1
|
Cramer SR, Han X, Chan DCY, Neuberger T, Zhang N. Neuroimaging model of visceral manipulation in awake rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613477. [PMID: 39345508 PMCID: PMC11429785 DOI: 10.1101/2024.09.17.613477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents. To further refine the mechanistic understanding of visceral influence on brain states, however, new paradigms that allow for more invasive, and ultimately more informative, measurements and perturbations must be explored. Further, such paradigms should prioritize human translatability. In the current paper, we address these issues by demonstrating the feasibility of non-anesthetized animal imaging during visceral manipulation. More specifically, we used a barostat interfaced with an implanted gastric balloon to cyclically induce distension of a non-anesthetized rat's stomach during simultaneous BOLD fMRI. General linear modeling and spatial independent component analysis revealed several regions with BOLD activation temporally coincident with the gastric distension stimulus. The ON-OFF (20 mmHg - 0 mmHg) barostat-balloon pressure cycle resulted in widespread BOLD activation of the inferior colliculus, cerebellum, ventral midbrain, and a variety of hippocampal structures. These results suggest that neuroimaging models of gastric manipulation in the non-anesthetized rat are achievable and provide an avenue for more comprehensive studies involving the integration of other neuroscience techniques like electrophysiology. Significance Statement It is unclear to what extent measurements of brain activity are affected by background, and experimentally unrelated, interoceptive processes. To advance our understanding of ongoing visceral activity's influence on brain states, here we provide a proof of concept, anesthesia-free animal model of visceral manipulation during simultaneous BOLD fMRI. We successfully demonstrated BOLD activation during gastric distension of the unanesthetized rat in both classically reported (cerebellum, hippocampus) and novel (inferior colliculus) regions. This paradigm establishes an important foundation for further interrogation of viscera-brain interactions.
Collapse
|
2
|
Shiratori R, Yokoi T, Kinoshita K, Xue W, Sasaki T, Kuga N. The Posterior Insular Cortex is Necessary for Feeding-Induced Jejunal Myoelectrical Activity in Male Rats. Neuroscience 2024; 553:40-47. [PMID: 38936460 DOI: 10.1016/j.neuroscience.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The gastrointestinal tract exhibits coordinated muscle motility in response to food digestion, which is regulated by the central nervous system through autonomic control. The insular cortex is one of the brain regions that may regulate the muscle motility. In this study, we examined whether, and how, the insular cortex, especially the posterior part, regulates gastrointestinal motility by recording jejunal myoelectrical signals in response to feeding in freely moving male rats. Feeding was found to induce increases in jejunal myoelectrical signal amplitudes. This increase in the jejunal myoelectrical signals was abolished by vagotomy and pharmacological inhibition of the posterior insular cortex. Additionally, feeding induced a decrease and increase in sympathetic and parasympathetic nervous activities, respectively, both of which were eliminated by posterior insular cortical inhibition. These results suggest that the posterior insular cortex regulates jejunal motility in response to feeding by modulating autonomic tone.
Collapse
Affiliation(s)
- Reina Shiratori
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Kosuke Kinoshita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Wenfeng Xue
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-Ku, Sendai 980-8575, Japan.
