1
|
Zhou G, Qin Y, Petticord D, Qiao X, Jiang M. Plant-ant interactions mediate herbivore-induced conspecific negative density dependence in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172163. [PMID: 38569958 DOI: 10.1016/j.scitotenv.2024.172163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/15/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yuanzhi Qin
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
LaManna JA, Jones FA, Bell DM, Pabst RJ, Shaw DC. Tree species diversity increases with conspecific negative density dependence across an elevation gradient. Ecol Lett 2022; 25:1237-1249. [PMID: 35291051 DOI: 10.1111/ele.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Elevational and latitudinal gradients in species diversity may be mediated by biotic interactions that cause density-dependent effects of conspecifics on survival or growth to differ from effects of heterospecifics (i.e. conspecific density dependence), but limited evidence exists to support this. We tested the hypothesis that conspecific density dependence varies with elevation using over 40 years of data on tree survival and growth from 23 old-growth temperate forest stands across a 1,000-m elevation gradient. We found that conspecific-density-dependent effects on survival of small-to-intermediate-sized focal trees were negative in lower elevation, higher diversity forest stands typically characterised by warmer temperatures and greater relative humidity. Conspecific-density-dependent effects on survival were less negative in higher elevation stands and ridges than in lower elevation stands and valley bottoms for small-to-intermediate-sized trees, but were neutral for larger trees across elevations. Conspecific-density-dependent effects on growth were negative across all tree size classes and elevations. These findings reveal fundamental differences in biotic interactions that may contribute to relationships between species diversity, elevation and climate.
Collapse
Affiliation(s)
- Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - F Andrew Jones
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA.,Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - David M Bell
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA
| | - Robert J Pabst
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, Oregon, USA
| | - David C Shaw
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Wright AJ, Wardle DA, Callaway R, Gaxiola A. The Overlooked Role of Facilitation in Biodiversity Experiments. Trends Ecol Evol 2017; 32:383-390. [PMID: 28283253 DOI: 10.1016/j.tree.2017.02.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 12/01/2022]
Abstract
Past research has demonstrated that decreased biodiversity often reduces ecosystem productivity, but variation in the shape of biodiversity-ecosystem function (BEF) relationships begets the need for a deeper mechanistic understanding of what drives these patterns. While mechanisms involving competition are often invoked, the role of facilitation is overlooked, or lumped within several less explicitly defined processes (e.g., complementarity effects). Here, we explore recent advances in understanding how facilitation affects BEF relationships and identify three categories of facilitative mechanisms that can drive variation in those relationships. Species interactions underlying BEF relationships are complex, but the framework we present provides a step toward understanding this complexity and predicting how facilitation contributes to the ecosystem role of biodiversity in a rapidly changing environment.
Collapse
Affiliation(s)
| | - David A Wardle
- Swedish University of Agricultural Sciences, Department of Forest Ecology and Management, 901 83 Umea, Sweden; Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ragan Callaway
- University of Montana, Division of Biological Sciences,32 Campus Drive, Missoula, MT 59812, USA
| | - Aurora Gaxiola
- Pontificia Universidad Catolica de Chile, Department of Ecology, Casilla 114-D, Santiago, Chile; Instituto de Ecología y Biodiversidad, Las Palmeras 3427, Santiago, Chile; Laboratorio Internacional en Cambio Global (LINCGlobal, CSIC-PUC), Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
4
|
Abstract
Abstract:Seed-dispersal ecology in tropical montane forests (TMF) differs in some predictable ways from tropical lowland forests (TLF). Environmental, biogeographic and biotic factors together shape dispersal syndromes which in turn influence forest structure and community composition. Data on diaspore traits along five elevational gradients from forests in Thailand, the Philippines, Tanzania, Malawi and Nigeria showed that diaspore size decreases with increasing altitude, fleshy fruits remain the most common fruit type but the relative proportion of wind-dispersed diaspores increases with altitude. Probably corresponding to diaspore size decreasing with increasing elevation, we also provide evidence that avian body size and gape width decrease with increasing altitude. Among other notable changes in the frugivorous fauna across elevational gradients, we found quantitative evidence illustrating that the proportion of bird versus mammalian frugivores increases with altitude, while TMF primates decrease in diversity and density, and switch diets to include less fruit and more leaf proportionately. A paucity of studies on dispersal distance and seed shadows, the dispersal/predation balance and density-dependent mortality thwart much-needed conclusive comparisons of seed dispersal ecology between TMF and TLF, especially from understudied Asian forests. We examine the available evidence, reveal knowledge gaps and recommend research to enhance our understanding of seed dispersal ecology in tropical forests. This review demonstrates that seed dispersal is a more deterministic and important process in tropical montane forests than has been previously appreciated.
Collapse
|
5
|
Xu M, Wang Y, Liu Y, Zhang Z, Yu S. Soil-borne pathogens restrict the recruitment of a subtropical tree: a distance-dependent effect. Oecologia 2014; 177:723-732. [PMID: 25358436 DOI: 10.1007/s00442-014-3128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
Abstract
The Janzen-Connell hypothesis suggests that density- and/or distance-dependent juvenile mortality driven by host-specific natural enemies can explain high species diversity in tropical forests. However, such density and distance effects may not occur simultaneously and may not be driven by the same mechanism. Also, reports of attempts to identify and quantify the differences between these processes in tropical forests are scarce. In a primary subtropical forest in China, we (1) experimentally examined the relative influence of the distance to parent trees vs. conspecific seedling density on mortality patterns in Engelhardia fenzelii, (2) tested the role of soil-borne pathogens in driving density- or distance-dependent processes that cause seedling mortality, and (3) inspected the susceptibilities of different tree species to soil biota of E. fenzelii and the effects of soil biota from different tree species on E. fenzelii. The results from these field experiments showed that distance- rather than density-dependent processes driven by soil pathogens strongly affect the seedling survival of this species in its first year. We also observed increased survival of a fungicide treatment for E. fenzelii seedlings in the parent soil but not for the seedlings of the other three species in the E. fenzelii parent soil, or for E. fenzelii seedlings in the parent soil of three other species. This study illustrates how the distance-dependent pattern of seedling recruitment for this species is driven by soil pathogens, a mechanism that likely restricts the dominance of this abundant species.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongfan Wang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Liu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiming Zhang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|