1
|
Duan B, Tang X, Wang D, Zhang Y, An G, Wang H, Zhou A. Impaired processing of spatiotemporal visual attention engagement deficits in Chinese children with developmental dyslexia. J Vis 2024; 24:2. [PMID: 39625432 PMCID: PMC11620018 DOI: 10.1167/jov.24.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/26/2024] [Indexed: 12/08/2024] Open
Abstract
Emerging evidence suggests that visuospatial attention plays an important role in reading among Chinese children with dyslexia. Additionally, numerous studies have shown that Chinese children with dyslexia have deficits in their visuospatial attention orienting; however, the visual attention engagement deficits in Chinese children with dyslexia remain unclear. Therefore, we used a visual attention masking (AM) paradigm to characterize the spatiotemporal distribution of visual attention engagement in Chinese children with dyslexia. AM refers to impaired identification of the first (S1) of two rapidly sequentially presented mask objects. In the present study, S1 was always centrally displayed, whereas the spatial position of S2 (left, middle, or right) and the S1-S2 interval were manipulated. The results revealed a specific temporal deficit of visual attentional masking in Chinese children with dyslexia. The mean accuracy rate for developmental dyslexia (DD) in the middle spatial position was significantly lower than that in the left spatial position at a stimulus onset asynchrony (SOA) of 140 ms, compared with chronological age (CA). Moreover, we further observed spatial deficits of visual attentional masking in the three different spatial positions. Specifically, in the middle spatial position, the AM effect of DD was significantly larger for the 140-ms SOA than for the 250-ms and 600-ms SOA compared with CA. Our results suggest that Chinese children with dyslexia are significantly impaired in visual attentional engagement and that spatiotemporal visual attentional engagement may play a special role in Chinese reading.
Collapse
Affiliation(s)
- Baojun Duan
- School of Teacher Education, Hexi University, Zhangye, China
| | - Xiaoling Tang
- School of Teacher Education, Hexi University, Zhangye, China
| | - Datao Wang
- School of Teacher Education, Hexi University, Zhangye, China
| | - Yanjun Zhang
- School of Teacher Education, Hexi University, Zhangye, China
| | - Guihua An
- School of Teacher Education, Hexi University, Zhangye, China
| | - Huan Wang
- School of Teacher Education, Hexi University, Zhangye, China
| | - Aibao Zhou
- School of Psychology, Northwest Normal University, Lanzhou, China
- Key Laboratory of Behavioral and Mental Health of Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Mascheretti S, Arrigoni F, Toraldo A, Giubergia A, Andreola C, Villa M, Lampis V, Giorda R, Villa M, Peruzzo D. Alterations in neural activation in the ventral frontoparietal network during complex magnocellular stimuli in developmental dyslexia associated with READ1 deletion. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:16. [PMID: 38926731 PMCID: PMC11210179 DOI: 10.1186/s12993-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.
Collapse
Affiliation(s)
- Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy.
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.
| | - Filippo Arrigoni
- Radiology and Neuroradiology Department, Children's Hospital V. Buzzi, Milan, Italy
| | - Alessio Toraldo
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Milan Centre for Neuroscience (NeuroMI), Milan, Italy
| | - Alice Giubergia
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | | | - Martina Villa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Yale Child Study Center Language Sciences Consortium, New Haven, CT, USA
| | - Valentina Lampis
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
3
|
Santoni A, Melcher D, Franchin L, Ronconi L. Electrophysiological signatures of visual temporal processing deficits in developmental dyslexia. Psychophysiology 2024; 61:e14447. [PMID: 37772611 DOI: 10.1111/psyp.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/14/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
Developmental dyslexia (DD) is a common neurodevelopmental disorder that affects reading ability despite normal intelligence and education. In search of core deficits, previous evidence has linked DD with impairments in temporal aspects of perceptual processing, which might underlie phonological deficits as well as inefficient graphemic parsing during reading. However, electrophysiological evidence for atypical temporal processing in DD is still scarce in the visual modality. Here, we investigated the efficiency of both temporal segregation and integration of visual information by means of event-related potentials (ERPs). We confirmed previous evidence of a selective segregation deficit in dyslexia for stimuli presented in rapid succession (<80 ms), despite unaffected integration performance. Importantly, we found a reduced N1 amplitude in DD, a component related to the allocation of attentional resources, which was independent of task demands (i.e., evident in both segregation and integration). In addition, the P3 amplitude, linked to working memory and processing load, was modulated by task demands in controls but not in individuals with DD. These results suggest that atypical attentional sampling in dyslexia might weaken the quality of information stored in visual working memory, leading to behavioral and electrophysiological signatures of atypical temporal segregation. These results are consistent with some existing theories of dyslexia, such as the magnocellular theory and the "Sluggish Attentional Shifting" framework, and represent novel evidence for neural correlates of decreased visual temporal resolution in DD.
