1
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular characterization of chicken DA systems reveals that the avian personality gene, DRD4, is expressed in the mitral cells of the olfactory bulb. Front Neuroanat 2025; 19:1531200. [PMID: 39886560 PMCID: PMC11774857 DOI: 10.3389/fnana.2025.1531200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Animal personalities are stable, context-dependent behavioral differences. Associations between the personality of birds and polymorphisms in the dopamine receptor D4 (DRD4) gene have been repeatedly observed. In mammals, our understanding of the role of the dopamine (DA) system in higher cognitive functions and psychiatric disorders is improving, and we are beginning to understand the relationship between the neural circuits modulating the DA system and personality traits. However, to understand the phylogenetic continuity of the neural basis of personality, it is necessary to clarify the neural circuits that process personality in other animals and compare them with those in mammals. In birds, the DA system is anatomically and molecularly similar to that in mammals; however, the function of DRD4 remains largely unknown. In this study, we used chicks as model birds to reveal the expression regions of the DA neuron-related markers tyrosine hydroxylase (TH), dopa decarboxylase (DDC), dopamine β-hydroxylase (DBH), and DRD4, as well as other DRDs throughout the forebrain. We found that DRD4 was selectively expressed in the mitral cells of the olfactory bulb (OB). Furthermore, a detailed comparison of the expression regions of DA neurons and DRD4 in the OB revealed a cellular composition similar to that of mammals. Our findings suggest that the animal personality gene DRD4 is important for olfactory information processing in birds, providing a new basis for comparing candidate neural circuits for personality traits between birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Kiyokawa Y, Ootaki M, Kambe Y, Tanaka KD, Kimura G, Tanikawa T, Takeuchi Y. Approach/Avoidance Behavior to Novel Objects is Correlated with the Serotonergic and Dopaminergic Systems in the Brown Rat (Rattus norvegicus). Neuroscience 2024; 549:110-120. [PMID: 38723837 DOI: 10.1016/j.neuroscience.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The brown rat (Rattus norvegicus) is known to show three types of behavioral responses to novel objects. Whereas some rats are indifferent to novel objects, neophobic and neophilic rats show avoidance and approach behavior, respectively. Here, we compared the dopaminergic, serotonergic, and noradrenergic systems immunohistochemically among these rats. Trapped wild rats and laboratory rats were first individually exposed to the novel objects in their home cage. Wild rats were divided into neophobic and indifferent rats depending on their behavioral responses. Similarly, laboratory rats were divided into neophilic and indifferent rats. Consistent with the behavioral differences, in the paraventricular nucleus of the hypothalamus, Fos expression in corticotropin-releasing hormone-containing neurons was higher in the neophobic rats than in the indifferent rats. In the anterior basal amygdala, the neophobic rats showed higher Fos expression than the indifferent rats. In the posterior basal amygdala, the neophobic and neophilic rats showed lower and higher Fos expressions than the indifferent rats, respectively. When we compared the neuromodulatory systems, in the dorsal raphe, the number of serotonergic neurons and Fos expression in serotonergic neurons increased linearly from neophobic to indifferent to neophilic rats. In the ventral tegmental area, Fos expression in dopaminergic neurons was higher in the neophilic rats than in the indifferent rats. These results demonstrate that approach/avoidance behavior to novel objects is correlated with the serotonergic and dopaminergic systems in the brown rat. We propose that the serotonergic system suppresses avoidance behavior while the dopaminergic system enhances approach behavior to novel objects.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Kambe
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Goro Kimura
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Mezőfi L, Markó V, Taranyi DÁ, Markó G. Sex-specific life-history strategies among immature jumping spiders: Differences in body parameters and behavior. Curr Zool 2023; 69:535-551. [PMID: 37637309 PMCID: PMC10449423 DOI: 10.1093/cz/zoac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2023] Open
Abstract
Selection forces often generate sex-specific differences in various traits closely related to fitness. While in adult spiders (Araneae), sexes often differ in coloration, body size, antipredator, or foraging behavior, such sex-related differences are less pronounced among immatures. However, sex-specific life-history strategies may also be adaptive for immatures. Thus, we hypothesized that among spiders, immature individuals show different life-history strategies that are expressed as sex-specific differences in body parameters and behavioral features, and also in their relationships. We used immature individuals of a protandrous jumping spider, Carrhotus xanthogramma, and examined sex-related differences. The results showed that males have higher mass and larger prosoma than females. Males were more active and more risk tolerant than females. Male activity increased with time, and larger males tended to capture the prey faster than small ones, while females showed no such patterns. However, females reacted to the threatening abiotic stimuli more with the increasing number of test sessions. In both males and females, individuals with better body conditions tended to be more risk averse. Spiders showed no sex-specific differences in interindividual behavioral consistency and in intraindividual behavioral variation in the measured behavioral traits. Finally, we also found evidence for behavioral syndromes (i.e., correlation between different behaviors), where in males, only the activity correlated with the risk-taking behavior, but in females, all the measured behavioral traits were involved. The present study demonstrates that C. xanthogramma sexes follow different life-history strategies even before attaining maturity.
