1
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
2
|
Jiang L, Yao M, Shi J, Shen P, Niu G, Fei J. Yin yang 1 directly regulates the transcription of RE-1 silencing transcription factor. J Neurosci Res 2008; 86:1209-16. [PMID: 18092359 DOI: 10.1002/jnr.21595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RE-1 silencing transcription factor (REST) is a master transcription factor that plays a critical role in embryo development, especially during the process of neurogenesis and neural plasticity. However, the mechanism of REST gene transcription regulation is still an open question. Here, by combining bioinformatics analysis and experimental studies, we report that the transcription factor Yin Yang 1 (YY1) bound to a conserved YY1 binding site in the promoter of the mouse REST gene and positively regulated activity of this promoter in SH-SY5Y cells. Furthermore, analysis of microarray data revealed a significant correlation between the expression of YY1 and REST genes. Overall, this study suggests that YY1 directly regulates expression of the REST gene.
Collapse
Affiliation(s)
- Lichun Jiang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
4
|
Shou Z, Yamada K, Inazu T, Kawata H, Hirano S, Mizutani T, Yazawa T, Sekiguchi T, Yoshino M, Kajitani T, Okada KI, Miyamoto K. Genomic structure and analysis of transcriptional regulation of the mouse zinc-fingers and homeoboxes 1 (ZHX1) gene. Gene 2003; 302:83-94. [PMID: 12527199 DOI: 10.1016/s0378-1119(02)01093-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mouse zinc-fingers and homeoboxes 1 (ZHX1) gene was cloned and its transcriptional regulatory mechanism analysed. The mouse ZHX1 gene spans approximately 29 kb and consists of five exons. Exons 1-3 contain the nucleotide sequence of the 5'-noncoding region of mouse ZHX1 cDNA, exon 4 contains a part of the 5'-noncoding region, an entire coding sequence, and a part of the 3'-noncoding sequence, and exon 5 contains the resulting 3'-noncoding sequence. The ZHX1 gene exists as one copy in the haploid mouse genome. Two species of ZHX1 mRNA with or without the nucleotide sequence of the third exon are produced by an alternative splicing. To investigate the regulatory elements involved in the transcription of the ZHX1 gene, transient DNA transfection experiments with ZHX1/firefly luciferase reporter genes were performed using a lipofection method. Functional analyses of a series of 5'- and 3'-deletion constructs of the reporter genes revealed that the nucleotide sequence between -59 and +50 is required for full promoter activity in mouse embryonal carcinoma F9 cells. Two positive regulatory cis-acting elements in the region were identified. These elements, designated as Box A and Box B, are located between nucleotides -47 and -42 and +22 and +27, respectively, and synergistically stimulate transcription of the mouse ZHX1 gene. Electrophoretic mobility shift assays with specific competitors and antibodies show that PEA3 and Yin and Yang 1 (YY1) bind to Box A and Box B, respectively. Thus, we conclude that PEA3 and YY1 synergistically stimulate the transcription of the ZHX1 gene.
Collapse
Affiliation(s)
- Zhangfei Shou
- Department of Biochemistry, Fukui Medical University, 910-1193, Fukui, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The addition of O-linked N-acetylglucosamine (O-GlcNAc) to target proteins may serve as a signaling modification analogous to protein phosphorylation. Like phosphorylation, O-GlcNAc is a dynamic modification occurring in the nucleus and cytoplasm. Various analytical methods have been developed to detect O-GlcNAc and distinguish it from glycosylation in the endomembrane system. Many target molecules have been identified; these targets are typically components of supramolecular complexes such as transcription factors, nuclear pore proteins, or cytoskeletal components. The enzymes responsible for O-GlcNAc addition and removal are highly conserved molecules having molecular features consistent with a signaling role. The O-GlcNAc transferase and O-GlcNAcase are likely to act in consort with kinases and phosphatases generating various isoforms of physiological substrates. These isoforms may differ in such properties as protein-protein interactions, protein stability, and enzymatic activity. Since O-GlcNAc plays a critical role in the regulation of signaling pathways of higher plants, the glycan modification is likely to perform similar signaling functions in mammalian cells. Glucose and amino acid metabolism generates hexosamine precursors that may be key regulators of a nutrient sensing pathway involving O-GlcNAc signaling. Altered O-linked GlcNAc metabolism may also occur in human diseases including neurodegenerative disorders, diabetes mellitus and cancer.
