1
|
Ferrari A, Caccia S, Polidori C. Urbanization-driven environmental shifts cause reduction in aminopeptidase N activity in the honeybee. CONSERVATION PHYSIOLOGY 2024; 12:coae073. [PMID: 39669006 PMCID: PMC11636627 DOI: 10.1093/conphys/coae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/14/2024]
Abstract
Honeybees (Apis mellifera Linnaeus, 1758) are managed pollinators in anthropized landscapes but suffer adverse physiological effects from urbanization due to increased pollution, higher temperatures and a loss of habitat quality. Previous studies in various animal taxa have shown how responses of digestive enzymes, such as Aminopeptidase N (APN), can indicate stress conditions and thus be used to measure the harmfulness of anthropogenic disturbance. However, no studies have focused on bees. Here, we sampled honeybee foragers along an urbanization gradient in the Metropolitan City of Milan (Italy) and measured the APN activity. After briefly characterizing the midgut APN activity under different pH and temperature conditions, we found that APN activity was lower at urban sites with higher temperatures (Urban Heat Island (UHI) effect). Furthermore, an increasing proportion of meadows (semi-natural flowered areas) and a decreasing proportion of urban parks (managed urban green areas)-both higher in less urbanized sites-were associated with higher APN activity. Our results suggest that severe urban conditions may cause a reduction in APN activity, but that the UHI effect alone is not directly involved. Although the actual urbanization-related factors driving our results remain unclear, we suggest that impoverishment of food sources may play a role. As aminopeptidases are involved in pollen digestion, our results may indicate a possible impairment of the digestive capacity of honeybees in highly urbanized areas.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Silvia Caccia
- Department of Biosciences, University of Milan, via Celoria 26, Milan 20133, Italy
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
2
|
Puig-Gironès R, Bel G, Cid N, Cañedo-Argüelles M, Fernández-Calero JM, Quevedo-Ortiz G, Fortuño P, Vinyoles D, Real J, Pujol-Buxó E, Bonada N. Water availability and biological interactions shape amphibian abundance and diversity in Mediterranean temporary rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175917. [PMID: 39218102 DOI: 10.1016/j.scitotenv.2024.175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Amphibians, the most threatened vertebrates globally, face risks due to climate change, habitat loss, and fragmentation. Their sensitivity to environmental changes highlights their importance as ecological indicators. Temporary rivers, influenced by geological, climatic, and anthropogenic factors, play a critical role in shaping biodiversity and community structure. Some species of amphibians may be adapted to these temporary waters, a fact reflected in their life cycles and various biological traits. However, to develop effective conservation strategies for amphibians, it is essential to address the knowledge gaps surrounding the complex interactions between biological dynamics and fluvial habitat conditions. In this study, we investigated how trophic interactions between amphibians and other aquatic organisms (diatoms, macroinvertebrates, and fish), coupled with environmental factors (water availability and riparian structure), can affect amphibian abundance and diversity in temporary rivers. The study was conducted in a Mediterranean river network located in Sant Llorenç del Munt i l'Obac Natural Park (Catalonia, Spain). Our expectations were that habitats suitable for egg deposition, lacking predators (e.g. tadpole-predators and fish), and abundant in food sources would likely support higher amphibian abundance and diversity. However, water availability was identified as a crucial factor shaping abundance and diversity in the studied amphibian communities, even if it correlated with fish presence, and especially impacting amphibian species usually linked to permanent water bodies. Concerning biotic interactions, while our results suggested that amphibian populations in temporary rivers are more dependent on top-down than bottom-up interactions, the presence of aquatic predators was not as conclusive as expected, suggesting that in temporary rivers the fish-avoiding amphibian species can survive using microhabitats or breeding opportunities linked to natural river dynamics. Overall, our findings highlight the importance of considering multi-trophic interactions, hydroperiod and habitat heterogeneity in temporary river ecosystems for effective amphibian conservation.