Collapse
Affiliation(s)
- László Mezőfi
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Viktor Markó
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Dóra Ágnes Taranyi
- Institute of Viticulture and Enology, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Gábor Markó
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| |
Collapse
|
4
|
Chyb A, Włodarczyk R, Drzewińska‐Chańko J, Jedlikowski J, Walden KKO, Minias P. Urbanization is associated with non-coding polymorphisms in candidate behavioural genes in the Eurasian coot. Ecol Evol 2023; 13:e10572. [PMID: 37791294 PMCID: PMC10542476 DOI: 10.1002/ece3.10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Extensive transformation of natural land cover into urbanized areas enhances accumulation of phenotypic differences between animals from urban and nonurban populations, but there is little information on whether these changes, especially in terms of animal behaviour and circadian rhythm, have a genetic basis. The aim of this study was to investigate genetic background of behavioural differences between four pairs of urban and nonurban populations of a common waterbird, the Eurasian coot Fulica atra. For this purpose, we quantified polymorphisms in personality-related candidate genes, previously reported to be associated with avian circadian rhythms and behavioural traits that may be crucial for urban life. We found general associations between landscape urbanization level and polymorphisms in 3'UTR region of CREB1 gene encoding transcriptional factor, which participates in development of cognitive functions and regulation of circadian rhythm. We also found significant differentiation between urban and nonurban populations in the intronic region of CKIɛ gene responsible for regulation of circadian clock. Although we lacked evidence for linkage of this intronic variation with coding polymorphisms, genetic differentiation between urban populations was significantly stronger at CKIɛ intron compared with neutral microsatellite markers, suggesting possible local adaptations of CKIɛ expression regulation to specific urban sites. Our results indicate that behavioural differentiation between urban and nonurban coot populations may be the effect of habitat-specific selective pressure resulting in genetic adaptations to urban environment and supporting the microevolutionary scenario. These adaptations, however, prevailed in non-coding regulatory rather than coding gene regions and showed either general or local patterns, revealing high complexity of associations between behaviour and landscape urbanization in birds.
Collapse
Affiliation(s)
- Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Joanna Drzewińska‐Chańko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Jan Jedlikowski
- Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Kimberly K. O. Walden
- Roy J. Carver Biotechnology CenterUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| |
Collapse
|
5
|
Mai S, Wittor C, Merker S, Woog F. DRD4 allele frequencies in greylag geese vary between urban and rural sites. Ecol Evol 2023; 13:e9811. [PMID: 36789334 PMCID: PMC9909002 DOI: 10.1002/ece3.9811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
With the increasing urbanization of the last decades, more and more bird species occur in urban habitats. Birds which thrive in urban habitats often have a higher tolerance toward human disturbance and show behaviors which differ from their rural counterparts. There is increasing evidence that many behaviors have a genetic basis. One candidate gene is the dopamine receptor D4 (DRD4), which has been associated with fear and thus, flight initiation distance (FID). In this study, we analyzed a segment of DRD4 in greylag geese Anser anser, describing the variability of this gene across several geographically distant populations, and comparing its variability between an urban and a rural site in south-west Germany. We additionally measured FIDs of urban and rural geese to test for a possible correlation with DRD4 genotypes. We found a high variation within DRD4, with 10 variable sites leading to 11 alleles and 35 genotypes. Two genotypes occurred in 60% of all geese and were thus defined as common genotypes versus 33 rare genotypes. Population differentiation was very low between the urban and rural sites in Germany but common genotypes occurred more often in the urban area and rare genotypes more often in the rural area. FID was significantly higher at the rural site, but no significant correlation between FID and DRD4 genotypes could be detected. Nevertheless, our results suggest that local site selection may be related to DRD4 genotypes.
