1
|
Nakayama T, Gray J, Grainger RM. Production of Transgenic F 0 Animals and Permanent Lines by Sperm Nuclear Transplantation in Xenopus tropicalis. Cold Spring Harb Protoc 2023; 2023:pdb.prot107003. [PMID: 36283835 DOI: 10.1101/pdb.prot107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Early efforts in the 1980s showed that DNA microinjected into Xenopus embryos could be integrated into the genome and transmitted through the germline at low efficiency. Subsequent studies revealed that transgenic lines, typically with multiple-copy inserts (e.g., to develop bright fluorescent protein-reporter lines), could be created via sperm nuclear injection protocols such as the one entitled restriction enzyme-mediated insertion, or REMI. Here we describe a refined sperm nuclear injection procedure, with a number of alterations, including elimination of a potential DNA-damaging restriction enzyme treatment, aimed at making F0 transgenic animals and transgenic lines in Xenopus tropicalis This protocol also uses an oocyte extract rather than the egg extract used in older protocols. These changes simplify and improve the efficiency of the procedure.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jessica Gray
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
2
|
Guille M, Grainger R. Genetics and Gene Editing Methods in Xenopus laevis and Xenopus tropicalis. Cold Spring Harb Protoc 2023; 2023:pdb.top107045. [PMID: 36283837 DOI: 10.1101/pdb.top107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Our understanding of biological systems has for many years been heavily influenced by experimental approaches that exploit genetic methods. These include gain-of-function experiments that overexpress transgenes or ectopically express injected RNA and loss-of-function experiments that knock out genes or knock down RNAs. Here, we review how these methods have been applied in Xenopus frogs and introduce a variety of protocols for genetic manipulation of Xenopus laevis and Xenopus tropicalis.
Collapse
Affiliation(s)
- Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2UP, United Kingdom
| | - Robert Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
3
|
Willsey HR, Guille M, Grainger RM. Modeling Human Genetic Disorders with CRISPR Technologies in Xenopus. Cold Spring Harb Protoc 2022; 2022:pdb.prot106997. [PMID: 34531330 DOI: 10.1101/pdb.prot106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Combining the power of Xenopus developmental biology with CRISPR-based technologies promises great discoveries in understanding and treating human genetic disorders. Here we provide a practical pipeline for how to go from known disease gene(s) or risk gene(s) of interest to methods for gaining functional insight into the contribution of these genes to disorder etiology in humans.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143, USA;
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2UP, United Kingdom
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
4
|
Nakayama T, Grainger RM, Cha SW. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis. Genesis 2020; 58:e23366. [PMID: 32277804 DOI: 10.1002/dvg.23366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
We report model experiments in which simple microinjection of fertilized eggs has been used to effectively perform homology-directed repair (HDR)-mediated gene editing in the two Xenopus species used most frequently for research: X. tropicalis and X. laevis. We have used long single-stranded DNAs having phosphorothioate modifications as donor templates for HDR at targeted genomic sites using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. First, X. tropicalis tyr mutant (i.e., albino) embryos were successfully rescued: partially pigmented tadpoles were seen in up to 35% of injected embryos, demonstrating the potential for efficient insertion of targeted point mutations. Second, in order to demonstrate the ability to tag genes with fluorescent proteins (FPs), we targeted the melanocyte-specific gene slc45a2.L of X. laevis to label it with the Superfolder green FP (sfGFP), seeing mosaic expression of sfGFP in melanophores in up to 20% of injected tadpoles. Tadpoles generated by these two approaches were raised to sexual maturity, and shown to successfully transmit HDR constructs through the germline with precise targeting and seamless recombination. F1 embryos showed rescue of the tyr mutation (X. tropicalis) and tagging in the appropriate pigment cell-specific manner of slc45a2.L with sfGFP (X. laevis).
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Sang-Wook Cha
- School of Natural Sciences, University of Central Missouri, Warrensburg, Missouri
| |
Collapse
|
5
|
Identification of novel cis-regulatory elements of Eya1 in Xenopus laevis using BAC recombineering. Sci Rep 2017; 7:15033. [PMID: 29101371 PMCID: PMC5670250 DOI: 10.1038/s41598-017-15153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Eya1 protein plays important roles during the development of cranial sensory organs and ganglia, kidneys, hypaxial muscles and several other organs in vertebrates. Eya1 is encoded by a complex locus with candidate cis-regulatory elements distributed over a 329 kbp wide genomic region in Xenopus. Consequently, very little is currently known about how expression of Eya1 is controlled by upstream regulators. Here we use a library of Xenopus tropicalis genomic sequences in bacterial artificial chromosomes (BAC) to analyze the genomic region surrounding the Eya1 locus for enhancer activity. We used BAC recombineering to first create GFP reporter constructs, which were analysed for enhancer activity by injection into Xenopus laevis embryos. We then used a second round of BAC recombineering to create deletion constructs of these BAC reporters to localize enhancer activity more precisely. This double recombineering approach allowed us to probe a large genomic region for enhancer activity without assumptions on sequence conservation. Using this approach we were able to identify two novel cis-regulatory regions, which direct Eya1 expression to the somites, pharyngeal pouches, the preplacodal ectoderm (the common precursor region of many cranial sensory organs and ganglia), and other ectodermal domains.