Collapse
Affiliation(s)
- Alessia Santoni
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - David Melcher
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Laura Franchin
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Egan C, Payne JS, Jones MW. The impact of phonological relatedness on semantic congruency judgements in readers with dyslexia: Evidence from behavioural judgements, event related potentials and pupillometry. Neuropsychologia 2023; 184:108548. [PMID: 36967042 DOI: 10.1016/j.neuropsychologia.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/24/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Readers with developmental dyslexia are known to be impaired in representing and accessing phonology, but their ability to process meaning is generally considered to be intact. However, neurocognitive studies show evidence of a subtle semantic processing deficit in dyslexic readers, relative to their typically-developing peers. Here, we compared dyslexic and typical adult readers on their ability to judge semantic congruency (congruent vs. inconcongruent) in short, two-word phrases, which were further manipulated for phonological relatedness (alliterating vs. non-alliterating); "dazzling-diamond"; "sparkling-diamond"; "dangerous-diamond"; and "creepy-diamond". At the level of behavioural judgement, all readers were less accurate when evaluating incongruent alliterating items compared with incongruent non-aliterating, suggesting that phonological patterning creates the illusion of semantic congruency (as per Egan et al., 2020). Dyslexic readers showed a similar propensity for this form-meaning relationship despite a phonological processing impairment as evidenced in the cognitive and literacy indicative assessments. Dyslexic readers also showed an overall reduction in the ability to accurately judge semantic congruency, suggestive of a subtle semantic impairment. Whilst no group differences emerged in the electrophysiological measures, our pupil dilation measurements revealed a global tendency for dyslexic readers to manifest a reduced attentional response to these word stimuli, compared with typical readers. Our results show a broad manifestation of neurocognitive differences in adult dyslexic and typical readers' processing of print, at the level of autonomic arousal as well as in higher level semantic judgements.
Collapse
|
5
|
Fisher VL, Dean CL, Nave CS, Parkins EV, Kerkhoff WG, Kwakye LD. Increases in sensory noise predict attentional disruptions to audiovisual speech perception. Front Hum Neurosci 2023; 16:1027335. [PMID: 36684833 PMCID: PMC9846366 DOI: 10.3389/fnhum.2022.1027335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
We receive information about the world around us from multiple senses which combine in a process known as multisensory integration. Multisensory integration has been shown to be dependent on attention; however, the neural mechanisms underlying this effect are poorly understood. The current study investigates whether changes in sensory noise explain the effect of attention on multisensory integration and whether attentional modulations to multisensory integration occur via modality-specific mechanisms. A task based on the McGurk Illusion was used to measure multisensory integration while attention was manipulated via a concurrent auditory or visual task. Sensory noise was measured within modality based on variability in unisensory performance and was used to predict attentional changes to McGurk perception. Consistent with previous studies, reports of the McGurk illusion decreased when accompanied with a secondary task; however, this effect was stronger for the secondary visual (as opposed to auditory) task. While auditory noise was not influenced by either secondary task, visual noise increased with the addition of the secondary visual task specifically. Interestingly, visual noise accounted for significant variability in attentional disruptions to the McGurk illusion. Overall, these results strongly suggest that sensory noise may underlie attentional alterations to multisensory integration in a modality-specific manner. Future studies are needed to determine whether this finding generalizes to other types of multisensory integration and attentional manipulations. This line of research may inform future studies of attentional alterations to sensory processing in neurological disorders, such as Schizophrenia, Autism, and ADHD.
Collapse
Affiliation(s)
- Victoria L. Fisher
- Department of Neuroscience, Oberlin College, Oberlin, OH, United States
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Cassandra L. Dean
- Department of Neuroscience, Oberlin College, Oberlin, OH, United States
- Roche/Genentech Neurodevelopment & Psychiatry Teams Product Development, Neuroscience, South San Francisco, CA, United States
| | - Claire S. Nave
- Department of Neuroscience, Oberlin College, Oberlin, OH, United States
| | - Emma V. Parkins
- Department of Neuroscience, Oberlin College, Oberlin, OH, United States
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Willa G. Kerkhoff
- Department of Neuroscience, Oberlin College, Oberlin, OH, United States
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Leslie D. Kwakye
- Department of Neuroscience, Oberlin College, Oberlin, OH, United States
| |
Collapse
|
6
|
Wei Y, Hancock R, Mozeiko J, Large EW. The relationship between entrainment dynamics and reading fluency assessed by sensorimotor perturbation. Exp Brain Res 2022; 240:1775-1790. [PMID: 35507069 DOI: 10.1007/s00221-022-06369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
A consistent relationship has been found between rhythmic processing and reading skills. Impairment of the ability to entrain movements to an auditory rhythm in clinical populations with language-related deficits, such as children with developmental dyslexia, has been found in both behavioral and neural studies. In this study, we explored the relationship between rhythmic entrainment, behavioral synchronization, reading fluency, and reading comprehension in neurotypical English- and Mandarin-speaking adults. First, we examined entrainment stability by asking participants to coordinate taps with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Next, we assessed behavioral synchronization by asking participants to coordinate taps with the syllables they produced while reading sentences as naturally as possible (tap to syllable task). Finally, we measured reading fluency and reading comprehension for native English and native Mandarin speakers. Stability of entrainment correlated strongly with tap to syllable task performance and with reading fluency, and both findings generalized across English and Mandarin speakers.
