1
|
McCarthy FM, Jones TEM, Kwitek AE, Smith CL, Vize PD, Westerfield M, Bruford EA. The case for standardizing gene nomenclature in vertebrates. Nature 2023; 614:E31-E32. [PMID: 36792746 PMCID: PMC9931569 DOI: 10.1038/s41586-022-05633-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/06/2022] [Indexed: 02/17/2023]
Affiliation(s)
- Fiona M McCarthy
- The Chicken Gene Nomenclature Committee (CGNC), School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Tamsin E M Jones
- HUGO Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anne E Kwitek
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cynthia L Smith
- Mouse Genome Database, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Peter D Vize
- Xenbase, Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Monte Westerfield
- ZFIN, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| |
Collapse
|
2
|
Bruford EA, Braschi B, Haim-Vilmovsky L, Jones TEM, Seal RL, Tweedie S. The importance of being the HGNC. Hum Genomics 2022; 16:58. [PMID: 36380364 PMCID: PMC9664783 DOI: 10.1186/s40246-022-00432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The HUGO Gene Nomenclature Committee (HGNC) has been providing standardized symbols and names for human genes since the late 1970s. As funding agencies change their priorities, finding financial support for critical biomedical resources such as the HGNC becomes ever more challenging. In this article, we outline the key roles the HGNC currently plays in aiding communication and the need for these activities to be maintained.
Collapse
Affiliation(s)
- Elspeth A. Bruford
- grid.5335.00000000121885934Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0PT UK ,grid.52788.300000 0004 0427 7672HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - Bryony Braschi
- grid.52788.300000 0004 0427 7672HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - Liora Haim-Vilmovsky
- grid.52788.300000 0004 0427 7672HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - Tamsin E. M. Jones
- grid.52788.300000 0004 0427 7672HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - Ruth L. Seal
- grid.5335.00000000121885934Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0PT UK ,grid.52788.300000 0004 0427 7672HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - Susan Tweedie
- grid.52788.300000 0004 0427 7672HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| |
Collapse
|
3
|
Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells 2022; 11:cells11101595. [PMID: 35626631 PMCID: PMC9139329 DOI: 10.3390/cells11101595] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic–pituitary–thyroid and the hypothalamic–pituitary–adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic–pituitary–thyroid axis controls thyroid hormone production and release, whereas the hypothalamic–pituitary–adrenal/interrenal axis regulates the production and release of corticosteroids. One of the most salient effects of thyroid hormones and corticosteroids in post-embryonic developmental processes is their critical role in metamorphosis in anuran amphibians. Metamorphosis involves modifications to the morphological and biochemical characteristics of all larval tissues to enable the transition from one life stage to the next life stage that coincides with an ecological niche switch. This transition in amphibians is an example of a widespread phenomenon among vertebrates, where thyroid hormones and corticosteroids coordinate a post-embryonic developmental transition. The review addresses the functions and interactions of thyroid hormone and corticosteroid signaling in amphibian development (metamorphosis) as well as the developmental roles of these two pathways in vertebrate evolution.
Collapse
|
4
|
Beatman TR, Buckley KM, Cary GA, Hinman VF, Ettensohn CA. A nomenclature for echinoderm genes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6350312. [PMID: 34386815 PMCID: PMC8361234 DOI: 10.1093/database/baab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Echinoderm embryos and larvae are prominent experimental model systems for studying developmental mechanisms. High-quality, assembled, annotated genome sequences are now available for several echinoderm species, including representatives from most classes. The increased availability of these data necessitates the development of a nomenclature that assigns universally interpretable gene symbols to echinoderm genes to facilitate cross-species comparisons of gene functions, both within echinoderms and across other phyla. This paper describes the implementation of an improved set of echinoderm gene nomenclature guidelines that both communicates meaningful orthology information in protein-coding gene symbols and names and establishes continuity with nomenclatures developed for major vertebrate model organisms, including humans. Differences between the echinoderm gene nomenclature guidelines and vertebrate guidelines are examined and explained. This nomenclature incorporates novel solutions to allow for several types of orthologous relationships, including the single echinoderm genes with multiple vertebrate co-orthologs that result from whole-genome-duplication events. The current version of the Echinoderm Gene Nomenclature Guidelines can be found at https://www.echinobase.org/gene/static/geneNomenclature.jsp Database URL https://www.echinobase.org/
