1
|
Zhang LX, Mao J, Zhou YD, Mao GY, Guo RF, Ge HS, Chen X. Evaluation of microRNA expression profiles in human sperm frozen using permeable cryoprotectant-free droplet vitrification and conventional methods. Asian J Androl 2024; 26:366-376. [PMID: 38738948 PMCID: PMC11280198 DOI: 10.4103/aja202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 05/14/2024] Open
Abstract
For sperm cryopreservation, the conventional method, which requires glycerol, has been used for a long time. In addition, the permeable cryoprotectant-free vitrification method has been continuously studied. Although the differences of cryopreservation effects between the two methods have being studied, differences in microRNA (miRNA) profiles between them remain unclear. In this study, we investigated the differences in miRNA expression profiles among conventional freezing sperm, droplet vitrification freezing sperm and fresh human sperm. We also analyzed the differences between these methods in terms of differentially expressed miRNAs (DEmiRs) related to early embryonic development and paternal epigenetics. Our results showed no significant differences between the cryopreservation methods in terms of sperm motility ratio, plasma membrane integrity, DNA integrity, mitochondrial membrane potential, acrosome integrity, and ultrastructural damage. However, sperm miRNA-sequencing showed differences between the two methods in terms of the numbers of DEmiRs (28 and 19 with vitrification using a nonpermeable cryoprotectant and the conventional method, respectively) in postthaw and fresh sperm specimens. DEmiRs related to early embryonic development and paternal epigenetics mainly included common DEmiRs between the groups. Our results showed that the differences between conventional freezing and droplet vitrification were minimal in terms of miRNA expression related to embryonic development and epigenetics. Changes in sperm miRNA expression due to freezing are not always detrimental to embryonic development. This study compared differences in miRNA expression profiles before and after cryopreservation between cryopreservation by conventional and vitrification methods. It offers a new perspective to evaluate various methods of sperm cryopreservation.
Collapse
Affiliation(s)
- Li-Xin Zhang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Yan-Dong Zhou
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Guang-Yao Mao
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Run-Fa Guo
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Hong-Shan Ge
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Bolkhovitinov L, Weselman BT, Shaw GA, Dong C, Giribhattanavar J, Saha MS. Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage. J Dev Biol 2022; 10:38. [PMID: 36135371 PMCID: PMC9503425 DOI: 10.3390/jdb10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of anterior-posterior (AP) regional identity is an essential step in the appropriate development of the vertebrate central nervous system. An important aspect of AP neural axis formation is the inherent plasticity that allows developing cells to respond to and recover from the various perturbations that embryos continually face during the course of development. While the mechanisms governing the regionalization of the nervous system have been extensively studied, relatively less is known about the nature and limits of early neural plasticity of the anterior-posterior neural axis. This study aims to characterize the degree of neural axis plasticity in Xenopus laevis by investigating the response of embryos to a 180-degree rotation of their AP neural axis during gastrula stages by assessing the expression of regional marker genes using in situ hybridization. Our results reveal the presence of a narrow window of time between the mid- and late gastrula stage, during which embryos are able undergo significant recovery following a 180-degree rotation of their neural axis and eventually express appropriate regional marker genes including Otx, Engrailed, and Krox. By the late gastrula stage, embryos show misregulation of regional marker genes following neural axis rotation, suggesting that this profound axial plasticity is a transient phenomenon that is lost by late gastrula stages.
