1
|
Nieto-Claudín A, Palmer JL, Brenn-White M, Esperón F, Deem SL. Haematology and plasma biochemistry reference intervals of Española, San Cristobal and Eastern Santa Cruz Galapagos tortoise species. CONSERVATION PHYSIOLOGY 2024; 12:coae055. [PMID: 39148865 PMCID: PMC11325449 DOI: 10.1093/conphys/coae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Normal reference intervals (RI) of hematologic and biochemical parameters are important for assessing and monitoring the health status of captive and free-living chelonians; however, such information is not available for most wildlife species. Giant Galapagos tortoises are one of the most iconic animals on earth and health information can make an important contribution to their conservation and management. This study provides formal RI of haematology and plasma biochemistry parameters and describes cell morphology along with morphometrics of free-living Eastern Santa Cruz (Chelonoidis donfaustoi), Española (Chelonoidis hoodensis) and San Cristóbal tortoises (Chelonoidis chathamensis). We explored differences in blood parameters between sexes, across the tortoise species in this study and with previously published RI of the Western Santa Cruz tortoise (Chelonoidis porteri). Biochemistry parameters of both Santa Cruz species were overall more similar to each other than to Española and San Cristobal tortoises. This research constitutes the first RI for these three Galapagos tortoise species and may be of value for advising captive-breeding and conservation plans. We recommend further research to establish RI in additional tortoise species so we may better understand and interpret haematology and biochemistry parameters as a valuable conservation tool for species of this critically endangered taxon.
Collapse
Affiliation(s)
- Ainoa Nieto-Claudín
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz 200350, Galapagos Islands, Ecuador
- Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO 63110, USA
| | - Jamie L Palmer
- Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO 63110, USA
| | - Maris Brenn-White
- Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO 63110, USA
| | - Fernando Esperón
- INIA-CISA, Algete-El Casar Road, Valdeolmos 28130, Spain
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Sharon L Deem
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz 200350, Galapagos Islands, Ecuador
- Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO 63110, USA
| |
Collapse
|
2
|
Allison PF, Pickich ET, Barnett ZC, Garrick RC. DNA barcoding is currently unreliable for species identification in most crayfishes. Ecol Evol 2024; 14:e70050. [PMID: 39041008 PMCID: PMC11260883 DOI: 10.1002/ece3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
DNA barcoding is commonly used for species identification. Despite this, there has not been a comprehensive assessment of the utility of DNA barcoding in crayfishes (Decapoda: Astacidea). Here we examined the extent to which local barcoding gaps (used for species identification) and global barcoding gaps (used for species discovery) exist among crayfishes, and whether global gaps met a previously suggested 10× threshold (mean interspecific difference being 10× larger than mean intra specific difference). We examined barcoding gaps using publicly available mitochondrial COI sequence data from the National Center for Biotechnology Information's nucleotide database. We created two versions of the COI datasets used for downstream analyses: one focused on the number of unique haplotypes (N H) per species, and another that focused on total number of sequences (N S; i.e., including redundant haplotypes) per species. A total of 81 species were included, with 58 species and five genera from the family Cambaridae and 23 species from three genera from the family Parastacidae. Local barcoding gaps were present in only 30 species (20 Cambaridae and 10 Parastacidae species). We detected global barcoding gaps in only four genera (Cambarus, Cherax, Euastacus, and Tenuibranchiurus), which were all below (4.2× to 5.2×) the previously suggested 10× threshold. We propose that a ~5× threshold would be a more appropriate working hypothesis for species discovery. While the N H and N S datasets yielded largely similar results, there were some discrepant inferences. To understand why some species lacked a local barcoding gap, we performed species delimitation analyses for each genus using the N H dataset. These results suggest that current taxonomy in crayfishes may be inadequate for the majority of examined species, and that even species with local barcoding gaps present may be in need of taxonomic revisions. Currently, the utility of DNA barcoding for species identification and discovery in crayfish is quite limited, and caution should be exercised when mitochondrial-based approaches are used in place of taxonomic expertise. Assessment of the evidence for local and global barcoding gaps is important for understanding the reliability of molecular species identification and discovery, but outcomes are dependent on the current state of taxonomy. As this improves (e.g., via resolving species complexes, possibly elevating some subspecies to the species-level status, and redressing specimen misidentifications in natural history and other collections), so too will the utility of DNA barcoding.