Collapse
Affiliation(s)
- Thomas R Beatman
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.,Echinobase, #646 Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Katherine M Buckley
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Gregory A Cary
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.,Echinobase, #646 Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.,Echinobase, #646 Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Slater PG, Palacios M, Larraín J. Xenopus, a Model to Study Wound Healing and Regeneration: Experimental Approaches. Cold Spring Harb Protoc 2021; 2021:pdb.top100966. [PMID: 33782095 DOI: 10.1101/pdb.top100966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xenopus has been widely used as a model organism to study wound healing and regeneration. During early development and at tadpole stages, Xenopus is a quick healer and is able to regenerate multiple complex organs-abilities that decrease with the progression of metamorphosis. This unique capacity leads us to question which mechanisms allow and direct regeneration at stages before the beginning of metamorphosis and which ones are responsible for the loss of regenerative capacities during later stages. Xenopus is an ideal model to study regeneration and has contributed to the understanding of morphological, cellular, and molecular mechanisms involved in these processes. Nevertheless, there is still much to learn. Here we provide an overview on using Xenopus as a model organism to study regeneration and introduce protocols that can be used for studying wound healing and regeneration at multiple levels, thus enhancing our understanding of these phenomena.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago de Chile, Chile 7820436
| | - Miriam Palacios
- Center for Aging and Regeneration, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago de Chile, Chile 7820436
| | - Juan Larraín
- Center for Aging and Regeneration, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago de Chile, Chile 7820436
| |
Collapse
|
6
|
|
7
|
Multi-Tissue Transcriptomes Yield Information on High-Altitude Adaptation and Sex-Determination in Scutiger cf. sikimmensis. Genes (Basel) 2019; 10:genes10110873. [PMID: 31683620 PMCID: PMC6895926 DOI: 10.3390/genes10110873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
The Himalayas are one of earth’s hotspots of biodiversity. Among its many cryptic and undiscovered organisms, including vertebrates, this complex high-mountain ecosystem is expected to harbour many species with adaptations to life in high altitudes. However, modern evolutionary genomic studies in Himalayan vertebrates are still at the beginning. Moreover, in organisms, like most amphibians with relatively high DNA content, whole genome sequencing remains bioinformatically challenging and no complete nuclear genomes are available for Himalayan amphibians. Here, we present the first well-annotated multi-tissue transcriptome of a Greater Himalayan species, the lazy toad Scutiger cf. sikimmensis (Anura: Megophryidae). Applying Illumina NextSeq 500 RNAseq to six tissues, we obtained 41.32 Gb of sequences, assembled to ~111,000 unigenes, translating into 54362 known genes as annotated in seven functional databases. We tested 19 genes, known to play roles in anuran and reptile adaptation to high elevations, and potentially detected diversifying selection for two (TGS1, SENP5) in Scutiger. Of a list of 37 genes, we also identify 27 candidate genes for sex determination or sexual development, all of which providing the first such data for this non-model megophryid species. These transcriptomes will serve as a valuable resource for further studies on amphibian evolution in the Greater Himalaya as a biodiversity hotspot.
Collapse
|
8
|
Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, Pells TJ, James-Zorn C, Wang Y, Ponferrada VG, Chu S, Chaturvedi P, Zorn AM, Vize PD. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res 2019; 46:D861-D868. [PMID: 29059324 PMCID: PMC5753396 DOI: 10.1093/nar/gkx936] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Xenbase (www.xenbase.org) is an online resource for researchers utilizing Xenopus laevis and Xenopus tropicalis, and for biomedical scientists seeking access to data generated with these model systems. Content is aggregated from a variety of external resources and also generated by in-house curation of scientific literature and bioinformatic analyses. Over the past two years many new types of content have been added along with new tools and functionalities to reflect the impact of high-throughput sequencing. These include new genomes for both supported species (each with chromosome scale assemblies), new genome annotations, genome segmentation, dynamic and interactive visualization for RNA-Seq data, updated ChIP-Seq mapping, GO terms, protein interaction data, ORFeome support, and improved connectivity to other biomedical and bioinformatic resources.