Collapse
Affiliation(s)
- Lyuba Bolkhovitinov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Bryan T. Weselman
- School of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
3
|
Klein SL, Tavares ALP, Peterson M, Sullivan CH, Moody SA. Repressive Interactions Between Transcription Factors Separate Different Embryonic Ectodermal Domains. Front Cell Dev Biol 2022; 10:786052. [PMID: 35198557 PMCID: PMC8859430 DOI: 10.3389/fcell.2022.786052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The embryonic ectoderm is composed of four domains: neural plate, neural crest, pre-placodal region (PPR) and epidermis. Their formation is initiated during early gastrulation by dorsal-ventral and anterior-posterior gradients of signaling factors that first divide the embryonic ectoderm into neural and non-neural domains. Next, the neural crest and PPR domains arise, either via differential competence of the neural and non-neural ectoderm (binary competence model) or via interactions between the neural and non-neural ectoderm tissues to produce an intermediate neural border zone (NB) (border state model) that subsequently separates into neural crest and PPR. Many previous gain- and loss-of-function experiments demonstrate that numerous TFs are expressed in initially overlapping zones that gradually resolve into patterns that by late neurula stages are characteristic of each of the four domains. Several of these studies suggested that this is accomplished by a combination of repressive TF interactions and competence to respond to local signals. In this study, we ectopically expressed TFs that at neural plate stages are characteristic of one domain in a different domain to test whether they act cell autonomously as repressors. We found that almost all tested TFs caused reduced expression of the other TFs. At gastrulation these effects were strictly within the lineage-labeled cells, indicating that the effects were cell autonomous, i.e., due to TF interactions within individual cells. Analysis of previously published single cell RNAseq datasets showed that at the end of gastrulation, and continuing to neural tube closure stages, many ectodermal cells express TFs characteristic of more than one neural plate stage domain, indicating that different TFs have the opportunity to interact within the same cell. At neurula stages repression was observed both in the lineage-labeled cells and in adjacent cells not bearing detectable lineage label, suggesting that cell-to-cell signaling has begun to contribute to the separation of the domains. Together, these observations directly demonstrate previous suggestions in the literature that the segregation of embryonic ectodermal domains initially involves cell autonomous, repressive TF interactions within an individual cell followed by the subsequent advent of non-cell autonomous signaling to neighbors.
Collapse
Affiliation(s)
- Steven L Klein
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Meredith Peterson
- Department of Biology, State College, Penn State University, University Park, PA, United States
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| |
Collapse
|
4
|
Kumar S, Umair Z, Kumar V, Kumar S, Lee U, Kim J. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos. Sci Rep 2020; 10:16780. [PMID: 33033315 PMCID: PMC7545198 DOI: 10.1038/s41598-020-73662-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
5
|
Li QX, Li NQ, Liao JY. Diagnostic and prognostic values of forkhead box D4 gene in colonic adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2615-2627. [PMID: 33165349 PMCID: PMC7642708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Previous studies found that Forkhead box D4 (FOXD4) overexpressed in human colorectal cancer had the worst prognosis. However, the diagnostic value and further mechanism have not been fully researched. Statistical examinations for FOXD4 expression colon adenocarcinoma (COAD) patients were obtained from The Cancer Genome Atlas (TCGA). Survival analysis was used to assess its prognostic value. Nomogram model was used for visual prediction of patient survival rate. The online functional enrichment analysis tool was used to evaluate the biological functions and pathways of FOXD4 and its co-expressed genes. Receiver operating characteristic curve analysis suggested that FOXD4 might be a diagnostic biomarker for COAD (P<0.001, area under the curve [AUC]=0.728, 95% confidence interval [CI]=0.669-0.787). Low expression of FOXD4 was associated with a good clinical outcome (P=0.001, HR=0.517, 95% CI=0.341-0.782). A total of 797 genes were correlated with FOXD4 and associated with cell proliferation, cell differentiation, nuclear matrix, Rap1 signaling pathway, RNA transport, and VEGF signaling pathway. In conclusion, expression of FOXD4 may be a diagnostic and prognostic biomarker in COAD.
Collapse
Affiliation(s)
- Qiu-Xia Li
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ning-Qin Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jin-Yuan Liao
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
6
|
Sun X, Ren Z, Cun Y, Zhao C, Huang X, Zhou J, Hu R, Su X, Ji L, Li P, Mak K, Gao F, Yang Y, Xu H, Ding J, Cao N, Li S, Zhang W, Lan P, Sun H, Wang J, Yuan P. Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic Acids Res 2020; 48:7182-7196. [PMID: 32510157 PMCID: PMC7367178 DOI: 10.1093/nar/gkaa482] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Hippo-YAP signaling pathway functions in early lineage differentiation of pluripotent stem cells, but the detailed mechanisms remain elusive. We found that knockout (KO) of Mst1 and Mst2, two key components of the Hippo signaling in mouse embryonic stem cells (ESCs), resulted in a disruption of differentiation into mesendoderm lineage. To further uncover the underlying regulatory mechanisms, we performed a series of ChIP-seq experiments with antibodies against YAP, ESC master transcription factors and some characterized histone modification markers as well as RNA-seq assays using wild type and Mst KO samples at ES and day 4 embryoid body stage respectively. We demonstrate that YAP is preferentially co-localized with super-enhancer (SE) markers such as Nanog, Sox2, Oct4 and H3K27ac in ESCs. The hyper-activation of nuclear YAP in Mst KO ESCs facilitates the binding of Nanog, Sox2 and Oct4 as well as H3K27ac modification at the loci where YAP binds. Moreover, Mst depletion results in novel SE formation and enhanced liquid-liquid phase-separated Med1 condensates on lineage associated genes, leading to the upregulation of these genes and the distortion of ESC differentiation. Our study reveals a novel mechanism on how Hippo-YAP signaling pathway dictates ESC lineage differentiation.