Collapse
Affiliation(s)
- J A Hanover
- LCBB, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Hassler M, Richmond TJ. The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex. EMBO J 2001; 20:3018-28. [PMID: 11406578 PMCID: PMC150215 DOI: 10.1093/emboj/20.12.3018] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The serum response element (SRE) is found in several immediate-early gene promoters. This DNA sequence is necessary and sufficient for rapid transcriptional induction of the human c-fos proto-oncogene in response to stimuli external to the cell. Full activation of the SRE requires the cooperative binding of a ternary complex factor (TCF) and serum response factor (SRF) to their specific DNA sites. The X-ray structure of the human SAP-1-SRF-SRE DNA ternary complex was determined (Protein Data Bank code 1hbx). It shows SAP-1 TCF bound to SRF through interactions between the SAP-1 B-box and SRF MADS domain in addition to contacts between their respective DNA-binding motifs. The SAP-1 B-box is part of a flexible linker of which 21 amino acids become ordered upon ternary complex formation. Comparison with a similar region from the yeast MATalpha2-MCM1-DNA complex suggests a common binding motif through which MADS-box proteins may interact with additional factors such as Fli-1.
Collapse
Affiliation(s)
| | - Timothy J. Richmond
- ETH Zürich, Institut für Molekularbiologie und Biophysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
Corresponding author e-mail:
| |
Collapse
|
7
|
Schweppe RE, Gutierrez-Hartmann A. Pituitary Ets-1 and GABP bind to the growth factor regulatory sites of the rat prolactin promoter. Nucleic Acids Res 2001; 29:1251-60. [PMID: 11222776 PMCID: PMC29733 DOI: 10.1093/nar/29.5.1251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ets factors play a critical role in oncogenic Ras- and growth factor-mediated regulation of the proximal rat prolactin (rPRL) promoter in pituitary cells. The rPRL promoter contains two key functional Ets binding sites (EBS): a composite EBS/Pit-1 element located at -212 and an EBS that co-localizes with the basal transcription element (BTE, or A-site) located at -96. Oncogenic Ras exclusively signals to the -212 site, which we have named the Ras response element (RRE); whereas the response of multiple growth factors (FGFs, EGF, IGF, insulin and TRH) maps to both EBSs. Although Ets-1 and GA binding protein (GABP) have been implicated in the Ras and insulin responses, respectively, the precise identity of the pituitary Ets factors that specifically bind to the RRE and BTE sites remains unknown. In order to identify the Ets factor(s) present in GH4 and GH3 nuclear extracts (GH4NE and GH3NE) that bind to the EBSs contained in the RRE and BTE, we used EBS-RRE and BTE oligonucleotides in electrophoretic mobility shift assays (EMSAs), antibody supershift assays, western blot analysis of partially purified fractions and UV-crosslinking studies. EMSAs, using either the BTE or EBS-RRE probes, identified a specific protein-DNA complex, designated complex A, which contains an Ets factor as determined by oligonucleotide competition studies. Using western blot analysis of GH3 nuclear proteins that bind to heparin-Sepharose, we have shown that Ets-1 and GABP, which are MAP kinase substrates, co-purify with complex A, and supershift analysis with specific antisera revealed that complex A contains Ets-1, GABPalpha and GABPbeta1. In addition, we show that recombinant full-length Ets-1 binds equivalently to BTE and EBS-RRE probes, while recombinant GABPalpha/beta preferentially binds to the BTE probe. Furthermore, comparing the DNA binding of GH4NE containing both Ets-1 and GABP and HeLa nuclear extracts devoid of Ets-1 but containing GABP, we were able to show that the EBS-RRE preferentially binds Ets-1, while the BTE binds both GABP and Ets-1. Finally, UV-crosslinking experiments with radiolabeled EBS-RRE and BTE oligonucleotides showed that these probes specifically bind to a protein of approximately 64 kDa, which is consistent with binding to Ets-1 (54 kDa) and/or the DNA binding subunit of GABP, GABPalpha (57 kDa). These studies show that endogenous, pituitary-derived GABP and Ets-1 bind to the BTE, whereas Ets-1 preferentially binds to the EBS-RRE. Taken together, these data provide important insights into the mechanisms by which the combination of distinct Ets members and EBSs transduce differential growth factor responses.