Collapse
Affiliation(s)
- Kamran Karimi
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Joshua D Fortriede
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Vaneet S Lotay
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Kevin A Burns
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Dong Zhou Wang
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Malcom E Fisher
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Troy J Pells
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Christina James-Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ying Wang
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - V G Ponferrada
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Stanley Chu
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Praneet Chaturvedi
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Peter D Vize
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
9
|
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics 2019; 20:607. [PMID: 31340759 PMCID: PMC6652013 DOI: 10.1186/s12864-019-5912-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. Results E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The “tardigrade unique proteins” (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. Conclusions Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12864-019-5912-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Kamilari
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Morten Schiøtt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| |
Collapse
|
10
|
Stöck M, Fakharzadeh F, Kuhl H, Rozenblut-Kościsty B, Leinweber S, Patel R, Ebrahimi M, Voitel S, Schmidtler JF, Kami HG, Ogielska M, Förster DW. Shedding Light on a Secretive Tertiary urodelean Relict: Hynobiid salamanders ( Paradactylodon persicus s.l.) from Iran, Illuminated by Phylogeographic, Developmental and Transcriptomic Data. Genes (Basel) 2019; 10:genes10040306. [PMID: 31003559 PMCID: PMC6523714 DOI: 10.3390/genes10040306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
The Hyrcanian Forests present a unique Tertiary relict ecosystem, covering the northern Elburz and Talysh Ranges (Iran, Azerbaijan), a poorly investigated, unique biodiversity hotspot with many cryptic species. Since the 1970s, two nominal species of Urodela, Hynobiidae, Batrachuperus (later: Paradactylodon) have been described: Paradactylodon persicus from northwestern and P. gorganensis from northeastern Iran. Although P. gorganensis has been involved in studies on phylogeny and development, there is little data on the phylogeography, systematics, and development of the genus throughout the Hyrcanian Forests; genome-wide resources have been entirely missing. Given the huge genome size of hynobiids, making whole genome sequencing hardly affordable, we aimed to publish the first transcriptomic resources for Paradactylodon from an embryo and a larva (9.17 Gb RNA sequences; assembled to 78,918 unigenes). We also listed 32 genes involved in vertebrate sexual development and sex determination. Photographic documentation of the development from egg sacs across several embryonal and larval stages until metamorphosis enabled, for the first time, comparison of the ontogeny with that of other hynobiids and new histological and transcriptomic insights into early gonads and timing of their differentiation. Transcriptomes from central Elburz, next-generation sequencing (NGS) libraries of archival DNA of topotypic P. persicus, and GenBank-sequences of eastern P. gorganensis allowed phylogenetic analysis with three mitochondrial genomes, supplemented by PCR-amplified mtDNA-fragments from 17 museum specimens, documenting <2% uncorrected intraspecific genetic distance. Our data suggest that these rare salamanders belong to a single species P. persicus s.l. Humankind has a great responsibility to protect this species and the unique biodiversity of the Hyrcanian Forest ecosystems.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany.
| | - Fatemeh Fakharzadeh
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61357-43135, Iran.
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany.
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21,50-335 Wroclaw, Poland.
| | - Sophie Leinweber
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany.
| | - Rhiddi Patel
- Evolutionary Genetics Department, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Mehregan Ebrahimi
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia.
| | - Sebastian Voitel
- Independent Researcher, Spangenbergstraße 81, D-06295 Eisleben, Germany.
| | | | - Haji Gholi Kami
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan 49136-15759, Iran.
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21,50-335 Wroclaw, Poland.
| | - Daniel W Förster
- Evolutionary Genetics Department, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| |
Collapse
|
11
|
Popov IK, Hiatt SM, Whalen S, Keren B, Ruivenkamp C, van Haeringen A, Chen MJ, Cooper GM, Korf BR, Chang C. A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway. Front Physiol 2019; 10:388. [PMID: 31024343 PMCID: PMC6465419 DOI: 10.3389/fphys.2019.00388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is a genetic disorder characterized by distinctive facial features, congenital heart defects, and skin abnormalities. Several germline gain-of-function mutations in the RAS/RAF/MEK/ERK pathway are associated with the disease, including KRAS, BRAF, MEK1, and MEK2. CFC syndrome thus belongs to a group of disorders known as RASopathies, which are all caused by pathogenic mutations in various genes encoding components of the RAS pathway. We recently identified novel variants in YWHAZ, a 14-3-3 family member, in individuals with a phenotype consistent with CFC that may potentially be deleterious and disease-causing. In the current study, we take advantage of the vertebrate model Xenopus laevis to analyze the functional consequence of a particular YWHAZ variant, S230W, and investigate the molecular mechanisms underlying its activity. We show that compared with wild type YWHAZ, the S230W variant induces severe embryonic defects when ectopically expressed in early Xenopus embryos. The S230W variant also rescues the defects induced by a dominant negative FGF receptor more efficiently and enhances Raf-stimulated Erk phosphorylation to a higher level than wild type YWHAZ. Although neither YWHAZ nor the variant promotes membrane recruitment of Raf proteins, the variant binds to more Raf and escapes phosphorylation by casein kinase 1a. Our data provide strong support to the hypothesis that the S230W variant of YWHAZ is a gain-of-function mutation in the RAS-ERK pathway and may underlie a CFC phenotype.