Collapse
Affiliation(s)
| | - Emily T. Pickich
- Department of BiologyUniversity of MississippiUniversityMississippiUSA
| | - Zanethia C. Barnett
- Southern Research StationUSDA Forest Service, Center for Bottomland Hardwoods ResearchClemsonSouth CarolinaUSA
| | - Ryan C. Garrick
- Department of BiologyUniversity of MississippiUniversityMississippiUSA
| |
Collapse
|
3
|
Arantes ÍC, Vasconcellos MM, Smith ML, Garrick RC, Colli GR, Noonan BP. Species limits and diversification of the Dendropsophus rubicundulus subgroup (Anura, Hylidae) in Neotropical savannas. Mol Phylogenet Evol 2023:107843. [PMID: 37286064 DOI: 10.1016/j.ympev.2023.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Understanding the processes that generate and maintain biodiversity at and below the species level is a central goal of evolutionary biology. Here we explore the spatial and temporal drivers of diversification of the treefrog subgroup Dendropsophus rubicundulus, a subgroup of the D. microcephalus species group, over periods of pronounced geological and climatic changes in the Neotropical savannas that they inhabit. This subgroup currently comprises 11 recognized species distributed across the Brazilian and Bolivian savannas, but the taxonomy has been in a state of flux, necessitating reexamination. Using newly generated single nucleotide polymorphism (SNP) data from restriction-site associated DNA sequencing (RADseq) and mitochondrial 16S sequence data for ∼150 specimens, we inferred phylogenetic relationships, tested species limits using a model-based approach, and estimated divergence times to gain insights into the geographic and climatic events that affected the diversification of this subgroup. Our results recognized at least nine species: D. anataliasiasi, D. araguaya, D. cerradensis, D. elianeae, D. jimi, D. rubicundulus, D. tritaeniatus, D. rozenmani, and D. sanborni. Although we did not collect SNP data for the latter two species, they are likely distinct based on mitochondrial data. In addition, we found genetic structure within the widespread species D. rubicundulus, which comprises three allopatric lineages connected by gene flow upon secondary contact. We also found evidence of population structure and perhaps undescribed diversity in D. elianeae, which warrants further study. The D. rubicundulus subgroup is estimated to have originated in the Late Miocene (∼5.45 million years ago), with diversification continuing through the Pliocene and Early Pleistocene, followed by the most recent divergence of D. rubicundulus lineages in the Middle Pleistocene. The epeirogenic uplift followed by erosion and denudation of the central Brazilian plateau throughout the Pliocene and Pleistocene, in combination with the increasing frequency and amplitude of climatic fluctuations during the Pleistocene, was important for generating and structuring diversity at or below the species level in the D. rubicundulus subgroup.
Collapse
Affiliation(s)
- Ísis C Arantes
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA.