Collapse
Affiliation(s)
- R E Schweppe
- Department of Biochemistry, Program in Molecular Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box B-151, Denver, CO 80262, USA.
| | | |
Collapse
|
8
|
Zhang J, Ma B, Marshak-Rothstein A, Fine A. Characterization of a novel cis-element that regulates Fas ligand expression in corneal endothelial cells. J Biol Chem 1999; 274:26537-42. [PMID: 10473616 DOI: 10.1074/jbc.274.37.26537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutively expressed Fas ligand in the cornea, Sertoli cell of the testes, Paneth cell of the intestines, and Clara cell of the airway protect surrounding parenchymal tissue by inducing apoptosis of Fas(+) immune cells during inflammatory reactions. Indeed, the action of corneal Fas ligand has been suggested to facilitate successful allogeneic cornea transplantation. To study the transcriptional regulation of Fas ligand in the eye, we employed an immortalized mouse corneal endothelial cell line (C3H3) that constitutively expresses Fas ligand. By deletion analysis of the mouse Fas ligand promoter, gel mobility shift assays, and site-directed mutagenesis, we found that a TCCT motif located -299 base pairs upstream from the transcriptional start site served as a major positive regulatory cis-element in C3H3 cells. In contrast, this element was not required for Fas ligand transcriptional activity in Sertoli cells and airway epithelial cells. By UV cross-linking analysis, we found that an approximately 30-kDa corneal nuclear protein binds to the Fas ligand promoter TCCT box and, thus, likely plays an important role in Fas ligand expression in corneal endothelial cells.
Collapse
Affiliation(s)
- J Zhang
- The Pulmonary Center and the Department of Biochemistry, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
9
|
Obata H, Hayashi K, Nishida W, Momiyama T, Uchida A, Ochi T, Sobue K. Smooth muscle cell phenotype-dependent transcriptional regulation of the alpha1 integrin gene. J Biol Chem 1997; 272:26643-51. [PMID: 9334246 DOI: 10.1074/jbc.272.42.26643] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The expressional regulation of chicken alpha1 integrin in smooth muscle cells was studied. The alpha1 integrin mRNA was expressed developmentally and was distributed dominantly in vascular and visceral smooth muscles in chick embryos. In a primary culture of smooth muscle cells, alpha1 integrin expression was dramatically down-regulated during serum-induced dedifferentiation. Promoter analyses revealed that the 5'-upstream region (-516 to +281) was sufficient for transcriptional activation in differentiated smooth muscle cells but not in dedifferentiated smooth muscle cells or chick embryo fibroblasts. Like other alpha integrin promoters, the promoter region of the alpha1 integrin gene lacks TATA and CCAAT boxes and contains binding sites for AP1 and AP2. The essential difference from other alpha integrin promoters is the presence of a CArG box-like motif. Deletion and site-directed mutation analyses revealed that the CArG box-like motif was an essential cis-element for transcriptional activation in differentiated smooth muscle cells, whereas the binding sites for AP1 and AP2 were not. Using specific antibodies, a nuclear protein factor specifically bound to the CArG box-like motif was identified as serum response factor. These results indicate that alpha1 integrin expression in smooth muscle cells is regulated transcriptionally in a phenotype-dependent manner and that serum response factor binding plays a crucial role in this regulation.