Collapse
Affiliation(s)
- Yi Wei
- Department of Psychological Sciences, University of Connecticut, Storrs, USA.
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.
- The Connecticut Institute for the Brain and Cognitive Sciences of University of Connecticut, Storrs, USA.
| | - Roeland Hancock
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, USA
- The Connecticut Institute for the Brain and Cognitive Sciences of University of Connecticut, Storrs, USA
| | - Jennifer Mozeiko
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, USA
| | - Edward W Large
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
- Department of Physics, University of Connecticut, Storrs, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, USA
- The Connecticut Institute for the Brain and Cognitive Sciences of University of Connecticut, Storrs, USA
| |
Collapse
|
7
|
Pina Rodrigues A, Castelo-Branco M, van Asselen M. Disrupted Spatial Organization of Cued Exogenous Attention Persists Into Adulthood in Developmental Dyslexia. Front Psychol 2021; 12:769237. [PMID: 34867673 PMCID: PMC8634137 DOI: 10.3389/fpsyg.2021.769237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose: Abnormal exogenous attention orienting and diffused spatial distribution of attention have been associated with reading impairment in children with developmental dyslexia. However, studies in adults have failed to replicate such relationships. The goal of the present study was to address this issue by assessing exogenous visual attention and its peripheral spatial distribution in adults with developmental dyslexia. Methods: We measured response times, accuracy and eye movements of 18 dyslexics and 19 typical readers in a cued discrimination paradigm, in which stimuli were presented at different peripheral eccentricities. Results: Results showed that adults with developmental dyslexia were slower that controls in using their mechanisms of exogenous attention orienting. Moreover, we found that while controls became slower with the increase of eccentricity, dyslexics showed an abnormal inflection at 10° as well as similar response times at the most distant eccentricities. Finally, dyslexics show attentional facilitation deficits above 12° of eccentricity, suggesting an attentional engagement deficit at far periphery. Conclusion: Taken together, our findings indicate that, in dyslexia, the temporal deficits in orientation of attention and its abnormal peripheral spatial distribution are not restricted to childhood and persist into adulthood. Our results are, therefore, consistent with the hypothesis that the neural network underlying selective spatial attention is disrupted in dyslexia.
Collapse
Affiliation(s)
- Ana Pina Rodrigues
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
8
|
Kershner JR. Multisensory deficits in dyslexia may result from a locus coeruleus attentional network dysfunction. Neuropsychologia 2021; 161:108023. [PMID: 34530025 DOI: 10.1016/j.neuropsychologia.2021.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
A fundamental educational requirement of beginning reading is to learn, access, and rapidly process associations between novel visuospatial symbols and their phonological representations in speech. Children with difficulties in such cross-modal integration are often divided into dyslexia subtypes, based on whether their primary problem is with the written or spoken component of decoding. The present review suggests that starting in infancy, perceptions of audiovisual speech are integrated by mutual oscillatory phase-resetting between sensory cortices, and throughout development visual and auditory experiences are coupled into unified perceptions. Entirely separate subtypes are incompatible with this view. Visual or auditory deficits will invariably affect processing to some degree in both domains. It is suggested that poor auditory/visual integration may be diagnostic for both forms of dyslexia, stemming from an encoding weakness in the early cross-sensory binding of audiovisual speech. The review presents a model of dyslexia as a dysfunction of the large-scale ventral and dorsal attention networks controlling such binding. Excessive glutamatergic neuronal excitability of the attention networks by the Locus coeruleus-norepinephrine system may interfere with multisensory integration, with deleterious effects on the acquisition of reading by degrading graphene/phoneme conversion.
Collapse
Affiliation(s)
- John R Kershner
- Dept. of Applied Psychology and Human Resources University of Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
9
|
Gavril L, Roșan A, Szamosközi Ș. The role of visual-spatial attention in reading development: a meta-analysis. Cogn Neuropsychol 2021; 38:387-407. [PMID: 35274592 DOI: 10.1080/02643294.2022.2043839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The association between visual attention and reading development has been investigated as a possible core causal deficit in dyslexia, in addition to phonological awareness. This study aims to provide a meta-analytic review of the research on attentional processes and their relation to reading development, to examine the possible influence on it of orthographic depth, age, and attentional tasks (interpreted as serial or parallel processing indices). We included studies with participants up to 18 years of age that have considered the visual spatial attention orienting that sustains the serial visual analysis involved in the phonological pathway of decoding, and the visual attention span that supports the multielement parallel processing that is thought to influence lexical decoding. The results confirm a strong association between visual attention and reading development; we evaluate the evidence and discuss the possibility that visual attention processes play a causal role in determining individual differences in reading acquisition.