| | - Mariana M Vasconcellos
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Megan L Smith
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brazil
| | - Brice P Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
4
|
Jensen EL, Quinzin MC, Miller JM, Russello MA, Garrick RC, Edwards DL, Glaberman S, Chiari Y, Poulakakis N, Tapia W, Gibbs JP, Caccone A. A new lineage of Galapagos giant tortoises identified from museum samples. Heredity (Edinb) 2022; 128:261-270. [PMID: 35217806 PMCID: PMC8987048 DOI: 10.1038/s41437-022-00510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Maud C Quinzin
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Danielle L Edwards
- Department of Life & Environmental Sciences, University of California, Merced, CA, USA
| | - Scott Glaberman
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio, Greece.,The Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio, Greece
| | - Washington Tapia
- Galapagos Conservancy, 11150 Fairfax Boulevard #408, Fairfax, VA, 22030, USA.,University of Málaga, Campus Teatinos, Apdo. 59, 29080, Málaga, Spain
| | - James P Gibbs
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Jensen EL, Gaughran SJ, Garrick RC, Russello MA, Caccone A. Demographic history and patterns of molecular evolution from whole genome sequencing in the radiation of Galapagos giant tortoises. Mol Ecol 2021; 30:6325-6339. [PMID: 34510620 DOI: 10.1111/mec.16176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.), an iconic rapid and recent radiation, offer such an opportunity. Here, we sequenced whole genomes from three individuals of the 12 extant lineages of Galapagos giant tortoise and estimate diversity measures and reconstruct changes in coalescent rate over time. We also compare the number of derived alleles in each lineage to infer how synonymous and nonsynonymous mutation accumulation rates correlate with population size and life history traits. Remarkably, we find that patterns of molecular evolution are similar within individuals of the same lineage, but can differ significantly among lineages, reinforcing the evolutionary distinctiveness of the Galapagos giant tortoise species. Notably, differences in mutation accumulation among lineages do not align with simple population genetic predictions, suggesting that the drivers of purifying selection are more complex than is currently appreciated. By integrating results from earlier population genetic and phylogeographic studies with new findings from the analysis of whole genomes, we provide the most in-depth insights to date on the evolution of Galapagos giant tortoises, and identify discrepancies between expectation from population genetic theory and empirical data that warrant further scrutiny.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Stephen J Gaughran
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Poulakakis N, Miller JM, Jensen EL, Beheregaray LB, Russello MA, Glaberman S, Boore J, Caccone A. Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nikos Poulakakis
- Department of Biology School of Sciences and Engineering University of Crete Heraklio Greece
- Natural History Museum of Crete School of Sciences and Engineering University of Crete Heraklio Greece
| | - Joshua M. Miller
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Evelyn L. Jensen
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | | | | | - Scott Glaberman
- Department of Environmental Science and Policy George Mason University Fairfax VA USA
| | - Jeffrey Boore
- Providence St. Joseph Health and Institute for Systems Biology Seattle WA USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
7
|
Ham-Dueñas JG, Canales-del-Castillo R, Voelker G, Ruvalcaba-Ortega I, Aguirre-Calderón CE, González-Rojas JI. Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (Xenospiza baileyi). PLoS One 2020; 15:e0232282. [PMID: 32352998 PMCID: PMC7192469 DOI: 10.1371/journal.pone.0232282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
The magnitude and distribution of genetic diversity through space and time can provide useful information relating to evolutionary potential and conservation status in threatened species. In assessing genetic diversity in species that are of conservation concern, several studies have focused on the use of Toll-like receptors (TLRs). TLRs are innate immune genes related to pathogen resistance, and polymorphisms may reflect not only levels of functional diversity, but may also be used to assess genetic diversity within and among populations. Here, we combined four potentially adaptive markers (TLRs) with one mitochondrial (COI) marker to evaluate genetic variation in the endangered Sierra Madre Sparrow (Xenospiza baileyi). This species offers an ideal model to investigate population and evolutionary genetic processes that may be occurring in a habitat restricted endangered species with disjunct populations (Mexico City and Durango), the census sizes of which differ by an order of magnitude. TLRs diversity in the Sierra Madre Sparrow was relatively high, which was not expected given its two small, geographically isolated populations. Genetic diversity was different (but not significantly so) between the two populations, with less diversity seen in the smaller Durango population. Population genetic structure between populations was due to isolation and different selective forces acting on different TLRs; population structure was also evident in COI. Reduction of genetic diversity in COI was observed over 20 years in the Durango population, a result likely caused by habitat loss, a factor which may be the main cause of diversity decline generally. Our results provide information related to the ways in which adaptive variation can be altered by demographic changes due to human-mediated habitat alterations. Furthermore, our findings may help to guide conservation schemes for both populations and their restricted habitat.