Collapse
Affiliation(s)
- Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Sandra Whalen
- UF de Génétique Clinique, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Paris, France
| | - Boris Keren
- UF de Génétique Clinique, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Paris, France
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Mei-Jan Chen
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bruce R Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Apollo: Democratizing genome annotation. PLoS Comput Biol 2019; 15:e1006790. [PMID: 30726205 PMCID: PMC6380598 DOI: 10.1371/journal.pcbi.1006790] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 01/10/2019] [Indexed: 12/05/2022] Open
Abstract
Genome annotation is the process of identifying the location and function of a genome's encoded features. Improving the biological accuracy of annotation is a complex and iterative process requiring researchers to review and incorporate multiple sources of information such as transcriptome alignments, predictive models based on sequence profiles, and comparisons to features found in related organisms. Because rapidly decreasing costs are enabling an ever-growing number of scientists to incorporate sequencing as a routine laboratory technique, there is widespread demand for tools that can assist in the deliberative analytical review of genomic information. To this end, we present Apollo, an open source software package that enables researchers to efficiently inspect and refine the precise structure and role of genomic features in a graphical browser-based platform. Some of Apollo’s newer user interface features include support for real-time collaboration, allowing distributed users to simultaneously edit the same encoded features while also instantly seeing the updates made by other researchers on the same region in a manner similar to Google Docs. Its technical architecture enables Apollo to be integrated into multiple existing genomic analysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the implications that Apollo and related applications may have on how the results of genome research are published and made accessible.
Collapse
|
13
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Emerman AB, Blower MD. The RNA-binding complex ESCRT-II in Xenopus laevis eggs recognizes purine-rich sequences through its subunit, Vps25. J Biol Chem 2018; 293:12593-12605. [PMID: 29903915 DOI: 10.1074/jbc.ra118.003718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
RNA-binding proteins (RBP) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. The endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II was identified previously as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV cross-linking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit, Vps25. UV cross-linking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNA and also suggest an unexpected link between endosome biology and RNA regulation.
Collapse
Affiliation(s)
- Amy B Emerman
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael D Blower
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
15
|
Bode K, O'Halloran DM. NCX-DB: a unified resource for integrative analysis of the sodium calcium exchanger super-family. BMC Neurosci 2018; 19:19. [PMID: 29649983 PMCID: PMC5898058 DOI: 10.1186/s12868-018-0423-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Na+/Ca2+ exchangers are low-affinity high-capacity transporters that mediate Ca2+ extrusion by coupling Ca2+ efflux to the influx of Na+ ions. The Na+/Ca2+ exchangers form a super-family comprised of three branches each differing in ion-substrate selectivity: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers, and Ca2+/cation exchangers. Their primary function is to maintain Ca2+ homeostasis and play a particularly important role in excitable cells that experience transient Ca2+ fluxes. Research into the role and activity of Na+/Ca2+ exchangers has focused extensively on the cardio-vascular system, however, growing evidence suggests that Na+/Ca2+ exchangers play a key role in neuronal processes such as memory formation, learning, oligodendrocyte differentiation, neuroprotection during brain ischemia and axon guidance. They have also been implicated in pathologies such as Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis and Epilepsy, however, a clear understanding of their mechanism during disease is lacking. To date, there has never been a central resource or database for Na+/Ca2+ exchangers. With clear disease relevance and ever-increasing research on Na+/Ca2+ exchangers from both model and non-model species, a database that unifies the data on Na+/Ca2+ exchangers is needed for future research. NCX-DB is a publicly available database with a web interface that enables users to explore various Na+/Ca2+ exchangers, perform cross-species sequence comparison, identify new exchangers, and stay-up to date with recent literature. NCX-DB is available on the web via an interactive user interface with an intuitive design, which is applicable for the identification and comparison of Na+/Ca2+ exchanger proteins across diverse species.
Collapse
Affiliation(s)
- Katrin Bode
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington, DC, 20052, USA.,Institute for Neuroscience, The George Washington University, 636A Ross Hall, 2300 I St. N.W., Washington, DC, 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington, DC, 20052, USA. .,Institute for Neuroscience, The George Washington University, 636A Ross Hall, 2300 I St. N.W., Washington, DC, 20052, USA.
| |
Collapse
|
16
|
Marín-Barba M, Gavilán H, Gutiérrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler GN, Morris CJ, Morales MP, Ruiz A. Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model. NANOSCALE 2018; 10:690-704. [PMID: 29242877 DOI: 10.1039/c7nr06020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicore superparamagnetic nanoparticles have been proposed as ideal tools for some biomedical applications because of their high magnetic moment per particle, high specific surface area and long term colloidal stability. Through controlled aggregation and packing of magnetic cores it is possible to obtain not only single-core but also multicore and hollow spheres with internal voids. In this work, we compare toxicological properties of single and multicore nanoparticles. Both types of particles showed moderate in vitro toxicity (MTT assay) tested in Hep G2 (human hepatocellular carcinoma) and Caco-2 (human colorectal adenocarcinoma) cells. The influence of surface chemistry in their biological behavior was also studied after functionalization with O,O'-bis(2-aminoethyl) PEG (2000 Da). For the first time, these nanoparticles were evaluated in a Xenopus laevis model studying their whole organism toxicity and their impact upon iron metabolism. The degree of activation of the metabolic pathway depends on the size and surface charge of the nanoparticles which determine their uptake. The results also highlight the potential of Xenopus laevis model bridging the gap between in vitro cell-based assays and rodent models for toxicity assessment to develop effective nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- M Marín-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
El-Hodiri HM, Kelly LE. Visualization of Gene Expression Patterns by In Situ Hybridization on Early Stages of Development of Xenopus laevis. Methods Mol Biol 2018; 1797:325-335. [PMID: 29896701 DOI: 10.1007/978-1-4939-7883-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ hybridization performed using whole fixed embryos provides accurate and detailed visualization of gene expression patterns. These patterns are useful for investigating spatial patterns of gene expression in normally developing embryos but can also be useful in investigating the effects of genetic or environmental changes on expression of genetic markers characteristic of particular tissues, organs, or genetic pathways. Our lab's protocol for whole-mount in situ hybridization is presented.