Collapse
|
10
|
Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sci 2021; 11:brainsci11060722. [PMID: 34071649 PMCID: PMC8228080 DOI: 10.3390/brainsci11060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the "dorsal stream vulnerability" underlying DD.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Correspondence: (S.M.); (F.A.)
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Laboratoire de Psychologie de Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Université de Paris, 75005 Paris, France
| | - Martina Villa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Tommaso Ciceri
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Cecilia Marino
- The Division of Child and Youth Psychiatry at the Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
- Correspondence: (S.M.); (F.A.)
| |
Collapse
|
11
|
The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sci 2021; 11:brainsci11060708. [PMID: 34071786 PMCID: PMC8229928 DOI: 10.3390/brainsci11060708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
In a now-classic article published a couple of decades ago (Brain, 2000; 123: 2373-2399), I proposed an "extended temporal processing deficit hypothesis of dyslexia", suggesting that a deficit in temporal processing could explain not only language-related peculiarities usually noticed in dyslexic children, but also a wider range of symptoms related to impaired processing of time in general. In the present review paper, I will revisit this "historical" hypothesis both in the light of a new clinical perspective, including the central yet poorly explained notion of comorbidity, and also taking a new look at the most recent experimental work, mainly focusing on brain imaging data. First, consistent with daily clinical practice, I propose to distinguish three groups of children who fail to learn to read, of fairly equal occurrence, who share the same initial presentation (difficulty in mastering the rules of grapheme-phoneme correspondence) but with differing associated signs and/or comorbid conditions (language disorders in the first group, attentional deficits in the second one, and motor coordination problems in the last one), thus suggesting, at least in part, potentially different triggering mechanisms. It is then suggested, in the light of brain imaging information available to date, that the three main clinical presentations/associations of cognitive impairments that compromise reading skills acquisition correspond to three distinct patterns of miswiring or "disconnectivity" in specific brain networks which have in common their involvement in the process of learning and their heavy reliance on temporal features of information processing. With reference to the classic temporal processing deficit of dyslexia and to recent evidence of an inability of the dyslexic brain to achieve adequate coupling of oscillatory brain activity to the temporal features of external events, a general model is proposed according to which a common mechanism of temporal uncoupling between various disconnected-and/or mis-wired-processors may account for distinct forms of specific learning disorders, with reading impairment being a more or less constant feature. Finally, the potential therapeutic implications of such a view are considered, with special emphasis on methods seeking to enhance cross-modal connectivity between separate brain systems, including those using rhythmic and musical training in dyslexic patients.
Collapse
|
12
|
The impairment of the visual-spatial attention in Chinese children with dyslexia: A cognitive deficit or a developmental delay? CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Investigating the role of temporal processing in developmental dyslexia: Evidence for a specific deficit in rapid visual segmentation. Psychon Bull Rev 2021; 27:724-734. [PMID: 32495210 DOI: 10.3758/s13423-020-01752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current study investigates the role of temporal processing in the visual domain in participants with developmental dyslexia (DD), the most common neurodevelopmental disorder, which is characterized by severe and specific difficulties in learning to read despite normal intelligence and adequate education. Specifically, our aim was to test whether DD is associated with a general impairment of temporal sensory processing or a specific deficit in temporal integration (which ensures stability of object identity and location) or segregation (which ensures sensitivity to changes in visual input). Participants with DD performed a task that measured both temporal integration and segregation using an identical sequence of two displays separated by a varying interstimulus interval (ISI) under two different task instructions. Results showed that participants with DD performed worse in the segregation task, with a shallower slope of the psychometric curve of percentage correct as a function of the ISI between the two target displays. Moreover, we found also a relationship between temporal segregation performance and text, words, and pseudowords reading speeds at the individual level. In contrast, no significant association between reading (dis)ability and temporal integration emerged. The current findings provide evidence for a difference in the fine temporal resolution of visual processing in DD and, considering the growing evidence about a link between visual temporal segregation and neural oscillations at specific frequencies, they support the idea that DD is characterized by an altered oscillatory sampling within the visual system.