Collapse
Affiliation(s)
- José G. Ham-Dueñas
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
| | - Ricardo Canales-del-Castillo
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
- * E-mail:
| | - Gary Voelker
- Department of Wildlife and Fisheries Sciences, Biodiversity Research and Teaching Collections, Texas A&M University, College Station, Texas, United States of America
| | - Irene Ruvalcaba-Ortega
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
| | | | - José I. González-Rojas
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
8
|
Hedrick PW. Galapagos Islands Endemic Vertebrates: A Population Genetics Perspective. J Hered 2020; 110:137-157. [PMID: 30541084 DOI: 10.1093/jhered/esy066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 11/12/2022] Open
Abstract
The organisms of the Galapagos Islands played a central role in the development of the theory of evolution by Charles Darwin. Examination of the population genetics factors of many of these organisms with modern molecular methods has expanded our understanding of their evolution. Here, I provide a perspective on how selection, gene flow, genetic drift, mutation, and inbreeding have contributed to the evolution of 6 iconic Galapagos species: flightless cormorant, pink iguana, marine iguana, Galapagos hawk, giant tortoises, and Darwin's finches. Because of the inherent biological differences among these species that have colonized the Galapagos, different population genetic factors appear to be more or less important in these different species. For example, the Galapagos provided novel environments in which strong selection took place and the Darwin's finches diversified to produce new species and the cormorant adapted to the nutrient-rich western shores of the Galapagos by losing its ability to fly and genomic data have now identified candidate genes. In both the pink iguana, which exists in one small population, and the Galapagos hawk, which has small population sizes, genetic drift has been potentially quite important. There appears to be very limited interisland gene flow in the flightless cormorant and the Galapagos hawk. On the other hand, both the marine iguana and some of the Darwin's finches appear to have significant interisland gene flow. Hybridization between species and subspecies has also introduced new adaptive variation, and in some cases, hybridization might have resulted in despeciation. Overall, new population genetics and genomics research has provided additional insight into the evolution of vertebrate species in the Galapagos.
Collapse
|
9
|
D’Urban Jackson J, Bruford MW, Székely T, DaCosta JM, Sorenson MD, Russo IRM, Maher KH, Cruz-López M, Galindo-Espinosa D, Palacios E, De Sucre-Medrano AE, Cavitt J, Pruner R, Morales AL, Gonzalez O, Burke T, Küpper C. Population differentiation and historical demography of the threatened snowy plover Charadrius nivosus (Cassin, 1858). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01256-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractDelineating conservation units is a complex and often controversial process that is particularly challenging for highly vagile species. Here, we reassess population genetic structure and identify those populations of highest conservation value in the threatened snowy plover (Charadrius nivosus, Cassin, 1858), a partial migrant shorebird endemic to the Americas. We use four categories of genetic data—mitochondrial DNA (mtDNA), microsatellites, Z-linked and autosomal single nucleotide polymorphisms (SNPs)—to: (1) assess subspecies delineation and examine population structure (2) compare the sensitivity of the different types of genetic data to detect spatial genetic patterns, and (3) reconstruct demographic history of the populations analysed. Delineation of two traditionally recognised subspecies was broadly supported by all data. In addition, microsatellite and SNPs but not mtDNA supported the recognition of Caribbean snowy plovers (C. n. tenuirostris) and Floridian populations (eastern C. n. nivosus) as distinct genetic lineage and deme, respectively. Low migration rates estimated from autosomal SNPs (m < 0.03) reflect a general paucity of exchange between genetic lineages. In contrast, we detected strong unidirectional migration (m = 0.26) from the western into the eastern nivosus deme. Within western nivosus, we found no genetic differentiation between coastal Pacific and inland populations. The correlation between geographic and genetic distances was weak but significant for all genetic data sets. All demes showed signatures of bottlenecks occurring during the past 1000 years. We conclude that at least four snowy plover conservation units are warranted: in addition to subspecies nivosus and occidentalis, a third unit comprises the Caribbean tenuirostris lineage and a fourth unit the distinct eastern nivosus deme.