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
3
|
Canna A, Cantone E, Roefs A, Franssen S, Prinster A, Formisano E, Di Salle F, Esposito F. Functional MRI activation of the nucleus tractus solitarius after taste stimuli at ultra-high field: a proof-of-concept single-subject study. Front Nutr 2023; 10:1173316. [PMID: 37955018 PMCID: PMC10637550 DOI: 10.3389/fnut.2023.1173316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Using ultra-high field (7 Tesla) functional MRI (fMRI), we conducted the first in-vivo functional neuroimaging study of the normal human brainstem specifically designed to examine neural signals in the Nucleus Tractus Solitarius (NTS) in response to all basic taste stimuli. NTS represents the first relay station along the mammalian taste processing pathway which originates at the taste buds in the oral cavity and passes through the thalamus before reaching the primary taste cortex in the brain. In our proof-of-concept study, we acquired data from one adult volunteer using fMRI at 1.2 mm isotropic resolution and performed a univariate general linear model analysis. During fMRI acquisition, three shuffled injections of sweet, bitter, salty, sour, and umami solutions were administered following an event-related design. We observed a statistically significant blood oxygen level-dependent (BOLD) response in the anatomically predicted location of the NTS for all five basic tastes. The results of this study appear statistically robust, even though they were obtained from a single volunteer. The information derived from a similar experimental strategy may inspire novel research aimed at clarifying important details of central nervous system involvement in eating disorders, at designing and monitoring tailored therapeutic strategies.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Elena Cantone
- Section of ENT, Department of Neuroscience, Reproductive and Odontostomatological Sciences, "Federico II" University, Napoli, Italy
| | - Anne Roefs
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sieske Franssen
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Napoli, Italy
| | - Elia Formisano
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Department of Diagnostic Imaging, University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Fabrizio Esposito
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli”, Napoli, Italy
| |
Collapse
|
4
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Abnormal interoception has been consistently observed across eating disorders despite limited inclusion in diagnostic conceptualization. Using the alimentary tract as well as recent developments in interoceptive neuroscience and predictive processing as a guide, the current review summarizes evidence of gastrointestinal interoceptive dysfunction in eating disorders. RECENT FINDINGS Eating is a complex process that begins well before and ends well after food consumption. Abnormal prediction and prediction-error signals may occur at any stage, resulting in aberrant gastrointestinal interoception and dysregulated gut sensations in eating disorders. Several interoceptive technologies have recently become available that can be paired with computational modeling and clinical interventions to yield new insights into eating disorder pathophysiology. Illuminating the neurobiology of gastrointestinal interoception in eating disorders requires a new generation of studies combining experimental probes of gut physiology with computational modeling. The application of such techniques within clinical trials frameworks may yield new tools and treatments with transdiagnostic relevance.
Collapse
Affiliation(s)
- Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA.
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA.
| | - Laura A Berner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Anderson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
6
|
Roelofs TJM, Luijendijk MCM, van der Toorn A, Camps G, Smeets PAM, Dijkhuizen RM, Adan RAH. Good taste or gut feeling? A new method in rats shows oro-sensory stimulation and gastric distention generate distinct and overlapping brain activation patterns. Int J Eat Disord 2021; 54:1116-1126. [PMID: 32671875 PMCID: PMC8359261 DOI: 10.1002/eat.23354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Satiation is influenced by a variety of signals including gastric distention and oro-sensory stimulation. Here we developed a high-field (9.4 T) functional magnetic resonance imaging (fMRI) protocol to test how oro-sensory stimulation and gastric distention, as induced with a block-design paradigm, affect brain activation under different states of energy balance in rats. Repeated tasting of sucrose induced positive and negative fMRI responses in the ventral tegmental area and septum, respectively, and gradual neural activation in the anterior insula and the brain stem nucleus of the solitary tract (NTS), as revealed using a two-level generalized linear model-based analysis. These unique findings align with comparable human experiments, and are now for the first time identified in rats, thereby allowing for comparison between species. Gastric distention induced more extensive brain activation, involving the insular cortex and NTS. Our findings are largely in line with human studies that have shown that the NTS is involved in processing both visceral information and taste, and anterior insula in processing sweet taste oro-sensory signals. Gastric distention and sucrose tasting induced responses in mesolimbic areas, to our knowledge not previously detected in humans, which may reflect the rewarding effects of a full stomach and sweet taste, thereby giving more insight into the processing of sensory signals leading to satiation. The similarities of these data to human neuroimaging data demonstrate the translational value of the approach and offer a new avenue to deepen our understanding of the process of satiation in healthy people and those with eating disorders.
Collapse
Affiliation(s)
- Theresia J. M. Roelofs
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Mieneke C. M. Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Guido Camps
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenThe Netherlands
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenThe Netherlands,Image Sciences Institute, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Roger A. H. Adan
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgSweden
| |
Collapse
|
7
|
Camps G. The Stomach, the Mouth, or the Food? The Puzzle of Gastric Emptying. J Nutr 2020; 150:2852-2854. [PMID: 33021311 PMCID: PMC7719828 DOI: 10.1093/jn/nxaa290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 11/14/2022] Open
|