Collapse
|
14
|
Rufener KS, Zaehle T. Dysfunctional auditory gamma oscillations in developmental dyslexia: A potential target for a tACS-based intervention. PROGRESS IN BRAIN RESEARCH 2021; 264:211-232. [PMID: 34167657 DOI: 10.1016/bs.pbr.2021.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interventions in developmental dyslexia typically consist of orthography-based reading and writing trainings. However, their efficacy is limited and, consequently, the symptoms persist into adulthood. Critical for this lack of efficacy is the still ongoing debate about the core deficit in dyslexia and its underlying neurobiological causes. There is ample evidence on phonological as well as auditory temporal processing deficits in dyslexia and, on the other hand, cortical gamma oscillations in the auditory cortex as functionally relevant for the extraction of linguistically meaningful information units from the acoustic signal. The present work aims to shed more light on the link between auditory gamma oscillations, phonological awareness, and literacy skills in dyslexia. By mean of EEG, individual gamma frequencies were assessed in a group of children and adolescents diagnosed with dyslexia as well as in an age-matched control group with typical literacy skills. Furthermore, phonological awareness was assessed in both groups, while in dyslexic participants also reading and writing performance was measured. We found significantly lower gamma peak frequencies as well as lower phonological awareness scores in dyslexic participants compared to age-matched controls. Additionally, results showed a positive correlation between the individual gamma frequency and phonological awareness. Our data suggest a hierarchical structure of neural gamma oscillations, phonological awareness, and literacy skills. Thereby, the results emphasize altered gamma oscillation not only as a core deficit in dyslexia but also as a potential target for future causal interventions. We discuss these findings considering non-invasive brain stimulation techniques and suggest transcranial alternating current stimulation as a promising approach to normalize dysfunctional oscillations in dyslexia.
Collapse
Affiliation(s)
| | - Tino Zaehle
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
15
|
O'Brien G, Yeatman JD. Bridging sensory and language theories of dyslexia: Toward a multifactorial model. Dev Sci 2020; 24:e13039. [PMID: 33021019 PMCID: PMC8244000 DOI: 10.1111/desc.13039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 01/27/2023]
Abstract
Competing theories of dyslexia posit that reading difficulties arise from impaired visual, auditory, phonological, or statistical learning mechanisms. Importantly, many theories posit that dyslexia reflects a cascade of impairments emanating from a single “core deficit”. Here we report two studies evaluating core deficit and multifactorial models. In Study 1, we use publicly available data from the Healthy Brain Network to test the accuracy of phonological processing measures for predicting dyslexia diagnosis and find that over 30% of cases are misclassified (sensitivity = 66.7%; specificity = 68.2%). In Study 2, we collect a battery of psychophysical measures of visual motion processing and standardized measures of phonological processing in 106 school‐aged children to investigate whether dyslexia is best conceptualized under a core‐deficit model, or as a disorder with heterogenous origins. Specifically, by capitalizing on the drift diffusion model to analyze performance on a visual motion discrimination experiment, we show that deficits in visual motion processing, perceptual decision‐making, and phonological processing manifest largely independently. Based on statistical models of how variance in reading skill is parceled across measures of visual processing, phonological processing, and decision‐making, our results challenge the notion that a unifying deficit characterizes dyslexia. Instead, these findings indicate a model where reading skill is explained by several distinct, additive predictors, or risk factors, of reading (dis)ability.
Collapse
Affiliation(s)
- Gabrielle O'Brien
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA.,Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, USA.,Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
O'Brien GE, Gijbels L, Yeatman JD. Context effects on phoneme categorization in children with dyslexia. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2209. [PMID: 33138541 PMCID: PMC7575329 DOI: 10.1121/10.0002181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Research shows that, on average, children with dyslexia behave less categorically in phoneme categorization tasks. This study investigates three subtle ways that struggling readers may perform differently than their typically developing peers in this experimental context: sensitivity to the frequency distribution from which speech tokens are drawn, bias induced by previous stimulus presentations, and fatigue during the course of the task. We replicate findings that reading skill is related to categorical labeling, but we do not find evidence that sensitivity to the stimulus frequency distribution, the influence of previous stimulus presentations, and a measure of task engagement differs in children with dyslexia. It is, therefore, unlikely that the reliable relationship between reading skill and categorical labeling is attributable to artifacts of the task design, abnormal neural encoding, or executive function. Rather, categorical labeling may index a general feature of linguistic development whose causal relationship to literacy remains to be ascertained.
Collapse
Affiliation(s)
- Gabrielle E O'Brien
- Institute for Learning and Brain Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Liesbeth Gijbels
- Institute for Learning and Brain Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
17
|
Meyer L, Schaadt G. Aberrant Prestimulus Oscillations in Developmental Dyslexia Support an Underlying Attention Shifting Deficit. Cereb Cortex Commun 2020; 1:tgaa006. [PMID: 34296087 PMCID: PMC8152944 DOI: 10.1093/texcom/tgaa006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
Developmental dyslexia (DD) impairs reading and writing acquisition in 5–10% of children, compromising schooling, academic success, and everyday adult life. DD associates with reduced phonological skills, evident from a reduced auditory mismatch negativity (MMN) in the electroencephalogram (EEG). It was argued that such phonological deficits are secondary to an underlying deficit in the shifting of attention to upcoming speech sounds. Here, we tested whether the aberrant MMN in individuals with DD is a function of EEG correlates of prestimulus attention shifting; based on prior findings, we focused prestimulus analyses on alpha-band oscillations. We administered an audio–visual oddball paradigm to school children with and without DD. Children with DD showed EEG markers of deficient attention switching (i.e., increased prestimulus alpha-band intertrial phase coherence [ITPC]) to precede and predict their reduced MMN—aberrantly increased ITPC predicted an aberrantly reduced MMN. In interaction, ITPC and MMN predicted reading abilities, such that poor readers showed both high ITPC and a reduced MMN, the reverse being true in good readers. Prestimulus ITPC may be an overlooked biomarker of deficient attention shifting in DD. The findings support the proposal that an attention shifting deficit underlies phonological deficits in DD, entailing new opportunities for targeted intervention.