Collapse
|
6
|
no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Dev Biol 2017; 426:472-486. [DOI: 10.1016/j.ydbio.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022]
|
7
|
Spirhanzlova P, Dhorne-Pollet S, Fellah J, Da Silva C, Tlapakova T, Labadie K, Weissenbach J, Poulain J, Jaffredo T, Wincker P, Krylov V, Pollet N. Construction and characterization of a BAC library for functional genomics in Xenopus tropicalis. Dev Biol 2017; 426:255-260. [DOI: 10.1016/j.ydbio.2016.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022]
|
8
|
Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods Enzymol 2016; 568:635-60. [DOI: 10.1016/bs.mie.2015.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
9
|
Nakayama T, Fisher M, Nakajima K, Odeleye AO, Zimmerman KB, Fish MB, Yaoita Y, Chojnowski JL, Lauderdale JD, Netland PA, Grainger RM. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Dev Biol 2015; 408:328-44. [PMID: 25724657 DOI: 10.1016/j.ydbio.2015.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marilyn Fisher
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Akinleye O Odeleye
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Keith B Zimmerman
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Margaret B Fish
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Jena L Chojnowski
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
10
|
Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver. PLoS One 2015; 10:e0117370. [PMID: 25658845 PMCID: PMC4319907 DOI: 10.1371/journal.pone.0117370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.
Collapse
|
11
|
Wang C, Szaro BG. A method for using direct injection of plasmid DNA to study cis-regulatory element activity in F0 Xenopus embryos and tadpoles. Dev Biol 2014; 398:11-23. [PMID: 25448690 DOI: 10.1016/j.ydbio.2014.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
The ability to express exogenous reporter genes in intact, externally developing embryos, such as Xenopus, is a powerful tool for characterizing the activity of cis-regulatory gene elements during development. Although methods exist for generating transgenic Xenopus lines, more simplified methods for use with F0 animals would significantly speed the characterization of these elements. We discovered that injecting 2-cell stage embryos with a plasmid bearing a ϕC31 integrase-targeted attB element and two dual β-globin HS4 insulators flanking a reporter transgene in opposite orientations relative to each other yielded persistent expression with sufficiently high penetrance for characterizing the activity of the promoter without having to coinject integrase RNA. Expression began appropriately during development and persisted into swimming tadpole stages without perturbing the expression of the cognate endogenous gene. Coinjected plasmids having the same elements but expressing different reporter proteins were reliably coexpressed within the same cells, providing a useful control for variations in injections between animals. To overcome the high propensity of these plasmids to undergo recombination, we developed a method for generating them using conventional cloning methods and DH5α cells for propagation. We conclude that this method offers a convenient and reliable way to evaluate the activity of cis-regulatory gene elements in the intact F0 embryo.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
12
|
Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. Dev Biol 2014; 395:317-330. [PMID: 25224223 DOI: 10.1016/j.ydbio.2014.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/20/2014] [Accepted: 09/05/2014] [Indexed: 01/23/2023]
Abstract
The retinal anterior homeobox (rax) gene encodes a transcription factor necessary for vertebrate eye development. rax transcription is initiated at the end of gastrulation in Xenopus, and is a key part of the regulatory network specifying anterior neural plate and retina. We describe here a Xenopus tropicalis rax mutant, the first mutant analyzed in detail from a reverse genetic screen. As in other vertebrates, this nonsense mutation results in eyeless animals, and is lethal peri-metamorphosis. Tissue normally fated to form retina in these mutants instead forms tissue with characteristics of diencephalon and telencephalon. This implies that a key role of rax, in addition to defining the eye field, is in preventing alternative forebrain identities. Our data highlight that brain and retina regions are not determined by the mid-gastrula stage but are by the neural plate stage. An RNA-Seq analysis and in situ hybridization assays for early gene expression in the mutant revealed that several key eye field transcription factors (e.g. pax6, lhx2 and six6) are not dependent on rax activity through neurulation. However, these analyses identified other genes either up- or down-regulated in mutant presumptive retinal tissue. Two neural patterning genes of particular interest that appear up-regulated in the rax mutant RNA-seq analysis are hesx1 and fezf2. These genes were not previously known to be regulated by rax. The normal function of rax is to partially repress their expression by an indirect mechanism in the presumptive retina region in wildtype embryos, thus accounting for the apparent up-regulation in the rax mutant. Knock-down experiments using antisense morpholino oligonucleotides directed against hesx1 and fezf2 show that failure to repress these two genes contributes to transformation of presumptive retinal tissue into non-retinal forebrain identities in the rax mutant.
