division. Histone acetylation could provide a mechanism for propagating cell memory, defined as the maintenance of committed states of gene expression through cell lineages.
Collapse
Affiliation(s)
- P Jeppesen
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
29
|
Madireddi MT, Coyne RS, Smothers JF, Mickey KM, Yao MC, Allis CD. Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 1996; 87:75-84. [PMID: 8858150 DOI: 10.1016/s0092-8674(00)81324-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During Tetrahymena conjugation, programmed DNA degradation occurs in two separate nuclei. Thousands of germline-specific deletion elements are removed from the genome of the developing somatic macronucleus, and the old parental macronucleus is degraded by an apoptotic mechanism. An abundant polypeptide, Pdd1p (formerly p65), localizes to both of these nuclei at the time of DNA degradation. Here we report that, in developing macronuclei, Pdd1p localizes to electron-dense, heterochromatic structures that contain germline-specific deletion elements. Pdd1p also associates with parental macronuclei during terminal stages of apoptosis. Sequencing of the PDD1 gene reveals it to be a member of the chromodomain family, suggesting a molecular link between heterochromatin assembly and programmed DNA degradation.
Collapse
Affiliation(s)
- M T Madireddi
- Department of Biology, University of Rochester, New York 14627, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ye F, Signer ER. RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc Natl Acad Sci U S A 1996; 93:10881-6. [PMID: 8855276 PMCID: PMC38251 DOI: 10.1073/pnas.93.20.10881] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously reported repeat-induced gene silencing (RIGS) in Arabidopsis, in which transgene expression may be silenced epigenetically when repeated sequences are present. Among an allelic series of lines comprising a primary transformant and various recombinant progeny carrying different numbers of drug resistance gene copies at the same locus, silencing was found to depend strictly on repeated sequences and to correlate with an absence of steady-state mRNA. We now report characterization, in nuclei isolated from the same transgenic lines, of gene expression by nuclear run-on assay and of chromatin structure by nuclease protection assay. We find that silencing is correlated with absence of run-on transcripts, indicating that expression is silenced at the level of transcription. We find further that silencing is also correlated with increased resistance to both DNase I and micrococcal nuclease, indicating that the silenced state reflects a change in chromatin configuration. We propose that silencing results when a locally paired region of homologous repeated nucleotide sequences is flanked by unpaired heterologous DNA, which leads chromatin to adopt a local configuration that is difficult to transcribe, and possibly akin to heterochromatin.
Collapse
Affiliation(s)
- F Ye
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
31
|
Abstract
The commonly accepted mechanism by which LiCl dorsalizes amphibian embryos is a respecification of ventral blastomeres, presumably through realignment of dorsal positional information in the embryo. An alternative mechanism, however, is an epigenetic change in the competence of cells to respond to cues they may be normally exposed to without effect. In order to test this hypothesis, we treated mouse preimplantation embryos, which do not possess any axial positional information, with LiCl, and observed axial abnormalities which must have been elaborated several days after treatment. We interpret this as support for the hypothesis that cellular competence rather than positional information is altered by LiCl, and suggest that this competence may be altered through the action of lithium sensitive enzymes that interact with chromatin.
Collapse
Affiliation(s)
- I Rogers
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Segil N, Guermah M, Hoffmann A, Roeder RG, Heintz N. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev 1996; 10:2389-400. [PMID: 8843192 DOI: 10.1101/gad.10.19.2389] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitosis in higher eukaryotes is accompanied by a general inhibition of transcription. To begin to understand the mechanisms underlying this inhibition we have examined the behavior of the general transcription factor TFIID during mitosis. Immunocytochemistry and subcellular fractionation studies indicate that the majority of TFIID is displaced from the disassembling prophase nucleus to the mitotic cytoplasm around the time of nuclear envelope breakdown. However, a subpopulation of TFIID remains associated tightly with the condensed mitotic chromosomes. Metabolic labeling of mitotic cells revealed that several subunits of TFIID undergo mitosis-specific phosphorylation, but in spite of these changes, the TFIID complex remains intact. Functional analysis of purified TFIID from mitotic cells shows that phosphorylated forms are unable to direct activator-dependent transcription, but that this activity is restored upon dephosphorylation. These results demonstrate that TFIID regulation by phosphorylation is likely to have an important role in mitotic inhibition of RNA polymerase II transcription. In addition, they suggest a mechanism for regulating gene expression through the selective disruption of polymerase II promoter structures during mitosis.
Collapse
Affiliation(s)
- N Segil
- Laboratory of Molecular Biology, Rockefeller University, New York 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Gaillard PHL, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 1996; 86:887-96. [PMID: 8808624 DOI: 10.1016/s0092-8674(00)80164-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA repair in the eukaryotic cell disrupts local chromatin organization. To investigate whether the resetting of nucleosomal arrays can be linked to the repair process, we developed model systems, with both Xenopus egg extract and human cell extracts, to follow repair and chromatin assembly in parallel on circular DNA templates. Both systems were able to carry out nucleotide excision repair of DNA lesions. We observed that UV-dependent DNA synthesis occurs simultaneously with chromatin assembly, strongly indicating a mechanistic coupling between the two processes. A complementation assay established that chromatin assembly factor I (CAF1) is necessary for this repair associated chromatin formation.
Collapse
|
34
|
Abstract
Inheritance of the active and inactive states of gene expression by individual cells is crucial for development. In fission yeast, mating-type region consists of three loci called mat1, mat2, and mat3. Transcriptionally silent mat2 and mat3 loci are separated by a 15 kb interval, designated the K-region, and serve as donors of information for transcriptionally active mat1 interconversion. In a strain carrying replacement of 7.5 kb of the K-region with the ura4 gene, we discovered that ura4 silencing and efficiency of mating-type switching were covariegated and were regulated by an epigenetic mechanism. Genetic analyses demonstrated that epigenetic states were remarkably stable not only in mitosis but also in meiosis and were linked to the mating-type region. This study indicates that different epigenetic states are heritable forms of chromatin organization at the mat region.
Collapse
Affiliation(s)
- S I Grewal
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- R Holliday
- CSIRO Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, Australia
| |
Collapse
|