Collapse
Affiliation(s)
- Lars Meyer
- Research Group "Language Cycles", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Gesa Schaadt
- Clinic of Cognitive Neurology, Medical Faculty, University Leipzig, Leipzig 04103, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
18
|
Quercia P, Pozzo T, Marino A, Guillemant AL, Cappe C, Gueugneau N. Children with Dyslexia Have Altered Cross-Modal Processing Linked to Binocular Fusion. A Pilot Study. Clin Ophthalmol 2020; 14:437-448. [PMID: 32103890 PMCID: PMC7025670 DOI: 10.2147/opth.s226690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Introduction The cause of dyslexia, a reading disability characterized by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding abilities, is unknown. A considerable body of evidence shows that dyslexics have phonological disorders. Other studies support a theory of altered cross-modal processing with the existence of a pan-sensory temporal processing deficit associated with dyslexia. Learning to read ultimately relies on the formation of automatic multisensory representations of sounds and their written representation while eyes fix a word or move along a text. We therefore studied the effect of brief sounds on vision with a modification of binocular fusion at the same time (using the Maddox Rod test). Methods To check if the effect of sound on vision is specific, we first tested with sounds and then replaced them with proprioceptive stimulation on 8 muscular sites. We tested two groups of children composed respectively of 14 dyslexic children and 10 controls. Results The results show transient visual scotoma (VS) produced by sensory stimulations associated with the manipulation of oculomotor balance, the effect being drastically higher in the dyslexic group. The spatial distribution of the VS is stochastic. The effect is not specific for sounds but exists also with proprioceptive stimulations. Discussion Although there was a very significant difference between the two groups, we were not able to correlate the (VS) occurrence with the dyslexic’s reading performance. One possibility to confirm the link between VS and reading impairment would be to find a specific treatment reducing the occurrence of the VS and to check its effect on dyslexia.
Collapse
Affiliation(s)
- Patrick Quercia
- Université de Bourgogne, Dijon, Campus Universitaire, UFR STAPS, BP 27877, F-21078 Dijon, France; INSERM U1093, Cognition, Action et Plasticité Sensorimotrice, Dijon F-21078, France
| | - Thierry Pozzo
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | | | - Anne Laure Guillemant
- Université de Bourgogne, Dijon, Campus Universitaire, UFR STAPS, BP 27877, F-21078 Dijon, France; INSERM U1093, Cognition, Action et Plasticité Sensorimotrice, Dijon F-21078, France
| | - Céline Cappe
- Brain and Cognition Research Center, CerCo, CNRS UMR 5549, Toulouse, France
| | - Nicolas Gueugneau
- Université de Bourgogne, Dijon, Campus Universitaire, UFR STAPS, BP 27877, F-21078 Dijon, France; INSERM U1093, Cognition, Action et Plasticité Sensorimotrice, Dijon F-21078, France
| |
Collapse
|
19
|
Zhou A, Duan B, Wen M, Wu W, Li M, Ma X, Tan Y. Self-Referential Processing Can Modulate Visual Spatial Attention Deficits in Children With Dyslexia. Front Psychol 2019; 10:2270. [PMID: 31636595 PMCID: PMC6788299 DOI: 10.3389/fpsyg.2019.02270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Considerable research has shown that children with dyslexia have deficits in visual spatial attention orientation. Additionally, self-referential processing makes self-related information play a unique role in the individual visual spatial attention orientation. However, it is unclear whether such self-referential processing impacts the visual spatial attention orientation of children with dyslexia. Therefore, we manipulated the reference task systematically in the cue-target paradigm and investigated the modulation effect of self-referential processing on visual spatial attention of children with dyslexia. In the self-referential processing condition, we observed that children with dyslexia demonstrated stable cue effects in the visual spatial attention orientation tasks when the Stimulus Onset Asynchronies (SOAs) were set to 100 ms, while other-referential processing weakened the cue effects of the visual spatial attention orientation of children with dyslexia. With cue effect as the index, we also observed that the self-referential processing had a significant larger regulatory effect at the early stage of visual spatial attention orientation, as compared with other-referential processing. These differences have a high-ranked consistency between children with dyslexia and typically developing reader. The results suggested that self-referential processing can regulate the visual spatial attention deficits of children with dyslexia.