Collapse
Affiliation(s)
- Sabrina Mai
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
- Center of Excellence for Biodiversity and integrative TaxonomyUniversity of HohenheimStuttgartGermany
| | - Caroline Wittor
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
- Center of Excellence for Biodiversity and integrative TaxonomyUniversity of HohenheimStuttgartGermany
| | - Stefan Merker
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
| | - Friederike Woog
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
| |
Collapse
|
6
|
Jablonszky M, Canal D, Hegyi G, Herényi M, Laczi M, Lao O, Markó G, Nagy G, Rosivall B, Szász E, Török J, Zsebõk S, Garamszegi LZ. Estimating heritability of song considering within-individual variance in a wild songbird: The collared flycatcher. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.975687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heritable genetic variation is a prerequisite for adaptive evolution; however, our knowledge about the heritability of plastic traits, such as behaviors, is scarce, especially in wild populations. In this study, we investigated the heritability of song traits in the collared flycatcher (Ficedula albicollis), a small oscine passerine with complex songs involved in sexual selection. We recorded the songs of 81 males in a natural population and obtained various measures describing the frequency, temporal organization, and complexity of each song. As we had multiple songs from each individual, we were able to statistically account for the first time for the effect of within-individual variance on the heritability of song. Heritability was calculated from the variance estimates of animal models relying on a genetic similarity matrix based on Single Nucleotide Polymorphism screening. Overall, we found small additive genetic variance and heritability values in all song traits, highlighting the role of environmental factors in shaping bird song.
Collapse
|
7
|
Lattin CR, Kelly TR, Kelly MW, Johnson KM. Constitutive gene expression differs in three brain regions important for cognition in neophobic and non-neophobic house sparrows (Passer domesticus). PLoS One 2022; 17:e0267180. [PMID: 35536842 PMCID: PMC9089922 DOI: 10.1371/journal.pone.0267180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Neophobia (aversion to new objects, food, and environments) is a personality trait that affects the ability of wildlife to adapt to new challenges and opportunities. Despite the ubiquity and importance of this trait, the molecular mechanisms underlying repeatable individual differences in neophobia in wild animals are poorly understood. We evaluated wild-caught house sparrows (Passer domesticus) for neophobia in the lab using novel object tests. We then selected a subset of neophobic and non-neophobic individuals (n = 3 of each, all females) and extracted RNA from four brain regions involved in learning, memory, threat perception, and executive function: striatum, caudal dorsomedial hippocampus, medial ventral arcopallium, and caudolateral nidopallium (NCL). Our analysis of differentially expressed genes (DEGs) used 11,889 gene regions annotated in the house sparrow reference genome for which we had an average of 25.7 million mapped reads/sample. PERMANOVA identified significant effects of brain region, phenotype (neophobic vs. non-neophobic), and a brain region by phenotype interaction. Comparing neophobic and non-neophobic birds revealed constitutive differences in DEGs in three of the four brain regions examined: hippocampus (12% of the transcriptome significantly differentially expressed), striatum (4%) and NCL (3%). DEGs included important known neuroendocrine mediators of learning, memory, executive function, and anxiety behavior, including serotonin receptor 5A, dopamine receptors 1, 2 and 5 (downregulated in neophobic birds), and estrogen receptor beta (upregulated in neophobic birds). These results suggest that some of the behavioral differences between phenotypes may be due to underlying gene expression differences in the brain. The large number of DEGs in neophobic and non-neophobic birds also implies that there are major differences in neural function between the two phenotypes that could affect a wide variety of behavioral traits beyond neophobia.