Collapse
Affiliation(s)
- Heithem M El-Hodiri
- Center for Molecular and Human Genetics, Nationwide Children's Hospital Research Institute, Columbus, OH, USA.
| | - Lisa E Kelly
- Center for Molecular and Human Genetics, Nationwide Children's Hospital Research Institute, Columbus, OH, USA
| |
Collapse
|
18
|
Buchholz DR. Xenopus metamorphosis as a model to study thyroid hormone receptor function during vertebrate developmental transitions. Mol Cell Endocrinol 2017; 459:64-70. [PMID: 28363743 DOI: 10.1016/j.mce.2017.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
A hormone-dependent developmental transition from aquatic to terrestrial existence occurs in all tetrapod vertebrates, such as birth, hatching, and metamorphosis. Thyroid hormones (TH) and their receptors (TRs) are key players in the tissue transformations comprising vertebrate developmental transitions. The African clawed frog, Xenopus, is a premier model for the role of TRs in developmental transitions because of the numerous and dramatic TH-dependent tissue transformations during metamorphosis and because of the endocrine, molecular, and genomic resources available. TRs are nuclear receptors that repress TH-response genes when plasma TH is minimal and that activate those same genes to induce tissue-specific gene regulation cascades when TH plasma levels increase. Tissue-specific TR expression levels help determine tissue sensitivity and responsivity to TH thereby regulating the initiation and rate of developmental change in TH-sensitive tissues which govern the tissue developmental asynchrony observed during metamorphosis. This review highlighting Xenopus presents the key experimental findings underpinning the roles TRs play in control of vertebrate developmental transitions.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Ct., Cincinnati, OH, 45221 USA.
| |
Collapse
|
19
|
Oh D, Houston DW. Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification. Dev Biol 2017; 432:237-247. [PMID: 29037933 DOI: 10.1016/j.ydbio.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023]
Abstract
The localization and organization of mitochondria- and ribonucleoprotein granule-rich germ plasm is essential for many aspects of germ cell development. In Xenopus, germ plasm is maternally inherited and is required for the specification of primordial germ cells (PGCs). Germ plasm is aggregated into larger patches during egg activation and cleavage and is ultimately translocated perinuclearly during gastrulation. Although microtubule dynamics and a kinesin (Kif4a) have been implicated in Xenopus germ plasm localization, little is known about how germ plasm distribution is regulated. Here, we identify a role for maternal Xenopus Syntabulin in the aggregation of germ plasm following fertilization. We show that depletion of sybu mRNA using antisense oligonucleotides injected into oocytes results in defects in the aggregation and perinuclear transport of germ plasm and subsequently in reduced PGC numbers. Using live imaging analysis, we also characterize a novel role for Sybu in the collection of germ plasm in vegetal cleavage furrows by surface contraction waves. Additionally, we show that a localized kinesin-like protein, Kif3b, is also required for germ plasm aggregation and that Sybu functionally interacts with Kif3b and Kif4a in germ plasm aggregation. Overall, these data suggest multiple coordinate roles for kinesins and adaptor proteins in controlling the localization and distribution of a cytoplasmic determinant in early development.
Collapse
Affiliation(s)
- Denise Oh
- The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA
| | - Douglas W Houston
- The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA.
| |
Collapse
|
20
|
Zahn N, Levin M, Adams DS. The Zahn drawings: new illustrations of Xenopus embryo and tadpole stages for studies of craniofacial development. Development 2017; 144:2708-2713. [PMID: 28765211 PMCID: PMC5560046 DOI: 10.1242/dev.151308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The embryos and tadpoles of the frog Xenopus are increasingly important subjects for studies of the development of the head and face - studies that are providing novel and crucial insight into the causes and prevention of a suite of devastating birth defects, as well as basic evolutionary and developmental biology. However, many studies are conducted on a range of embryonic stages that are not fully represented in the beloved Xenopus resource, Nieuwkoop and Faber's classic Normal Table of Xenopus laevis (Daudin) The lack of standardized images at these stages acts as a barrier to the efficient and accurate representation and communication of experimental methodology and expression data. To fill this gap, we have created 27 new high-quality illustrations. Like their oft-used predecessors from Nieuwkoop and Faber, these drawings can be freely downloaded and used, and will, we hope, serve as an essential resource for this important model system.