Collapse
|
13
|
Bhatia S, Bengani H, Fish M, Brown A, Divizia M, de Marco R, Damante G, Grainger R, van Heyningen V, Kleinjan D. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 2013; 93:1126-34. [PMID: 24290376 DOI: 10.1016/j.ajhg.2013.10.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/19/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023] Open
Abstract
The strictly regulated expression of most pleiotropic developmental control genes is critically dependent on the activity of long-range cis-regulatory elements. This was revealed by the identification of individuals with a genetic condition lacking coding-region mutations in the gene commonly associated with the disease but having a variety of nearby chromosomal abnormalities, collectively described as cis-ruption disease cases. The congenital eye malformation aniridia is caused by haploinsufficiency of the developmental regulator PAX6. We discovered a de novo point mutation in an ultraconserved cis-element located 150 kb downstream from PAX6 in an affected individual with intact coding region and chromosomal locus. The element SIMO acts as a strong enhancer in developing ocular structures. The mutation disrupts an autoregulatory PAX6 binding site, causing loss of enhancer activity, resulting in defective maintenance of PAX6 expression. These findings reveal a distinct regulatory mechanism for genetic disease by disruption of an autoregulatory feedback loop critical for maintenance of gene expression through development.
Collapse
|
14
|
Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 2013; 51:835-43. [PMID: 24123613 PMCID: PMC3947545 DOI: 10.1002/dvg.22720] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022]
Abstract
We have assessed the efficacy of the recently developed CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system for genome modification in the amphibian Xenopus tropicalis. As a model experiment, targeted mutations of the tyrosinase gene were verified, showing the expected albinism phenotype in injected embryos. We further tested this technology by interrupting the six3 gene, which is required for proper eye and brain formation. Expected eye and brain phenotypes were observed when inducing mutations in the six3 coding regions, as well as when deleting the gene promoter by dual targeting. We describe here a standardized protocol for genome editing using this system. This simple and fast method to edit the genome provides a powerful new reverse genetics tool for Xenopus researchers.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Margaret B. Fish
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marilyn Fisher
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Jamina Oomen-Hajagos
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Gerald H. Thomsen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert M. Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
15
|
Pearl EJ, Grainger RM, Guille M, Horb ME. Development of Xenopus resource centers: the National Xenopus Resource and the European Xenopus Resource Center. Genesis 2012; 50:155-63. [PMID: 22253050 PMCID: PMC3778656 DOI: 10.1002/dvg.22013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/09/2012] [Indexed: 12/25/2022]
Abstract
Xenopus is an essential vertebrate model system for biomedical research that has contributed to important discoveries in many disciplines, including cell biology, molecular biology, physiology, developmental biology, and neurobiology. However, unlike other model systems no central repository/stock center for Xenopus had been established until recently. Similar to mouse, zebrafish, and fly communities, which have established stock centers, Xenopus researchers need to maintain and distribute rapidly growing numbers of inbred, mutant, and transgenic frog strains, along with DNA and protein resources, and individual laboratories struggle to accomplish this efficiently. In the last 5 years, two resource centers were founded to address this need: the European Xenopus Resource Center (EXRC) at the University of Portsmouth in England, and the National Xenopus Resource (NXR) at the Marine Biological Laboratory in Woods Hole, MA. These two centers work together to provide resources and support to the Xenopus research community. The EXRC and NXR serve as stock centers and acquire, produce, maintain and distribute mutant, inbred and transgenic Xenopus laevis and Xenopus tropicalis lines. Independently, the EXRC is a repository for Xenopus cDNAs, fosmids, and antibodies; it also provides oocytes and wild-type frogs within the United Kingdom. The NXR will complement these services by providing research training and promoting intellectual interchange through hosting mini-courses and workshops and offering space for researchers to perform short-term projects at the Marine Biological Laboratory. Together the EXRC and NXR will enable researchers to improve productivity by providing resources and expertise to all levels, from graduate students to experienced PIs. These two centers will also enable investigators that use other animal systems to take advantage of Xenopus' unique experimental features to complement their studies.
Collapse
Affiliation(s)
- Esther J. Pearl
- National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
| | - Robert M. Grainger
- University of Virginia Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, VA 22904, USA
| | - Matthew Guille
- European Xenopus Resource Center, St Michael’s Building, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Marko E. Horb
- National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
16
|
Khokha MK. Xenopuswhite papers and resources: Folding functional genomics and genetics into the frog. Genesis 2012; 50:133-42. [DOI: 10.1002/dvg.22015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 02/04/2023]
|