Collapse
Affiliation(s)
| | | | - Yixian Cun
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Cai Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Xianglin Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Rong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Xiaoxi Su
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- China Hong Kong Children's Hospital, Hong Kong SAR
| | - Lu Ji
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - King Lun Kingston Mak
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Feng Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yi Yang
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - He Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
- Department of Histology and embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Nan Cao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuo Li
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Jinkai Wang
- Correspondence may also be addressed to Jinkai Wang. Tel: +86 2087335142; Fax: +86 2087331209;
| | - Ping Yuan
- To whom correspondence should be addressed. Tel: +86 18819239657; Fax: +86 2038254166;
| |
Collapse
|
7
|
Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A. Natural size variation among embryos leads to the corresponding scaling in gene expression. Dev Biol 2020; 462:165-179. [PMID: 32259520 PMCID: PMC8073595 DOI: 10.1016/j.ydbio.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Xenopus laevis frogs from laboratory stocks normally lay eggs exhibiting extensive size variability. We find that these initial size differences subsequently affect the size of the embryos prior to the onset of growth, and the size of tadpoles during the growth period. Even though these tadpoles differ in size, their tissues, organs, and structures always seem to be properly proportioned, i.e. they display static allometry. Initial axial patterning events in Xenopus occur in a spherical embryo, allowing easy documentation of their size-dependent features. We examined the size distribution of early Xenopus laevis embryos and measured diameters that differed by about 38% with a median of about 1.43 mm. This range of embryo sizes corresponds to about a 1.9-fold difference in surface area and a 2.6-fold difference in volume. We examined the relationship between embryo size and gene expression and observed a significant correlation between diameter and RNA content during gastrula stages. In addition, we investigated the expression levels of genes that pattern the mesoderm, induce the nervous system and mediate the progression of ectodermal cells to neural precursors in large and small embryos. We found that most of these factors were expressed at levels that scaled with the different embryo sizes and total embryo RNA content. In agreement with the changes in transcript levels, the expression domains in larger embryos increased proportionally with the increase in surface area, maintaining their relative expression domain size in relation to the total size of the embryo. Thus, our study identified a mechanism for adapting gene expression domains to embryo size by adjusting the transcript levels of the genes regulating mesoderm induction and patterning. In the neural plate, besides the scaling of the expression domains, we observed similar cell sizes and cell densities in small and large embryos suggesting that additional cell divisions took place in large embryos to compensate for the increased size. Our results show in detail the size variability among Xenopus laevis embryos and the transcriptional adaptation to scale gene expression with size. The observations further support the involvement of BMP/ADMP signaling in the scaling process.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Steven L Klein
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
8
|
Prasad MS, Uribe-Querol E, Marquez J, Vadasz S, Yardley N, Shelar PB, Charney RM, García-Castro MI. Blastula stage specification of avian neural crest. Dev Biol 2020; 458:64-74. [PMID: 31610145 PMCID: PMC7050198 DOI: 10.1016/j.ydbio.2019.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022]
Abstract
Cell fate specification defines the earliest steps towards a distinct cell lineage. Neural crest, a multipotent stem cell population, is thought to be specified from the ectoderm, but its varied contributions defy canons of segregation potential and challenges its embryonic origin. Aiming to resolve this conflict, we have assayed the earliest specification of neural crest using blastula stage chick embryos. Specification assays on isolated chick epiblast explants identify an intermediate region specified towards the neural crest cell fate. Furthermore, low density culture suggests that the specification of intermediate cells towards the neural crest lineage is independent of contact mediated induction and Wnt-ligand induced signaling, but is, however, dependent on transcriptional activity of β-catenin. Finally, we have validated the regional identity of the intermediate region towards the neural crest cell fate using fate map studies. Our results suggest a model of neural crest specification within a restricted epiblast region in blastula stage chick embryos.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | | | | | | | | | - Patrick B Shelar
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA.