Collapse
Affiliation(s)
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA.,Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Dany Spencer Adams
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
21
|
Ratzan W, Falco R, Salanga C, Salanga M, Horb ME. Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer. Dev Biol 2017; 426:188-193. [PMID: 26993591 PMCID: PMC5025372 DOI: 10.1016/j.ydbio.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Completion of the Xenopus laevis genome sequence from inbred J strain animals has facilitated the generation of germline mutant X. laevis using targeted genome editing. In the last few years, numerous reports have demonstrated that TALENs are able to induce mutations in F0 Xenopus embryos, but none has demonstrated germline transmission of such mutations in X. laevis. In this report we used the oocyte host-transfer method to generate mutations in both tyrosinase homeologs and found highly-penetrant germline mutations; in contrast, embryonic injections yielded few germline mutations. We also compared the distribution of mutations in several F0 somatic tissues and germ cells and found that the majority of mutations in each tissue were different. These results establish that X. laevis J strain animals are very useful for generating germline mutations and that the oocyte host-transfer method is an efficient technique for generating mutations in both homeologs.
Collapse
Affiliation(s)
- Wil Ratzan
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Rosalia Falco
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Cristy Salanga
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Matthew Salanga
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
22
|
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 2017; 426:325-335. [PMID: 27109192 PMCID: PMC5074924 DOI: 10.1016/j.ydbio.2016.04.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.
Collapse
Affiliation(s)
- Panna Tandon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | - Frank Conlon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States
| | - J David Furlow
- Deparment of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| |
Collapse
|
23
|
Knowlton MN, Smith CL. Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species. Mamm Genome 2017; 28:367-376. [PMID: 28589392 PMCID: PMC5569137 DOI: 10.1007/s00335-017-9698-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/27/2017] [Indexed: 12/29/2022]
Abstract
The widespread use of CRISPR/Cas and other targeted endonuclease technologies in many species has led to an explosion in the generation of new mutations and alleles. The ability to generate many different mutations from the same target sequence either by homology-directed repair with a donor sequence or non-homologous end joining-induced insertions and deletions necessitates a means for representing these mutations in literature and databases. Standardized nomenclature can be used to generate unambiguous, concise, and specific symbols to represent mutations and alleles. The research communities of a variety of species using CRISPR/Cas and other endonuclease-mediated mutation technologies have developed different approaches to naming and identifying such alleles and mutations. While some organism-specific research communities have developed allele nomenclature that incorporates the method of generation within the official allele or mutant symbol, others use metadata tags that include method of generation or mutagen. Organism-specific research community databases together with organism-specific nomenclature committees are leading the way in providing standardized nomenclature and metadata to facilitate the integration of data from alleles and mutations generated using CRISPR/Cas and other targeted endonucleases.
Collapse
Affiliation(s)
| | - Cynthia L Smith
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, 04609, USA
| |
Collapse
|
24
|
no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Dev Biol 2017; 426:472-486. [DOI: 10.1016/j.ydbio.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022]
|
25
|
Schietroma C, Parain K, Estivalet A, Aghaie A, Boutet de Monvel J, Picaud S, Sahel JA, Perron M, El-Amraoui A, Petit C. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment. J Cell Biol 2017; 216:1849-1864. [PMID: 28495838 PMCID: PMC5461027 DOI: 10.1083/jcb.201612030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/21/2017] [Indexed: 01/19/2023] Open
Abstract
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but USH1 protein function in the retina is unclear. Schietroma et al. use Xenopus to model the deficiency in two USH1 proteins—protocadherin-15 and cadherin-23—and identify crucial roles for these molecules in shaping the photoreceptor outer segment. Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal.
Collapse
Affiliation(s)
- Cataldo Schietroma
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Amrit Estivalet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Asadollah Aghaie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Jacques Boutet de Monvel
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, 94405 Orsay, France
| | - Aziz El-Amraoui
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Christine Petit
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France .,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France.,Collège de France, 75005 Paris, France
| |
Collapse
|
26
|
Mlitz V, Hussain T, Tschachler E, Eckhart L. Filaggrin has evolved from an "S100 fused-type protein" (SFTP) gene present in a common ancestor of amphibians and mammals. Exp Dermatol 2017; 26:955-957. [PMID: 28191671 DOI: 10.1111/exd.13317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
The expression of filaggrin in differentiated keratinocytes and the association of filaggrin mutations with ichthyosis vulgaris and atopic dermatitis suggest that this prototypical member of the S100 fused-type protein (SFTP) family plays a key role in the epidermal barrier to the environment. Here, we report that SFTP genes are present not only in amniotes but also in amphibians. Four SFTPs are expressed in the skin of the frog Xenopus laevis. The results of this study indicate that filaggrin has evolved from an ancestral SFTP that may have contributed to skin modifications during the evolutionary transition to terrestrial life.