Collapse
Affiliation(s)
- Aibao Zhou
- School of Psychology, Northwest Normal University, Lanzhou, China.,Key Laboratory of Behavioral and Mental Health, Lanzhou, China
| | - Baojun Duan
- School of Psychology, Northwest Normal University, Lanzhou, China.,School of Teacher Education, Hexi University, Zhangye, China
| | - Menglin Wen
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Wenyi Wu
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Mei Li
- School of Psychology, Northwest Normal University, Lanzhou, China.,School of Education, Lanzhou City University, Lanzhou, China
| | - Xiaofeng Ma
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Yanggang Tan
- School of Psychology, Northwest Normal University, Lanzhou, China
| |
Collapse
|
20
|
Zhang X, Fu W, Xue L, Zhao J, Wang Z. Children With Mathematical Learning Difficulties Are Sluggish in Disengaging Attention. Front Psychol 2019; 10:932. [PMID: 31143141 PMCID: PMC6520633 DOI: 10.3389/fpsyg.2019.00932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Mathematical learning difficulties (MLD) refer to a variety of deficits in math skills, typically pertaining to the domains of arithmetic and problem solving. The present study examined the time course of attentional orienting in MLD children with a spatial cueing task, by parametrically manipulating the cue-target onset asynchrony (CTOA). The results of Experiment 1 revealed that, in contrast to typical developing children, the inhibitory aftereffect of attentional orienting - frequently referred to as inhibition of return (IOR) - was not observed in the MLD children, even at the longest CTOA tested (800 ms). However, robust early facilitation effects were observed in the MLD children, suggesting that they have difficulties in attentional disengagement rather than attentional engagement. In a second experiment, a secondary cue was introduced to the cueing task to encourage attentional disengagement and IOR effects were observed in the MLD children. Taken together, the present experiments indicate that MLD children are sluggish in disengaging spatial attention.
Collapse
Affiliation(s)
- Xiaoxian Zhang
- School of Education, Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wanlu Fu
- School of Education, Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Licheng Xue
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Jing Zhao
- School of Education, Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | | |
Collapse
|
21
|
Bertoni S, Franceschini S, Ronconi L, Gori S, Facoetti A. Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia 2019; 130:107-117. [PMID: 31077708 DOI: 10.1016/j.neuropsychologia.2019.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022]
Abstract
For about 10% of children reading acquisition is extremely difficult because they are affected by a heritable neurobiological disorder called developmental dyslexia (DD), mainly associated to an auditory-phonological disorder. Visual crowding is a universal phenomenon that impairs the recognition of stimuli in clutter, such as a letter in a word or a word in a text. Several studies have shown an excessive crowding in individuals with DD, but the causal link between excessive crowding and DD is not yet clearly established. An excessive crowding might be, indeed, a simple effect of DD due to reduced reading experience. The results of five experiments in 181 children reveal that: (i) an excessive crowding only at unattended locations characterizes an unselected group of children with DD (Experiment 1); (ii) an extra-large spaced text increases reading accuracy by reducing crowding in an unselected group of children with DD (Experiment 2); (iii) efficient attentional action video game trainings reduce crowding and accelerate reading speed in two unselected groups of children with DD (Experiment 3 and 4), and; (iv) pre-reading crowding longitudinally predicts future poor readers (Experiment 5). Our results show multiple causal links between visual crowding and learning to read. These findings provide new insights for a more efficient remediation and prevention for DD.
Collapse
Affiliation(s)
- Sara Bertoni
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy.
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy.
| | - Luca Ronconi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto 38068, Italy; Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|
22
|
Fu W, Zhao J, Ding Y, Wang Z. Dyslexic children are sluggish in disengaging spatial attention. DYSLEXIA (CHICHESTER, ENGLAND) 2019; 25:158-172. [PMID: 30843287 DOI: 10.1002/dys.1609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/17/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Previous work has shown that inefficient attentional orienting is likely a causal factor for dyslexia; however, the nature of this attentional dysfunction remains unclear. The process of attentional orienting is characterized by an early facilitation effect, resulting from the successful engagement of attention, and a later inhibitory effect-frequently referred to as inhibition of return (IOR)-which encourages attentional disengagement and facilitates efficient visual sampling. The present study examined the time course of attentional orienting in dyslexic and typically developing children, by parametrically manipulating the cue-target onset asynchronies in a spatial cueing task. Experiment 1 revealed an early facilitation effect in dyslexic children, suggesting that they have no issue in engaging attention to salient spatial locations. However, contrast to both age-matched and reading level-matched healthy controls, no reliable IOR effect was observed in dyslexic children, suggesting that they have difficulties in disengaging attention. When a second cue was presented to encourage attentional disengagement in Experiment 2, reliable IOR effects were observed in the same group of dyslexic children, and importantly, the onset time of IOR was comparable with that in healthy controls. These results clearly show a selective impairment of attentional disengagement in dyslexic children and provide a solid empirical basis for intervention programmes focusing on attentional shifting.