| |
Collapse
|
9
|
Angerilli A, Smialowski P, Rupp RA. The Xenopus animal cap transcriptome: building a mucociliary epithelium. Nucleic Acids Res 2019; 46:8772-8787. [PMID: 30165493 PMCID: PMC6158741 DOI: 10.1093/nar/gky771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023] Open
Abstract
With the availability of deep RNA sequencing, model organisms such as Xenopus offer an outstanding opportunity to investigate the genetic basis of vertebrate organ formation from its embryonic beginnings. Here we investigate dynamics of the RNA landscape during formation of the Xenopus tropicalis larval epidermis. Differentiation of non-neural ectoderm starts at gastrulation and takes about one day to produce a functional mucociliary epithelium, highly related to the one in human airways. To obtain RNA expression data, uncontaminated by non-epidermal tissues of the embryo, we use prospective ectodermal explants called Animal Caps (ACs), which differentiate autonomously into a ciliated epidermis. Their global transcriptome is investigated at three key timepoints, with a cumulative sequencing depth of ∼108 reads per developmental stage. This database is provided as online Web Tool to the scientific community. In this paper, we report on global changes in gene expression, an unanticipated diversity of mRNA splicing isoforms, expression patterns of repetitive DNA Elements, and the complexity of circular RNAs during this process. Computationally we derive transcription factor hubs from this data set, which may help in the future to define novel genetic drivers of epidermal differentiation in vertebrates.
Collapse
Affiliation(s)
- Alessandro Angerilli
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany
| | - Pawel Smialowski
- Bioinformatic Core Facility, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany.,Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg-München, Germany
| | - Ralph Aw Rupp
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany
| |
Collapse
|
10
|
Abstract
The individual blastomeres of Xenopus two- to 32-cell embryos have been fate mapped. This work identified the precursors of most of the embryonic cell types, tissues and organs; however, the maps do not reveal the cell interactions or signaling pathways that are required for establishing cell fates. This protocol describes an explant culture approach for culturing blastomeres in isolation to test whether a cell's fate has been determined. Cleavage blastomeres can be cultured in a simple salt medium without added factors because they contain intracellular yolk platelets, which provide an intrinsic energy source. This method allows one to test whether an isolated blastomere can produce specific cell types or express tissue-specific genes independent of interactions with other cells or specific signaling pathways. The role of cell-cell interactions can be revealed by co-culturing different sets of blastomeres. One can identify the molecules that are required for those cell fates by applying knockdown approaches to the isolated cell. One also can determine the developmental time at which cell fates are committed by explanting blastomere lineages at different stages.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC 20037
| |
Collapse
|
11
|
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e322. [PMID: 29722151 PMCID: PMC6215528 DOI: 10.1002/wdev.322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Neural crest (NC) cells are a stem-like multipotent population of progenitor cells that are present in vertebrate embryos, traveling to various regions in the developing organism. Known as the "fourth germ layer," these cells originate in the ectoderm between the neural plate (NP), which will become the brain and spinal cord, and nonneural tissues that will become the skin and the sensory organs. NC cells can differentiate into more than 30 different derivatives in response to the appropriate signals including, but not limited to, craniofacial bone and cartilage, sensory nerves and ganglia, pigment cells, and connective tissue. The molecular and cellular mechanisms that control the induction and specification of NC cells include epigenetic control, multiple interactive and redundant transcriptional pathways, secreted signaling molecules, and adhesion molecules. NC cells are important not only because they transform into a wide variety of tissue types, but also because their ability to detach from their epithelial neighbors and migrate throughout developing embryos utilizes mechanisms similar to those used by metastatic cancer cells. In this review, we discuss the mechanisms required for the induction and specification of NC cells in various vertebrate species, focusing on the roles of early morphogenesis, cell adhesion, signaling from adjacent tissues, and the massive transcriptional network that controls the formation of these amazing cells. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Crystal D. Rogers