Collapse
Affiliation(s)
- Christine R. Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- * E-mail:
| | - Tosha R. Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Morgan W. Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Kevin M. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, United States of America
| |
Collapse
|
8
|
Staes N, Guevara EE, Helsen P, Eens M, Stevens JMG. The Pan social brain: An evolutionary history of neurochemical receptor genes and their potential impact on sociocognitive differences. J Hum Evol 2021; 152:102949. [PMID: 33578304 DOI: 10.1016/j.jhevol.2021.102949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Humans have unique cognitive capacities that, compared with apes, are not only simply expressed as a higher level of general intelligence, but also as a quantitative difference in sociocognitive skills. Humans' closest living relatives, bonobos (Pan paniscus), and chimpanzees (Pan troglodytes), show key between-species differences in social cognition despite their close phylogenetic relatedness, with bonobos arguably showing greater similarities to humans. To better understand the evolution of these traits, we investigate the neurochemical mechanisms underlying sociocognitive skills by focusing on variation in genes encoding proteins with well-documented roles in mammalian social cognition: the receptors for vasopressin (AVPR1A), oxytocin (OXTR), serotonin (HTR1A), and dopamine (DRD2). Although these genes have been well studied in humans, little is known about variation in these genes that may underlie differences in social behavior and cognition in apes. We comparatively analyzed sequence data for 33 bonobos and 57 chimpanzees, together with orthologous sequence data for other apes. In all four genes, we describe genetic variants that alter the amino acid sequence of the respective receptors, raising the possibility that ligand binding or signal transduction may be impacted. Overall, bonobos show 57% more fixed substitutions than chimpanzees compared with the ancestral Pan lineage. Chimpanzees, show 31% more polymorphic coding variation, in line with their larger historical effective population size estimates and current wider distribution. An extensive literature review comparing allelic changes in Pan with known human behavioral variants revealed evidence of homologous evolution in bonobos and humans (OXTR rs4686301(T) and rs237897(A)), while humans and chimpanzees shared OXTR rs2228485(A), DRD2 rs6277(A), and DRD2 rs11214613(A) to the exclusion of bonobos. Our results offer the first in-depth comparison of neurochemical receptor gene variation in Pan and put forward new variants for future behavior-genotype association studies in apes, which can increase our understanding of the evolution of social cognition in modern humans.
Collapse
Affiliation(s)
- Nicky Staes
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium.
| | - Elaine E Guevara
- Evolutionary Anthropology, Duke University, 130 Science Dr, Durham, NC, 27708, USA
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium
| | - Marcel Eens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jeroen M G Stevens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
9
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
10
|
Liker A. Biologia Futura: adaptive changes in urban populations. Biol Futur 2020; 71:1-8. [DOI: 10.1007/s42977-020-00005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
AbstractCities represent novel environments where altered ecological conditions can generate strong selection pressures leading to the evolution of specific urban phenotypes. Is there evidence for such adaptive changes in urban populations which have colonized their new environments relatively recently? A growing number of studies suggest that rapid adaptations may be widespread in wild urban populations, including increased tolerance to various anthropogenic stressors, and physiological, morphological and behavioural changes in response to the altered resources and predation risk. Some of these adaptive changes are based on genetic differentiation, although other mechanisms, such as phenotypic plasticity and epigenetic effects, are also frequently involved.
Collapse
|
11
|
Silva PA, Trigo S, Marques CI, Cardoso GC, Soares MC. Experimental evidence for a role of dopamine in avian personality traits. J Exp Biol 2020; 223:jeb216499. [PMID: 31953366 DOI: 10.1242/jeb.216499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
There is increasing interest in the genetic and physiological bases of behavioural differences among individuals, namely animal personality. One particular dopamine (DA) receptor gene (the dopamine receptor D4 gene) has been used as candidate gene to explain personality differences, but with mixed results. Here, we used an alternative approach, exogenously manipulating the dopaminergic system and testing for effects on personality assays in a social bird species, the common waxbill (Estrilda astrild). We treated birds with agonists and antagonists for DA receptors of both D1 and D2 receptor pathways (the latter includes the D4 receptor) and found that short-term manipulation of DA signalling had an immediate effect on personality-related behaviours. In an assay of social responses (mirror test), manipulation of D2 receptor pathways reduced time spent looking at the social stimulus (mirror image). Blocking D2 receptors reduced motor activity in this social assay, while treatment with a D2 receptor agonist augmented activity in this social assay but reduced activity in a non-social behavioural assay. Also, in the non-social assay, treatment with the D1 receptor antagonist markedly increased time spent at the feeder. These results show distinct and context-specific effects of the dopaminergic pathways on waxbill personality traits. Our results also suggest that experimental manipulation of DA signalling can disrupt a behavioural correlation (more active individuals being less attentive to mirror image) that is habitually observed as part of a behavioural syndrome in waxbills. We discuss our results in the context of animal personality, and the role of the DA system in reward and social behaviour.