Collapse
Affiliation(s)
- Roger Puig-Gironès
- Equip de Biologia de la Conservació (EBC-UB), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain; Departament de Ciències Ambientals, Universitat of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Gemma Bel
- Equip de Biologia de la Conservació (EBC-UB), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Núria Cid
- IRTA Marine and Continental Waters Programme, Ctra de Poble Nou Km 5.5, 43540 Sant Carles de la Ràpita, Catalonia, Spain; Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/de Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - José María Fernández-Calero
- Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Guillermo Quevedo-Ortiz
- Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Pau Fortuño
- Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Dolors Vinyoles
- Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Joan Real
- Equip de Biologia de la Conservació (EBC-UB), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | | | - Núria Bonada
- Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Kijanović A, Vukov T, Mirč M, Mitrović A, Prokić MD, Petrović TG, Radovanović TB, Gavrilović BR, Despotović SG, Gavrić JP, Tomašević Kolarov N. The role of phenotypic plasticity and corticosterone in coping with pond drying conditions in yellow-bellied toad (Bombina variegata, Linnaeus 1758) tadpoles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:753-765. [PMID: 38651613 DOI: 10.1002/jez.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Amphibian larvae inhabiting temporary ponds often exhibit the capacity to accelerate development and undergo metamorphosis in challenging conditions like desiccation. However, not all species exhibit this ability, the yellow-bellied toad (Bombina variegata) is one such example. The underlying mechanisms behind the inability to accelerate development under desiccation remain largely unexplored. The hypothalamic-pituitary-interrenal (HPI) axis and corticosterone (CORT), which act synergistically with thyroid hormone, are thought to facilitate metamorphosis in response to desiccation stress. In this study, we aimed to investigate whether modification in the HPI axis, particularly CORT levels, contributes to the absence of adaptive plasticity in B. variegata under desiccation stress. The study design included four treatments: high water level, high water level with exogenous CORT, low water level, and low water level with metyrapone (a CORT synthesis inhibitor). The main objective was to evaluate the effects of these treatments on whole-body corticosterone levels, life history, morphological traits, and oxidative stress parameters during the prometamorphic and metamorphic climax developmental stages. While low water level had no effect on total corticosterone levels, larval period, body condition index, and metamorphic body shape, it negatively affected metamorph size, mass, and growth rate. Our findings suggest that constant exposure to desiccation stress over generations may have led to modifications in the HPI axis activity in B. variegata, resulting in adaptation to changes in water level, evident through the absence of stress response. Consequently, CORT may not be a relevant stress indicator in desiccation conditions for this species.
Collapse
Affiliation(s)
- Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Mitrović
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol 2024; 33:e17317. [PMID: 38488670 DOI: 10.1111/mec.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.
Collapse
Affiliation(s)
- Paul A Maier
- Department of Biology, San Diego State University, San Diego, California, USA
- Family TreeDNA, Gene by Gene, Houston, Texas, USA
| | - Amy G Vandergast
- Western Ecological Research Center, San Diego Field Station, U.S. Geological Survey, San Diego, California, USA
| | - Andrew J Bohonak
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Cochrane MM, Addis BR, Swartz LK, Lowe WH. Individual growth rates and size at metamorphosis increase with watershed area in a stream salamander. Ecology 2024; 105:e4217. [PMID: 38037284 DOI: 10.1002/ecy.4217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
A fundamental goal of ecology is to understand how the physical environment influences intraspecific variability in life history and, consequently, fitness. In streams, discharge and associated habitat conditions change along a continuum from intermittency to permanence: Headwater streams typically have smaller watersheds and are thus more prone to drying than higher-order streams with larger watersheds and more consistent discharge. However, few empirical studies have assessed life history and associated population responses to this continuum in aquatic organisms. We tested the prediction that individual growth, rate of development, and population growth increase with watershed area in the long-lived stream salamander Gyrinophilus porphyriticus, where we use watershed area as a proxy for hydrologic intermittence. To address this hypothesis, we used 8 years of mark-recapture data from 53 reaches across 10 headwater streams in New Hampshire, USA. Individual growth rates and mean size at metamorphosis increased with watershed area for watersheds from 0.12 to 1.66 km2 . Population growth rates increased with watershed area; however, this result was not statistically significant at our sample size. Mean age of metamorphosis did not vary across watershed areas. Lower individual growth rates and smaller sizes at metamorphosis likely contributed to reduced lifetime fecundity and population growth in reaches with the smallest watershed areas and highest vulnerability to drought. These responses suggest that as droughts increase due to climate change, headwater specialists in hydrologically intermittent environments will experience a reduction in fitness due to smaller body sizes or other growth-related mechanisms.
Collapse
Affiliation(s)
- Madaline M Cochrane
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brett R Addis
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Leah K Swartz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Wright M, Oleson L, Witty R, Fritz KA, Kirschman LJ. Infection Causes Trade-Offs between Development and Growth in Larval Amphibians. Physiol Biochem Zool 2023; 96:430-437. [PMID: 38237190 DOI: 10.1086/727729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractTrade-offs between life history traits are context dependent; they vary depending on environment and life stage. Negative associations between development and growth often characterize larval life stages. Both growth and development consume large parts of the energy budget of young animals. The metabolic rate of animals should reflect differences in growth and developmental rates. Growth and development can also have negative associations with immune function because of their costs. We investigated how intraspecific variation in growth and development affected the metabolism of larval amphibians and whether intraspecific variation in growth, development, and metabolic rate could predict mortality and viral load in larvae infected with ranavirus. We also compared the relationship between growth and development before and after infection with ranavirus. We hypothesized that growth and development would affect metabolism and predicted that each would have a positive correlation with metabolic rate. We further hypothesized that allocation toward growth and development would increase ranavirus susceptibility and therefore predicted that larvae with faster growth, faster development, and higher metabolic rates would be more likely to die from ranavirus and have higher viral loads. Finally, we predicted that growth rate and developmental rate would have a negative association. Intraspecific variation in growth rate and developmental rate did not affect metabolism. Growth rate, developmental rate, and metabolism did not predict mortality from ranavirus or viral load. Larvae infected with ranavirus exhibited a trade-off between developmental rate and growth rate that was absent in uninfected larvae. Our results indicate a cost of ranavirus infection that is potentially due to both the infection-induced anorexia and the cost of infection altering priority rules for resource allocation.