Collapse
Affiliation(s)
- H Obata
- Department of Neurochemistry and Neuropharmacology, Biomedical Research Center, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Haynes JI, Duncan MK, Piatigorsky J. Spatial and temporal activity of the alpha B-crystallin/small heat shock protein gene promoter in transgenic mice. Dev Dyn 1996; 207:75-88. [PMID: 8875078 DOI: 10.1002/(sici)1097-0177(199609)207:1<75::aid-aja8>3.0.co;2-t] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In order to study the spatial and temporal activity of the mouse alpha B-crystallin/small heat shock gene promoter during embryogenesis, we generated mice harboring a transgene consisting of approximately 4 kbp of alpha B-crystallin promoter sequence fused to the Escherichia coli lacZ reporter gene. beta-galactosidase activity was first observed in the heart rudiment of 8.5 days post coitum (d.p.c.) embryos. An identical expression pattern was obtained for the endogenous alpha B-crystallin gene by whole mount in situ hybridization. At 9.5 d.p.c., beta-galactosidase activity was detected in the lens placode, in the myotome of the somites, in Rathke's pouch (future anterior pituitary), and in some regions of oral ectoderm. We also examined the stress inducibility of the alpha B-crystallin promoter in vivo. Injection of sodium arsenite into mice resulted in increased endogenous alpha B-crystallin expression in the adrenal gland and possibly the liver. Our results indicate that visualization of beta-galactosidase activity provides an accurate reflection of endogenous alpha B-crystallin expression and demonstrate that the complex developmental pattern of mouse alpha B-crystallin gene expression is regulated at the transcriptional level. This expression pattern, coupled with the present literature which addresses functions of the protein, suggests a role for the alpha B-crystallin/small heat shock protein in intermediate filament turnover and cellular remodeling which occur during normal development and differentiation.
Collapse
Affiliation(s)
- J I Haynes
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
11
|
Zuckerkandl E. Molecular pathways to parallel evolution: I. Gene nexuses and their morphological correlates. J Mol Evol 1994; 39:661-78. [PMID: 7807554 DOI: 10.1007/bf00160412] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aspects of the regulatory interactions among genes are probably as old as most genes are themselves. Correspondingly, similar predispositions to changes in such interactions must have existed for long evolutionary periods. Features of the structure and the evolution of the system of gene regulation furnish the background necessary for a molecular understanding of parallel evolution. Patently "unrelated" organs, such as the fat body of a fly and the liver of a mammal, can exhibit fractional homology, a fraction expected to become subject to quantitation. This also seems to hold for different organs in the same organism, such as wings and legs of a fly. In informational macromolecules, on the other hand, homology is indeed all or none. In the quite different case of organs, analogy is expected usually to represent attenuated homology. Many instances of putative convergence are likely to turn out to be predominantly parallel evolution, presumably including the case of the vertebrate and cephalopod eyes. Homology in morphological features reflects a similarity in networks of active genes. Similar nexuses of active genes can be established in cells of different embryological origins. Thus, parallel development can be considered a counterpart to parallel evolution. Specific macromolecular interactions leading to the regulation of the c-fos gene are given as an example of a "controller node" defined as a regulatory unit. Quantitative changes in gene control are distinguished from relational changes, and frequent parallelism in quantitative changes is noted in Drosophila enzymes. Evolutionary reversions in quantitative gene expression are also expected. The evolution of relational patterns is attributed to several distinct mechanisms, notably the shuffling of protein domains. The growth of such patterns may in part be brought about by a particular process of compensation for "controller gene diseases," a process that would spontaneously tend to lead to increased regulatory and organismal complexity. Despite the inferred increase in gene interaction complexity, whose course over evolutionary time is unknown, the number of homology groups for the functional and structural protein units designated as domains has probably remained rather constant, even as, in some of its branches, evolution moved toward "higher" organisms. In connection with this process, the question is raised of parallel evolution within the purview of activating and repressing master switches and in regard to the number of levels into which the hierarchies of genic master switches will eventually be resolved.
Collapse
Affiliation(s)
- E Zuckerkandl
- Institute of Molecular Medical Sciences, Palo Alto, CA 94306
| |
Collapse
|