- Department of Biology, College of Science and Mathematics, California State University Northridge, Northridge, California
| | - Shuyi Nie
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
12
|
Baxi AB, Lombard-Banek C, Moody SA, Nemes P. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. ACS Chem Neurosci 2018; 9:2064-2073. [PMID: 29578674 DOI: 10.1021/acschemneuro.7b00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular program by which embryonic ectoderm is induced to form neural tissue is essential to understanding normal and impaired development of the central nervous system. Xenopus has been a powerful vertebrate model in which to elucidate this process. However, abundant vitellogenin (yolk) proteins in cells of the early Xenopus embryo interfere with protein detection by high-resolution mass spectrometry (HRMS), the technology of choice for identifying these gene products. Here, we systematically evaluated strategies of bottom-up proteomics to enhance proteomic detection from the neural ectoderm (NE) of X. laevis using nanoflow high-performance liquid chromatography (nanoLC) HRMS. From whole embryos, high-pH fractionation prior to nanoLC-HRMS yielded 1319 protein groups vs 762 proteins without fractionation (control). Compared to 702 proteins from dorsal halves of embryos (control), 1881 proteins were identified after yolk platelets were depleted via sucrose-gradient centrifugation. We combined these approaches to characterize protein expression in the NE of the early embryo. To guide microdissection of the NE tissues from the gastrula (stage 10), their precursor (midline dorsal-animal, or D111) cells were fate-mapped from the 32-cell embryo using a fluorescent lineage tracer. HRMS of the cell clones identified 2363 proteins, including 147 phosphoproteins (without phosphoprotein enrichment), transcription factors, and members from pathways of cellular signaling. In reference to transcriptomic maps of the developing X. laevis, 76 proteins involved in signaling pathways were gene matched to transcripts with known enrichment in the neural plate. Besides a protocol, this work provides qualitative proteomic data on the early developing NE.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Camille Lombard-Banek
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
13
|
Rogers CD, Sorrells LK, Bronner ME. A catenin-dependent balance between N-cadherin and E-cadherin controls neuroectodermal cell fate choices. Mech Dev 2018; 152:44-56. [PMID: 30009960 PMCID: PMC6112866 DOI: 10.1016/j.mod.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/16/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023]
Abstract
Characterizing endogenous protein expression, interaction and function, this study identifies in vivo interactions and competitive balance between N-cadherin and E-cadherin in developing avian (Gallus gallus) neural and neural crest cells. Numerous cadherin proteins, including neural cadherin (Ncad) and epithelial cadherin (Ecad), are expressed in the developing neural plate as well as in neural crest cells as they delaminate from the newly closed neural tube. To clarify independent or coordinate function during development, we examined their expression in the cranial region. The results revealed surprising overlap and distinct localization of Ecad and Ncad in the neural tube. Using a proximity ligation assay and co-immunoprecipitation, we found that Ncad and Ecad formed heterotypic complexes in the developing neural tube, and that modulation of Ncad levels led to reciprocal gain or reduction of Ecad protein, which then alters ectodermal cell fate. Here, we demonstrate that the balance of Ecad and Ncad is dependent upon the availability of β-catenin proteins, and that alteration of either classical cadherin modifies the proportions of the neural crest and neuroectodermal cells that are specified.
Collapse
Affiliation(s)
- Crystal D Rogers
- Department of Biology, California State University, Northridge, Northridge, CA 91330, United States of America.
| | - Lisa K Sorrells
- Department of Biology, California State University, Northridge, Northridge, CA 91330, United States of America.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering 139-74, California Institute of Technology, Pasadena, CA 91125, United States of America.