Collapse
Affiliation(s)
- Paulo A Silva
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Cristiana I Marques
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Gonçalo C Cardoso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Marta C Soares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| |
Collapse
|
12
|
Bourgeois Y, Boissinot S. Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer. Mol Ecol 2019; 28:3523-3543. [PMID: 31233650 DOI: 10.1111/mec.15162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole-genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
13
|
The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J ETHOL 2019. [DOI: 10.1007/s10164-019-00593-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Gutleb DR, Ostner J, Schülke O, Wajjwalku W, Sukmak M, Roos C, Noll A. Non-invasive genotyping with a massively parallel sequencing panel for the detection of SNPs in HPA-axis genes. Sci Rep 2018; 8:15944. [PMID: 30374157 PMCID: PMC6206064 DOI: 10.1038/s41598-018-34223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022] Open
Abstract
We designed a genotyping panel for the investigation of the genetic underpinnings of inter-individual differences in aggression and the physiological stress response. The panel builds on single nucleotide polymorphisms (SNPs) in genes involved in the three subsystems of the hypothalamic-pituitary-adrenal (HPA)-axis: the catecholamine, serotonin and corticoid metabolism. To promote the pipeline for use with wild animal populations, we used non-invasively collected faecal samples from a wild population of Assamese macaques (Macaca assamensis). We targeted loci of 46 previously reported SNPs in 21 candidate genes coding for elements of the HPA-axis and amplified and sequenced them using next-generation Illumina sequencing technology. We compared multiple bioinformatics pipelines for variant calling and variant effect prediction. Based on this strategy and the application of different quality thresholds, we identified up to 159 SNPs with different types of predicted functional effects among our natural study population. This study provides a massively parallel sequencing panel that will facilitate integrating large-scale SNP data into behavioural and physiological studies. Such a multi-faceted approach will promote understanding of flexibility and constraints of animal behaviour and hormone physiology.
Collapse
Affiliation(s)
- D R Gutleb
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Goettingen, Göttingen, Germany. .,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany. .,Leibniz Science Campus Primate Cognition, Göttingen, Germany.
| | - J Ostner
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Goettingen, Göttingen, Germany.,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - O Schülke
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Goettingen, Göttingen, Germany.,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - W Wajjwalku
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - M Sukmak
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - C Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - A Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
15
|
Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 2018; 359:83-86. [PMID: 29302012 DOI: 10.1126/science.aan4380] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/16/2017] [Indexed: 01/18/2023]
Abstract
The ongoing loss of biodiversity caused by rapid climatic shifts requires accurate models for predicting species' responses. Despite evidence that evolutionary adaptation could mitigate climate change impacts, evolution is rarely integrated into predictive models. Integrating population genomics and environmental data, we identified genomic variation associated with climate across the breeding range of the migratory songbird, yellow warbler (Setophaga petechia). Populations requiring the greatest shifts in allele frequencies to keep pace with future climate change have experienced the largest population declines, suggesting that failure to adapt may have already negatively affected populations. Broadly, our study suggests that the integration of genomic adaptation can increase the accuracy of future species distribution models and ultimately guide more effective mitigation efforts.
Collapse
Affiliation(s)
- Rachael A Bay
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Ryan J Harrigan
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Vinh Le Underwood
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, Ohio State University, Columbus, OH 43210, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Ecology and Evolutionary Biology, University of California, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Kristen Ruegg
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Immonen E, Hämäläinen A, Schuett W, Tarka M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol 2018; 72:60. [PMID: 29576676 PMCID: PMC5856903 DOI: 10.1007/s00265-018-2462-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022]
Abstract
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18 D, SE-75 236 Uppsala, Sweden
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - Wiebke Schuett
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Maja Tarka
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
17
|
Garamszegi LZ, Møller AP. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol Lett 2017; 20:599-608. [PMID: 28349624 DOI: 10.1111/ele.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
Phenotypes vary at multiple hierarchical levels, of which the interspecific variance is the primary focus of phylogenetic comparative studies. However, the evolutionary role of particular within-species variance components (between-population, between- or within-individual variances) remains neglected. Here, we partition the variance in an anti-predator behaviour, flight initiation distance (FID), and assess how its within- and between-population variance are related to life history, distribution, dispersal and habitat ecology. Although the composition of within-species variance in FID depended on the phylogeny, most variance occurred within populations. When accounting for allometry, density-dependence, uncertainty in the phylogenetic hypothesis and heterogeneity in data quality, within-population variance was significantly associated with habitat diversity and population size. Between-population variance was a significant predictor of natal dispersal, senescence and habitat diversity. Accordingly, not only species-specific mean values of a behavioural trait, but also its variance within and among populations can shape the evolutionary ecology of species.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/ Americo Vespucio, 26, 41092, Seville, Spain