Collapse
Affiliation(s)
- Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tajamul Hussain
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function. Dev Biol 2017; 425:142-151. [DOI: 10.1016/j.ydbio.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/21/2022]
|
28
|
Toombs JA, Sytnikova YA, Chirn GW, Ang I, Lau NC, Blower MD. Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome. RNA (NEW YORK, N.Y.) 2017; 23:504-520. [PMID: 28031481 PMCID: PMC5340914 DOI: 10.1261/rna.058859.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.
Collapse
Affiliation(s)
- James A Toombs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Ignatius Ang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Edwards-Faret G, Muñoz R, Méndez-Olivos EE, Lee-Liu D, Tapia VS, Larraín J. Spinal cord regeneration in Xenopus laevis. Nat Protoc 2017; 12:372-389. [PMID: 28102835 DOI: 10.1038/nprot.2016.177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we present a protocol for the husbandry of Xenopus laevis tadpoles and froglets, and procedures to study spinal cord regeneration. This includes methods to induce spinal cord injury (SCI); DNA and morpholino electroporation for genetic studies; in vivo imaging for cell analysis; a swimming test to measure functional recovery; and a convenient model for screening for new compounds that promote neural regeneration. These protocols establish X. laevis as a unique model organism for understanding spinal cord regeneration by comparing regenerative and nonregenerative stages. This protocol can be used to understand the molecular and cellular mechanisms involved in nervous system regeneration, including neural stem and progenitor cell (NSPC) proliferation and neurogenesis, extrinsic and intrinsic mechanisms involved in axon regeneration, glial response and scar formation, and trophic factors. For experienced personnel, husbandry takes 1-2 months; SCI can be achieved in 5-15 min; and swimming recovery takes 20-30 d.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosana Muñoz
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio E Méndez-Olivos
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dasfne Lee-Liu
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victor S Tapia
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Taslimifar M, Oparija L, Verrey F, Kurtcuoglu V, Olgac U, Makrides V. Quantifying the relative contributions of different solute carriers to aggregate substrate transport. Sci Rep 2017; 7:40628. [PMID: 28091567 PMCID: PMC5238446 DOI: 10.1038/srep40628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B0AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB0,+ and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zurich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland
| | - Lalita Oparija
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Francois Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Ufuk Olgac
- The Interface Group, Institute of Physiology, University of Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Victoria Makrides
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland
| |
Collapse
|
31
|
Finger JH, Smith CM, Hayamizu TF, McCright IJ, Xu J, Law M, Shaw DR, Baldarelli RM, Beal JS, Blodgett O, Campbell JW, Corbani LE, Lewis JR, Forthofer KL, Frost PJ, Giannatto SC, Hutchins LN, Miers DB, Motenko H, Stone KR, Eppig JT, Kadin JA, Richardson JE, Ringwald M. The mouse Gene Expression Database (GXD): 2017 update. Nucleic Acids Res 2016; 45:D730-D736. [PMID: 27899677 PMCID: PMC5210556 DOI: 10.1093/nar/gkw1073] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
The Gene Expression Database (GXD; www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. Through curation of the scientific literature and by collaborations with large-scale expression projects, GXD collects and integrates data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. Expression data from both wild-type and mutant mice are included. The expression data are combined with genetic and phenotypic data in Mouse Genome Informatics (MGI) and made readily accessible to many types of database searches. At present, GXD includes over 1.5 million expression results and more than 300 000 images, all annotated with detailed and standardized metadata. Since our last report in 2014, we have added a large amount of data, we have enhanced data and database infrastructure, and we have implemented many new search and display features. Interface enhancements include: a new Mouse Developmental Anatomy Browser; interactive tissue-by-developmental stage and tissue-by-gene matrix views; capabilities to filter and sort expression data summaries; a batch search utility; gene-based expression overviews; and links to expression data from other species.