Collapse
Affiliation(s)
- Wanlu Fu
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Center for Cognition and Brain Disorder, Hangzhou Normal University, Hangzhou, China
| | - Jing Zhao
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Center for Cognition and Brain Disorder, Hangzhou Normal University, Hangzhou, China
| | - Yun Ding
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Zhiguo Wang
- Center for Cognition and Brain Disorder, Hangzhou Normal University, Hangzhou, China
- SR Research, Ottawa, Canada
| |
Collapse
|
23
|
Dean CL, Eggleston BA, Gibney KD, Aligbe E, Blackwell M, Kwakye LD. Auditory and visual distractors disrupt multisensory temporal acuity in the crossmodal temporal order judgment task. PLoS One 2017; 12:e0179564. [PMID: 28723907 PMCID: PMC5516972 DOI: 10.1371/journal.pone.0179564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/30/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to synthesize information across multiple senses is known as multisensory integration and is essential to our understanding of the world around us. Sensory stimuli that occur close in time are likely to be integrated, and the accuracy of this integration is dependent on our ability to precisely discriminate the relative timing of unisensory stimuli (crossmodal temporal acuity). Previous research has shown that multisensory integration is modulated by both bottom-up stimulus features, such as the temporal structure of unisensory stimuli, and top-down processes such as attention. However, it is currently uncertain how attention alters crossmodal temporal acuity. The present study investigated whether increasing attentional load would decrease crossmodal temporal acuity by utilizing a dual-task paradigm. In this study, participants were asked to judge the temporal order of a flash and beep presented at various temporal offsets (crossmodal temporal order judgment (CTOJ) task) while also directing their attention to a secondary distractor task in which they detected a target stimulus within a stream visual or auditory distractors. We found decreased performance on the CTOJ task as well as increases in both the positive and negative just noticeable difference with increasing load for both the auditory and visual distractor tasks. This strongly suggests that attention promotes greater crossmodal temporal acuity and that reducing the attentional capacity to process multisensory stimuli results in detriments to multisensory temporal processing. Our study is the first to demonstrate changes in multisensory temporal processing with decreased attentional capacity using a dual task paradigm and has strong implications for developmental disorders such as autism spectrum disorders and developmental dyslexia which are associated with alterations in both multisensory temporal processing and attention.
Collapse
Affiliation(s)
- Cassandra L. Dean
- Department of Neuroscience, Oberlin College, Oberlin, Ohio, United States of America
| | - Brady A. Eggleston
- Department of Neuroscience, Oberlin College, Oberlin, Ohio, United States of America
| | - Kyla David Gibney
- Department of Neuroscience, Oberlin College, Oberlin, Ohio, United States of America
| | - Enimielen Aligbe
- Department of Neuroscience, Oberlin College, Oberlin, Ohio, United States of America
| | - Marissa Blackwell
- Department of Neuroscience, Oberlin College, Oberlin, Ohio, United States of America
| | - Leslie Dowell Kwakye
- Department of Neuroscience, Oberlin College, Oberlin, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gibney KD, Aligbe E, Eggleston BA, Nunes SR, Kerkhoff WG, Dean CL, Kwakye LD. Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity. Front Integr Neurosci 2017; 11:1. [PMID: 28163675 PMCID: PMC5247431 DOI: 10.3389/fnint.2017.00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller’s inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information.
Collapse
Affiliation(s)
- Kyla D Gibney
- Department of Neuroscience, Oberlin College, Oberlin OH, USA
| | | | | | - Sarah R Nunes
- Department of Neuroscience, Oberlin College, Oberlin OH, USA
| | | | | | - Leslie D Kwakye
- Department of Neuroscience, Oberlin College, Oberlin OH, USA
| |
Collapse
|
25
|
Ding Y, Zhao J, He T, Tan Y, Zheng L, Wang Z. Selective Impairments in Covert Shifts of Attention in Chinese Dyslexic Children. DYSLEXIA (CHICHESTER, ENGLAND) 2016; 22:362-378. [PMID: 27805322 DOI: 10.1002/dys.1541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Reading depends heavily on the efficient shift of attention. Mounting evidence has suggested that dyslexics have deficits in covert attentional shift. However, it remains unclear whether dyslexics also have deficits in overt attentional shift. With the majority of relevant studies carried out in alphabetic writing systems, it is also unknown whether the attentional deficits observed in dyslexics are restricted to a particular writing system. The present study examined inhibition of return (IOR)-a major driving force of attentional shifts-in dyslexic children learning to read a logographic script (i.e., Chinese). Robust IOR effects were observed in both covert and overt attentional tasks in two groups of typically developing children, who were age- or reading ability-matched to the dyslexic children. In contrast, the dyslexic children showed IOR in the overt but not in the covert attentional task. We conclude that covert attentional shift is selectively impaired in dyslexic children. This impairment is not restricted to alphabetic writing systems, and it could be a significant contributor to the difficulties encountered by children learning to read. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Ding
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Jing Zhao
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.
| | - Tao He
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yufei Tan
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lingshuang Zheng
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Zhiguo Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| |
Collapse
|