| |
Collapse
|
14
|
Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. Dev Biol 2017; 429:213-224. [PMID: 28663133 PMCID: PMC5554722 DOI: 10.1016/j.ydbio.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023]
Abstract
In many animals, maternally synthesized mRNAs are critical for primary germ layer formation. In Xenopus, several maternal mRNAs are enriched in the animal blastomere progenitors of the embryonic ectoderm. We previously identified one of these, WW-domain binding protein 2 N-terminal like (wbp2nl), that others previously characterized as a sperm protein (PAWP) that promotes meiotic resumption. Herein we demonstrate that it has an additional developmental role in regionalizing the embryonic ectoderm. Knock-down of Wbp2nl in the dorsal ectoderm reduced cranial placode and neural crest gene expression domains and expanded neural plate domains; knock-down in ventral ectoderm reduced epidermal gene expression. Conversely, increasing levels of Wbp2nl in the neural plate induced ectopic epidermal and neural crest gene expression and repressed many neural plate and cranial placode genes. The effects in the neural plate appear to be mediated, at least in part, by down-regulating chd, a BMP antagonist. Because the cellular function of Wbp2nl is not known, we mutated several predicted motifs. Expressing mutated proteins in embryos showed that a putative phosphorylation site at Thr45 and an α-helix in the PH-G domain are required to ectopically induce epidermal and neural crest genes in the neural plate. An intact YAP-binding motif also is required for ectopic epidermal gene expression as well as for down-regulating chd. This work reveals novel developmental roles for a cytoplasmic protein that promotes epidermal and neural crest formation at the expense of neural ectoderm.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Paaqua A Grant
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Sergey Yaklichkin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Johnson
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
15
|
Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM. Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Genesis 2017; 55. [PMID: 28316121 DOI: 10.1002/dvg.23031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/21/2023]
Abstract
Many molecular factors required for later stages of neuronal differentiation have been identified; however, much less is known about the early events that regulate the initial establishment of the neuroectoderm. We have used an in vitro embryonic stem cell (ESC) differentiation model to investigate early events of neuronal differentiation and to define the role of mouse Foxd4, an ortholog of a forkhead-family transcription factor central to Xenopus neural plate/neuroectodermal precursor development. We found that Foxd4 is a necessary regulator of the transition from pluripotent ESC to neuroectodermal stem cell, and its expression is necessary for neuronal differentiation. Mouse Foxd4 expression is not only limited to the neural plate but it is also expressed and apparently functions to regulate neurogenesis in the olfactory placode. These in vitro results suggest that mouse Foxd4 has a similar function to its Xenopus ortholog; this was confirmed by successfully substituting murine Foxd4 for its amphibian counterpart in overexpression experiments. Thus, Foxd4 appears to regulate the initial steps in establishing neuroectodermal precursors during initial development of the nervous system.
Collapse
Affiliation(s)
- Jonathan H Sherman
- Department of Neurological Surgery, George Washington University Hospital, Washington, District of Columbia.,Institute for Neuroscience, George Washington University, Washington, District of Columbia
| | - Beverly A Karpinski
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Matthew S Fralish
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | | | | | - Arielle G Thal
- George Washington University SMHS, Washington, District of Columbia
| | - Sally A Moody
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Anatomy and Regenerative Biology, George Washington University SMHS, Washington, District of Columbia
| | - Anthony S LaMantia
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Thomas M Maynard
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| |
Collapse
|
16
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Dev Biol 2017; 421:171-182. [PMID: 27940157 PMCID: PMC5221411 DOI: 10.1016/j.ydbio.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Genevieve Abbruzzesse
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristy Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Vanessa Bartolo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Patrick Krohn
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
18
|
Lombard-Banek C, Moody SA, Nemes P. High-Sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog ( Xenopus) Embryo. Front Cell Dev Biol 2016; 4:100. [PMID: 27761436 PMCID: PMC5050209 DOI: 10.3389/fcell.2016.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Direct measurement of protein expression with single-cell resolution promises to deepen the understanding of the basic molecular processes during normal and impaired development. High-resolution mass spectrometry provides detailed coverage of the proteomic composition of large numbers of cells. Here we discuss recent mass spectrometry developments based on single-cell capillary electrophoresis that extend discovery proteomics to sufficient sensitivity to enable the measurement of proteins in single cells. The single-cell mass spectrometry system is used to detect a large number of proteins in single embryonic cells in the 16-cell embryo of the South African clawed frog (Xenopus laevis) that give rise to distinct tissue types. Single-cell measurements of protein expression provide complementary information on gene transcription during early development of the vertebrate embryo, raising a potential to understand how differential gene expression coordinates normal cell heterogeneity during development.
Collapse
Affiliation(s)
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University Washington, DC, USA
| | - Peter Nemes
- Department of Chemistry, The George Washington University Washington, DC, USA
| |
Collapse
|