Collapse
Affiliation(s)
| | | | - Terry F Hayamizu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Jingxia Xu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Meiyee Law
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - David R Shaw
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Jon S Beal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Olin Blodgett
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jeff W Campbell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Lori E Corbani
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jill R Lewis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kim L Forthofer
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Pete J Frost
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Lucie N Hutchins
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Dave B Miers
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Howie Motenko
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kevin R Stone
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Janan T Eppig
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - James A Kadin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Martin Ringwald
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
32
|
Shah VV, Soibam B, Ritter RA, Benham A, Oomen J, Sater AK. MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm. Dev Biol 2016; 426:200-210. [PMID: 27623002 DOI: 10.1016/j.ydbio.2016.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
Abstract
The establishment of cell lineages occurs via a dynamic progression of gene regulatory networks (GRNs) that underlie developmental commitment and differentiation. To investigate how microRNAs (miRs) function in this process, we compared miRs and miR targets at the initiation of the two major ectodermal lineages in Xenopus. We used next-generation sequencing to identify over 170 miRs expressed in midgastrula ectoderm expressing either noggin or a constitutively active BMP receptor, reflecting anterior neural or epidermal ectoderm, respectively; 125 had not previously been identified in Xenopus. We identified the locations of the pre-miR sequences in the X. laevis genome. Neural and epidermal ectoderm express broadly similar sets of miRs. To identify targets of miR-dependent translational control, we co-immunoprecipitated Argonaute-Ribonucleoprotein (Ago-RNP) complexes from early neural and epidermal ectoderm and sequenced the associated RNA. The Ago-RNP RNAs from these tissues represent overlapping, yet distinct, subsets of genes. Moreover, the profile of Ago-RNP associated genes differs substantially from the profile of total RNAs in these tissues. We generated target predictions for the "high confidence" Ago-RNP RNAs using the identified ectodermal miRs; These RNAs generally had target sites for multiple miRs. Oct4 orthologues, as well as many of their previously identified transcriptional targets, are represented in the Ago-RNP pool in both tissues, suggesting that miR-dependent regulation contributes to the downregulation of the oct4 gene regulatory network and the reduction in ectodermal pluripotency.
Collapse
Affiliation(s)
- Vrutant V Shah
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | | | - Ruth A Ritter
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | | | - Jamina Oomen
- Program in Genetics, Stony Brook University, Stony Brook, NY, United States
| | - Amy K Sater
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX, United States.
| |
Collapse
|
33
|
Lombard-Banek C, Reddy S, Moody SA, Nemes P. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS). Mol Cell Proteomics 2016; 15:2756-68. [PMID: 27317400 PMCID: PMC4974349 DOI: 10.1074/mcp.m115.057760] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or <0.2% of the total protein contained in a blastomere in the 16-cell embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level.
Collapse
Affiliation(s)
| | - Sushma Reddy
- From the ‡Department of Chemistry and ¶Thomas Jefferson High School for Science and Technology, Alexandria, Virginia
| | - Sally A Moody
- §Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC
| | | |
Collapse
|
34
|
Gerchen JF, Reichert SJ, Röhr JT, Dieterich C, Kloas W, Stöck M. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers. PLoS One 2016; 11:e0156419. [PMID: 27232626 PMCID: PMC4883742 DOI: 10.1371/journal.pone.0156419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.
Collapse
Affiliation(s)
- Jörn F Gerchen
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Samuel J Reichert
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Johannes T Röhr
- Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
35
|
Shigeta M, Sakane Y, Iida M, Suzuki M, Kashiwagi K, Kashiwagi A, Fujii S, Yamamoto T, Suzuki KIT. Rapid and efficient analysis of gene function using CRISPR-Cas9 inXenopus tropicalisfounders. Genes Cells 2016; 21:755-71. [DOI: 10.1111/gtc.12379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Mitsuki Shigeta
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Yuto Sakane
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics; Kyushu Institute of Technology; 680-4 Kawazu Iizuka Fukuoka 820-8502 Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Keiko Kashiwagi
- Institute for Amphibian Biology; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Akihiko Kashiwagi
- Institute for Amphibian Biology; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics; Kyushu Institute of Technology; 680-4 Kawazu Iizuka Fukuoka 820-8502 Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Ken-ichi T. Suzuki
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
36
|
Vize PD, Zorn AM. Xenopus genomic data and browser resources. Dev Biol 2016; 426:194-199. [PMID: 27039265 DOI: 10.1016/j.ydbio.2016.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
The two species of Xenopus most commonly used in biomedical research are the diploid Xenopus (Silurana) tropicalis and the tetraploid Xenopus laevis. The X. tropicalis genome sequence has been available since 2010 and this year the X. laevis, genome from two distinct genetic backgrounds has been published. Multiple genome assemblies available for both species and transcriptomic and epigenetic data sets are growing rapidly, all of which are available from a variety of web resources. This review describes the contents of these resources, how to locate and download genomic data, and also how to view and manipulate these data on various public genome browsers, with an emphasis on Xenbase, the Xenopus model organism database.
Collapse
Affiliation(s)
- Peter D Vize
- Departments of Biological Science and Computer Science, University of Calgary, Alberta, Canada.
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
37
|
Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJC. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors. Development 2016; 143:1340-50. [PMID: 26952988 PMCID: PMC4852510 DOI: 10.1242/dev.127936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors. Highlighted article: A network of embryonic genes, many of which are expressed in the mesoderm and the organiser, can initiate transcription through a non-canonical mechanism.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ulrike G Jacobi
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|