Collapse
|
10
|
Miller JM, Quinzin MC, Edwards DL, Eaton DAR, Jensen EL, Russello MA, Gibbs JP, Tapia W, Rueda D, Caccone A. Genome-Wide Assessment of Diversity and Divergence Among Extant Galapagos Giant Tortoise Species. J Hered 2019; 109:611-619. [PMID: 29986032 DOI: 10.1093/jhered/esy031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Maud C Quinzin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Danielle L Edwards
- Life and Environmental Sciences, University of California, Merced, Merced, CA
| | - Deren A R Eaton
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Evelyn L Jensen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - James P Gibbs
- College of Environmental Science & Forestry, State University of New York, Syracuse, NY
| | - Washington Tapia
- Galapagos Conservancy, Fairfax, VA.,Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador
| | - Danny Rueda
- Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| |
Collapse
|
11
|
Jensen EL, Edwards DL, Garrick RC, Miller JM, Gibbs JP, Cayot LJ, Tapia W, Caccone A, Russello MA. Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through head-starting in a Galapagos giant tortoise. Evol Appl 2018; 11:1811-1821. [PMID: 30459831 PMCID: PMC6231475 DOI: 10.1111/eva.12682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Population genetic theory related to the consequences of rapid population decline is well-developed, but there are very few empirical studies where sampling was conducted before and after a known bottleneck event. Such knowledge is of particular importance for species restoration, given links between genetic diversity and the probability of long-term persistence. To directly evaluate the relationship between current genetic diversity and past demographic events, we collected genome-wide single nucleotide polymorphism data from prebottleneck historical (c.1906) and postbottleneck contemporary (c.2014) samples of Pinzón giant tortoises (Chelonoidis duncanensis; n = 25 and 149 individuals, respectively) endemic to a single island in the Galapagos. Pinzón giant tortoises had a historically large population size that was reduced to just 150-200 individuals in the mid 20th century. Since then, Pinzón's tortoise population has recovered through an ex situ head-start programme in which eggs or pre-emergent individuals were collected from natural nests on the island, reared ex situ in captivity until they were 4-5 years old and subsequently repatriated. We found that the extent and distribution of genetic variation in the historical and contemporary samples were very similar, with the latter group not exhibiting the characteristic genetic patterns of recent population decline. No population structure was detected either spatially or temporally. We estimated an effective population size (N e) of 58 (95% CI = 50-69) for the postbottleneck population; no prebottleneck N e point estimate was attainable (95% CI = 39-infinity) likely due to the sample size being lower than the true N e. Overall, the historical sample provided a valuable benchmark for evaluating the head-start captive breeding programme, revealing high retention of genetic variation and no skew in representation despite the documented bottleneck event. Moreover, this work demonstrates the effectiveness of head-starting in rescuing the Pinzón giant tortoise from almost certain extinction.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
- Present address:
Department of BiologyQueen's UniversityKingstonOntarioCanada
| | | | - Ryan C. Garrick
- Department of BiologyUniversity of MississippiOxfordMississippi
| | - Joshua M. Miller
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - James P. Gibbs
- College of Environmental Science and ForestryState University of New YorkSyracuseNew York
| | | | - Washington Tapia
- Department of Applied ResearchGalapagos National Park ServicePuerto AyoraEcuador
- Galapagos ConservancySanta CruzEcuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Michael A. Russello
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
12
|