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Equipe Diversité, Ecologie et Evolution Microbiennes, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay Cedex, France
| |
Collapse
|
18
|
Escape ability and risk-taking behaviour in a Hungarian population of the collared flycatcher (Ficedula albicollis). Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2276-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Guay PJ, van Dongen WFD, Robinson RW, Blumstein DT, Weston MA. AvianBuffer: An interactive tool for characterising and managing wildlife fear responses. AMBIO 2016; 45:841-851. [PMID: 27055852 PMCID: PMC5055477 DOI: 10.1007/s13280-016-0779-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 05/05/2023]
Abstract
The characterisation and management of deleterious processes affecting wildlife are ideally based on sound scientific information. However, relevant information is often absent, or difficult to access or contextualise for specific management purposes. We describe 'AvianBuffer', an interactive online tool enabling the estimation of distances at which Australian birds respond fearfully to humans. Users can input species assemblages and determine a 'separation distance' above which the assemblage is predicted to not flee humans. They can also nominate the diversity they wish to minimise disturbance to, or a specific separation distance to obtain an estimate of the diversity that will remain undisturbed. The dataset is based upon flight-initiation distances (FIDs) from 251 Australian bird species (n = 9190 FIDs) and a range of human-associated stimuli. The tool will be of interest to a wide audience including conservation managers, pest managers, policy makers, land-use planners, education and public outreach officers, animal welfare proponents and wildlife ecologists. We discuss possible applications of the data, including the construction of buffers, development of codes of conduct, environmental impact assessments and public outreach. This tool will help balance the growing need for biodiversity conservation in areas where humans can experience nature. The online resource will be expanded in future iterations to include an international database of FIDs of both avian and non-avian species.
Collapse
Affiliation(s)
- Patrick-Jean Guay
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Footscray Park Campus, PO Box 14428, Melbourne, VIC MC 8001 Australia
| | - Wouter F. D. van Dongen
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Footscray Park Campus, PO Box 14428, Melbourne, VIC MC 8001 Australia
| | - Randall W. Robinson
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Footscray Park Campus, PO Box 14428, Melbourne, VIC MC 8001 Australia
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA USA
| | - Michael A. Weston
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC 3125 Australia
| |
Collapse
|
20
|
Holtmann B, Grosser S, Lagisz M, Johnson SL, Santos ESA, Lara CE, Robertson BC, Nakagawa S. Population differentiation and behavioural association of the two ‘personality’ genesDRD4andSERTin dunnocks (Prunella modularis). Mol Ecol 2016; 25:706-22. [DOI: 10.1111/mec.13514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- B. Holtmann
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - S. Grosser
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - M. Lagisz
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| | - S. L. Johnson
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - E. S. A. Santos
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Departamento de Zoologia; Universidade de São Paulo; Rua do Matão, Trav. 14, n˚ 101 Cid. Universitária São Paulo SP 05508-090 Brazil
| | - C. E. Lara
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - B. C. Robertson
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - S. Nakagawa
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
21
|
van Dongen WFD, Robinson RW, Weston MA, Mulder RA, Guay PJ. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evol Biol 2015; 15:253. [PMID: 26653173 PMCID: PMC4676183 DOI: 10.1186/s12862-015-0533-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/04/2015] [Indexed: 11/24/2022] Open
Abstract
Background Interactions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes. Results Wariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations. Conclusion Our results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals.
Collapse
Affiliation(s)
- Wouter F D van Dongen
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia. .,Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Randall W Robinson
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia.
| | - Michael A Weston
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Raoul A Mulder
- Department of Zoology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Patrick-Jean Guay
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia.
| |
Collapse
|
22
|
Edwards HA, Hajduk GK, Durieux G, Burke T, Dugdale HL. No Association between Personality and Candidate Gene Polymorphisms in a Wild Bird Population. PLoS One 2015; 10:e0138439. [PMID: 26473495 PMCID: PMC4608812 DOI: 10.1371/journal.pone.0138439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Consistency of between-individual differences in behaviour or personality is a phenomenon in populations that can have ecological consequences and evolutionary potential. One way that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis of personality could therefore provide insight into how and why such variation is maintained, particularly in natural populations. Previously identified candidate genes for personality in birds include the dopamine receptor D4 (DRD4), and serotonin transporter (SERT). Studies of wild bird populations have shown that exploratory and bold behaviours are associated with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4 and SERT in the Seychelles warbler (Acrocephalus sechellensis) population on Cousin Island, Seychelles, and then investigated correlations between personality and polymorphisms in these genes. We found no genetic variation in DRD4, but identified four polymorphisms in SERT that clustered into five haplotypes. There was no correlation between bold or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not due to lack of power, and indicates that there was no association between these behaviours and variation in the candidate genes tested in this population. These null findings provide important data to facilitate representative future meta-analyses on candidate personality genes.
