1
|
Chowdhury FI, Arteaga C, Alam MS, Alam I, Resco de Dios V. Drivers of nocturnal stomatal conductance in C 3 and C 4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151952. [PMID: 34843766 DOI: 10.1016/j.scitotenv.2021.151952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Nocturnal water losses were for long considered negligible, but it is now known that incomplete stomatal closure during the night leads to significant water losses at leaf, plant and ecosystem scales. However, only daytime transpiration is currently accounted for in evapotranspiration studies. Important uncertainties on the drivers of nocturnal water fluxes hinder its incorporation within modelling frameworks because some studies indicate that night-time stomatal drivers may differ from day-time responses. Here, we synthesise the studies on nocturnal stomatal conductance (gn) to determine underlying drivers through a systematic literature review and, whenever possible, meta-analytical techniques. Similar to daytime responses, we found negative effects of vapour pressure deficit, predawn water potential, air temperature, and salinity on gn across the plant species. However, the most apparent trend was an increase of gn from the beginning until the end of the night, indicating significant and widespread endogenous regulation by the circadian clock. We further observed how neither elevated CO2 nor nutrient status affected gn significantly across species. We also did not find any significant associations between gn and elevated ozone or increasing plant age. There was a paucity of studies on climatic extremes such heat waves and also few studies connected gn with anatomical features such as leaf specific area or stomatal density. Further studies are also needed to address the effects of plant sex, abscisic acid concentrations and genotypic variations on gn. Our findings solve the long-term conundrum on whether stomatal responses to daytime drivers are the same as those that during the nighttime.
Collapse
Affiliation(s)
- Faqrul Islam Chowdhury
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh; Erasmus Mundus Master Course in Mediterranean Forestry and Natural Resources Management, University of Lleida, Lleida, Spain.
| | - Carles Arteaga
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Mohammed Shafiul Alam
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain; School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China; Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida, Spain
| |
Collapse
|
2
|
Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM. CIRCADIAN CLOCK ASSOCIATED1 ( CCA1) and the Circadian Control of Stomatal Aperture. PLANT PHYSIOLOGY 2017; 175:1864-1877. [PMID: 29084902 PMCID: PMC5717738 DOI: 10.1104/pp.17.01214] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 05/18/2023]
Abstract
The endogenous circadian (∼24 h) system allows plants to anticipate and adapt to daily environmental changes. Stomatal aperture is one of the many processes under circadian control; stomatal opening and closing occurs under constant conditions, even in the absence of environmental cues. To understand the significance of circadian-mediated anticipation in stomatal opening, we have generated SGC (specifically guard cell) Arabidopsis (Arabidopsis thaliana) plants in which the oscillator gene CIRCADIAN CLOCK ASSOCIATED1 (CCA1) was overexpressed under the control of the guard-cell-specific promoter, GC1. The SGC plants showed a loss of ability to open stomata in anticipation of daily dark-to-light changes and of circadian-mediated stomatal opening in constant light. We observed that under fully watered and mild drought conditions, SGC plants outperform wild type with larger leaf area and biomass. To investigate the molecular basis for circadian control of guard cell aperture, we used large-scale qRT-PCR to compare circadian oscillator gene expression in guard cells compared with the "average" whole-leaf oscillator and examined gene expression and stomatal aperture in several lines of plants with misexpressed CCA1 Our results show that the guard cell oscillator is different from the average plant oscillator. Moreover, the differences in guard cell oscillator function may be important for the correct regulation of photoperiod pathway genes that have previously been reported to control stomatal aperture. We conclude by showing that CONSTANS and FLOWERING LOCUS T, components of the photoperiod pathway that regulate flowering time, also control stomatal aperture in a daylength-dependent manner.
Collapse
Affiliation(s)
- Miriam Hassidim
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Adi Turjeman
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ekaterina Shor
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ariane Anidjar
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Keren Goldberg
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Eller F, Jensen K, Reisdorff C. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. TREE PHYSIOLOGY 2017; 37:428-440. [PMID: 27974652 DOI: 10.1093/treephys/tpw113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Nighttime water flow varies between plant species and is a phenomenon for which the magnitude, purpose and consequences are widely discussed. A potential benefit of nighttime stomata opening may be increased nutrient availability during the night since transpiration affects the mass flow of soil water towards plant roots. We investigated how nitrogen (N) and phosphorus (P) fertilization, and short-term drought affected stomatal conductance of Fraxinus excelsior L. and Ulmus laevis Pallas during the day (gs) and night (gn), and how these factors affected growth for a period of 18 weeks. Both species were found to open their stomata during the night, and gn responded to nutrients and water in a different manner than gs. Under N-deficiency, F. excelsior had higher gn, especially when P was sufficient, and lower pre-dawn leaf water potential (Ψpd), supporting our assumption that nutrient limitation leads to increases in nighttime water uptake. Under P-deficiency, F. excelsior had higher relative root production and, thus, adjusted its biomass allocation under P shortage, while sufficient N but not P contributed to overall higher biomasses. In contrast, U. laevis had higher gn and lower root:shoot ratio under high nutrient (especially N) availability, whereas both sufficient N and P produced higher biomasses. Compared with well-watered trees, the drought treatment did not affect any growth parameter but it resulted in lower gn, minimum stomatal conductance and Ψpd of F. excelsior. For U. laevis, only gs during July was lower when drought-treated. In summary, the responses of gs and gn to nutrients and drought depended on the species and its nutrient uptake strategy, and also the timing of measurement during the growing season. Eutrophication of floodplain forests dominated by F. excelsior and U. laevis may, therefore, considerably change nighttime transpiration rates, leading to ecosystem-level changes in plant-water dynamics. Such changes may have more severe consequences in the future as a higher frequency of drought events is predicted under climate change.
Collapse
Affiliation(s)
- Franziska Eller
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
- Aarhus University, Department of Bioscience, Ole Worms Alle 1, 8000 Aarhus C, Denmark
| | - Kai Jensen
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Christoph Reisdorff
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| |
Collapse
|
4
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|