Gaughran SJ, Quinzin MC, Miller JM, Garrick RC, Edwards DL, Russello MA, Poulakakis N, Ciofi C, Beheregaray LB, Caccone A. Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study. Evol Appl 2018; 11:1084-1093. [PMID: 30026799 PMCID: PMC6050186 DOI: 10.1111/eva.12551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences. Here, we use simulations and empirical SNP data to investigate the impacts of sampling design on estimating genetic differentiation among populations that represent three species of Galápagos giant tortoises (Chelonoidis spp.). Though microsatellite and mitochondrial DNA analyses have supported the distinctiveness of these species, a recent study called into question how well these markers matched with data from genomic SNPs, thereby questioning decades of studies in nonmodel organisms. Using >20,000 genomewide SNPs from 30 individuals from three Galápagos giant tortoise species, we find distinct structure that matches the relationships described by the traditional genetic markers. Furthermore, we confirm that accurate estimates of genetic differentiation in highly structured natural populations can be obtained using thousands of SNPs and 2-5 individuals, or hundreds of SNPs and 10 individuals, but only if the units of analysis are delineated in a way that is consistent with evolutionary history. We show that the lack of structure in the recent SNP-based study was likely due to unnatural grouping of individuals and erroneous genotype filtering. Our study demonstrates that genomic data enable patterns of genetic differentiation among populations to be elucidated even with few samples per population, and underscores the importance of sampling design. These results have specific implications for studies of population structure in endangered species and subsequent management decisions.
Collapse
Affiliation(s)
| | - Maud C. Quinzin
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Joshua M. Miller
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | | | | | - Michael A. Russello
- Department of BiologyUniversity of British Columbia, Okanagan CampusKelownaBCCanada
| | - Nikos Poulakakis
- Department of BiologySchool of Sciences and EngineeringUniversity of CreteHeraklion, CreteGreece
- Natural History Museum of CreteSchool of Sciences and EngineeringUniversity of CreteHeraklion, CreteGreece
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceSesto Fiorentino (FI)Italy
| | - Luciano B. Beheregaray
- Molecular Ecology LabSchool of Biological SciencesFlinders UniversityAdelaideSAAustralia
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
13
|
Jensen EL, Miller JM, Edwards DL, Garrick RC, Tapia W, Caccone A, Russello MA. Temporal Mitogenomics of the Galapagos Giant Tortoise from Pinzón Reveals Potential Biases in Population Genetic Inference. J Hered 2018; 109:631-640. [DOI: 10.1093/jhered/esy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evelyn L Jensen
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | | | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS
| | - Washington Tapia
- Department of Applied Research, Galapagos National Park Service, Puerto Ayora, Galápagos, Ecuador
- Galapagos Conservancy, Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Michael A Russello
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
14
|
Garrick RC. Genetic insights into family group co-occurrence in Cryptocercus punctulatus, a sub-social woodroach from the southern Appalachian Mountains. PeerJ 2017; 5:e3127. [PMID: 28348934 PMCID: PMC5366060 DOI: 10.7717/peerj.3127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/27/2017] [Indexed: 12/03/2022] Open
Abstract
The wood-feeding cockroach Cryptocercus punctulatus Scudder (Blattodea: Cryptocercidae) is an important member of the dead wood (saproxylic) community in montane forests of the southeastern United States. However, its population biology remains poorly understood. Here, aspects of family group co-occurrence were characterized to provide basic information that can be extended by studies on the evolution and maintenance of sub-sociality. Broad sampling across the species’ range was coupled with molecular data (mitochondrial DNA (mtDNA) sequences). The primary questions were: (1) what proportion of rotting logs contain two or more different mtDNA haplotypes and how often can this be attributed to multiple families inhabiting the same log, (2) are multi-family logs spatially clustered, and (3) what levels of genetic differentiation among haplotypes exist within a log, and how genetically similar are matrilines of co-occurring family groups? Multi-family logs were identified on the premise that three different mtDNA haplotypes, or two different haplotypes among adult females, is inconsistent with a single family group founded by one male–female pair. Results showed that of the 88 rotting logs from which multiple adult C. punctulatus were sampled, 41 logs (47%) contained two or more mtDNA haplotypes, and at least 19 of these logs (22% overall) were inferred to be inhabited by multiple families. There was no strong evidence for spatial clustering of the latter class of logs. The frequency distribution of nucleotide differences between co-occurring haplotypes was strongly right-skewed, such that most haplotypes were only one or two mutations apart, but more substantial divergences (up to 18 mutations, or 1.6% uncorrected sequence divergence) do occasionally occur within logs. This work represents the first explicit investigation of family group co-occurrence in C. punctulatus, providing a valuable baseline for follow-up studies.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of Mississippi , Oxford , MS , United States of America