Collapse
Affiliation(s)
- Hannah A. Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Gabriela K. Hajduk
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gillian Durieux
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Hannah L. Dugdale
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Nature Seychelles, Mahe, Republic of Seychelles
| |
Collapse
|
23
|
Garamszegi LZ, Markó G, Szász E, Zsebők S, Azcárate M, Herczeg G, Török J. Among-year variation in the repeatability, within- and between-individual, and phenotypic correlations of behaviors in a natural population. Behav Ecol Sociobiol 2015; 69:2005-2017. [PMID: 26586925 PMCID: PMC4642588 DOI: 10.1007/s00265-015-2012-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 02/04/2023]
Abstract
When mean behaviors correlate among individuals, they form behavioral syndromes. One way to understand the evolution of such a group-level phenomenon is to compare horizontally patterns of correlations among populations (or species) or follow longitudinally the same population over years in the light of parallel differences in the environment. We applied the longitudinal approach to 8-year field data and analyzed phenotypic correlations, and their within- and between-individual components, among three behaviors (novelty avoidance, aggression, and risk-taking) in male collared flycatchers, Ficedula albicollis, in a meta-analytic framework. The phenotypic correlation between novelty avoidance and aggression varied heterogeneously (it was positive in some years, while it was negative in other years), while the other pair-wise correlations were consistently positive over the study period. We investigated four potential socio-ecological factors, and found evidence that the among-year alterations in the demographic structure of the population (density, age composition) can be responsible for the heterogeneous effect sizes. Comparing within- and between-individual correlations across pairs of traits, we found that the correlation between aggression and risk-taking at the among-individual level was the strongest suggesting that this relationship has the highest potential to form a behavioral syndrome. Within-year repeatabilities varied among traits, but were systematically higher than between-year repeatabilities. Our study highlights on an empirical basis that there can be several biological and statistical reasons behind detecting a phenotypic correlation in a study, but only few of these imply that fixed behavioral syndromes are maintained in a natural population. In fact, some correlations seem to be shaped by environmental fluctuations.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/Americo Vespucio s/n, 41092 Seville, Spain
| | - Gábor Markó
- Behavioural Ecology Group, Department of Systematic Zoology , Eötvös Loránd University, Pázmány P. sétány 1/C, 1117 Budapest, Hungary ; Department of Plant Pathology, Corvinus University of Budapest, Budapest Ménesi út 44, 1118 Budapest, Hungary ; MTA-ELTE-MTM Ecology Research Group, Biological Institute, Eötvös Loránd University, Pázmány P. sétany 1/C, 1117 Budapest, Hungary
| | - Eszter Szász
- Behavioural Ecology Group, Department of Systematic Zoology , Eötvös Loránd University, Pázmány P. sétány 1/C, 1117 Budapest, Hungary
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology , Eötvös Loránd University, Pázmány P. sétány 1/C, 1117 Budapest, Hungary
| | - Manuel Azcárate
- Grupo Ecología Evolutiva y de la Conducta, Estación Experimental de Zonas Áridas-CSIC, Ctra. de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology , Eötvös Loránd University, Pázmány P. sétány 1/C, 1117 Budapest, Hungary
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology , Eötvös Loránd University, Pázmány P. sétány 1/C, 1117 Budapest, Hungary
| |
Collapse
|
24
|
Garamszegi LZ, Zagalska-Neubauer M, Canal D, Markó G, Szász E, Zsebők S, Szöllősi E, Herczeg G, Török J. Malaria parasites, immune challenge, MHC variability, and predator avoidance in a passerine bird. Behav Ecol 2015. [DOI: 10.1093/beheco/arv077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
DRD4 gene polymorphism in great tits: gender-specific association with behavioural variation in the wild. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1887-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|