| |
Collapse
|
15
|
Schrider DR, Shanku AG, Kern AD. Effects of Linked Selective Sweeps on Demographic Inference and Model Selection. Genetics 2016; 204:1207-1223. [PMID: 27605051 PMCID: PMC5105852 DOI: 10.1534/genetics.116.190223] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 01/06/2023] Open
Abstract
The availability of large-scale population genomic sequence data has resulted in an explosion in efforts to infer the demographic histories of natural populations across a broad range of organisms. As demographic events alter coalescent genealogies, they leave detectable signatures in patterns of genetic variation within and between populations. Accordingly, a variety of approaches have been designed to leverage population genetic data to uncover the footprints of demographic change in the genome. The vast majority of these methods make the simplifying assumption that the measures of genetic variation used as their input are unaffected by natural selection. However, natural selection can dramatically skew patterns of variation not only at selected sites, but at linked, neutral loci as well. Here we assess the impact of recent positive selection on demographic inference by characterizing the performance of three popular methods through extensive simulation of data sets with varying numbers of linked selective sweeps. In particular, we examined three different demographic models relevant to a number of species, finding that positive selection can bias parameter estimates of each of these models-often severely. We find that selection can lead to incorrect inferences of population size changes when none have occurred. Moreover, we show that linked selection can lead to incorrect demographic model selection, when multiple demographic scenarios are compared. We argue that natural populations may experience the amount of recent positive selection required to skew inferences. These results suggest that demographic studies conducted in many species to date may have exaggerated the extent and frequency of population size changes.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08554
| | - Alexander G Shanku
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08554
| | - Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08554
| |
Collapse
|
16
|
Attard CRM, Möller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ, Carvalho DC, Harris JO, Beheregaray LB. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:1060-1069. [PMID: 26892747 DOI: 10.1111/cobi.12699] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next-generation sequencing technology.
Collapse
Affiliation(s)
- C R M Attard
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - L M Möller
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - M Sasaki
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - M P Hammer
- Museum and Art Gallery of the Northern Territory, P.O. Box 4646, Darwin, NT, 0801, Australia
| | - C M Bice
- Inland Waters and Catchment Ecology Program, SARDI Aquatic Sciences, P.O. Box 120, Henley Beach, SA, 5022, Australia
| | - C J Brauer
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - D C Carvalho
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
- Pontificia Universidade Catolica de Minas Gerais, Belo Horizonte, MG, 30535-610, Brazil
| | - J O Harris
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - L B Beheregaray
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia.
| |
Collapse
|
17
|
Jensen EL, Mooers AØ, Caccone A, Russello MA. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ 2016; 4:e2350. [PMID: 27635324 PMCID: PMC5012326 DOI: 10.7717/peerj.2350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna , BC , Canada
| | - Arne Ø Mooers
- Biological Sciences, Simon Fraser University , Burnaby , BC , Canada
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University , New Haven , CT , United States
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna , BC , Canada
| |
Collapse
|
18
|
Applying Effective Population Size Estimates of Kandelia obovata Sheue, Liu and Yong to Conservation and Restoration Management. FORESTS 2015. [DOI: 10.3390/f6051439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|