Collapse
|
7
|
Isdaner AJ, Levis NA, Pfennig DW. Comparative transcriptomics reveals that a novel form of phenotypic plasticity evolved via lineage-specific changes in gene expression. Ecol Evol 2023; 13:e10646. [PMID: 37869437 PMCID: PMC10589077 DOI: 10.1002/ece3.10646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Novel forms of phenotypic plasticity may evolve by lineage-specific changes or by co-opting mechanisms from more general forms of plasticity. Here, we evaluated whether a novel resource polyphenism in New World spadefoot toads (genus Spea) evolved by co-opting mechanisms from an ancestral form of plasticity common in anurans-accelerating larval development rate in response to pond drying. We compared overlap in differentially expressed genes between alternative trophic morphs constituting the polyphenism in Spea versus those found between tadpoles of Old World spadefoot toads (genus Pelobates) when experiencing different pond-drying regimes. Specifically, we (1) generated a de novo transcriptome and conducted differential gene expression analysis in Spea multiplicata, (2) utilized existing gene expression data and a recently published transcriptome for Pelobates cultripes when exposed to different drying regimes, and (3) identified unique and overlapping differentially expressed transcripts. We found thousands of differentially expressed genes between S. multiplicata morphs that were involved in major developmental reorganization, but the vast majority of these were not differentially expressed in P. cultripes. Thus, S. multiplicata's novel polyphenism appears to have arisen primarily through lineage-specific changes in gene expression and not by co-opting existing patterns of gene expression involved in pond-drying plasticity. Therefore, although ancestral stress responses might jump-start evolutionary innovation, substantial lineage-specific modification might be needed to refine these responses into more complex forms of plasticity.
Collapse
Affiliation(s)
- Andrew J. Isdaner
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Nicholas A. Levis
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | - David W. Pfennig
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Albecker MA, Strobel SM, Womack MC. Developmental Plasticity in Anurans: Meta-analysis Reveals Effects of Larval Environments on Size at Metamorphosis And Timing of Metamorphosis. Integr Comp Biol 2023; 63:714-729. [PMID: 37279893 DOI: 10.1093/icb/icad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Many anuran amphibians (frogs and toads) rely on aquatic habitats during their larval stage. The quality of this environment can significantly impact lifetime fitness and population dynamics. Over 450 studies have been published on environmental impacts on anuran developmental plasticity, yet we lack a synthesis of these effects across different environments. We conducted a meta-analysis and used a comparative approach to understand whether developmental plasticity in response to different larval environments produces predictable changes in metamorphic phenotypes. We analyzed data from 124 studies spanning 80 anuran species and six larval environments and showed that intraspecific variation in mass at metamorphosis and the duration of the larval period is partly explained by the type of environment experienced during the larval period. Changes in larval environments tended to reduce mass at metamorphosis relative to control conditions, with the degree of change depending on the identity and severity of environmental change. Higher temperatures and lower water levels shortened the duration of the larval period, whereas less food and higher densities increased the duration of the larval period. Phylogenetic relationships among species were not associated with interspecific variation in mass at metamorphosis plasticity or duration of the larval period plasticity. Our results provide a foundation for future studies on developmental plasticity, especially in response to global changes. This study provides motivation for additional work that links developmental plasticity with fitness consequences within and across life stages, as well as how the outcomes described here are altered in compounding environments.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston Texas, 77004, USA
- Department of Biology, Utah State University, Logan Utah, 84322, USA
| | | | - Molly C Womack
- Department of Biology, Utah State University, Logan Utah, 84322, USA
| |
Collapse
|
9
|
Albecker MA, McCoy MW. Responses to saltwater exposure vary across species, populations and life stages in anuran amphibians. CONSERVATION PHYSIOLOGY 2023; 11:coad062. [PMID: 37588621 PMCID: PMC10425968 DOI: 10.1093/conphys/coad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
To predict the impacts of environmental change on species, we must first understand the factors that limit the present-day ranges of species. Most anuran amphibians cannot survive at elevated salinities, which may drive their distribution in coastal locations. Previous research showed that coastal Hyla cinerea are locally adapted to brackish habitats in North Carolina, USA. Although Hyla squirella and Hyla chrysoscelis both inhabit coastal wetlands nearby, they have not been observed in saline habitats. We take advantage of naturally occurring microgeographic variation in coastal wetland occupancy exhibited by these congeneric tree frog species to explore how salt exposure affects oviposition site choice, hatching success, early tadpole survival, plasma osmolality and tadpole body condition across coastal and inland locations. We observed higher survival among coastal H. cinerea tadpoles than inland H. cinerea, which corroborates previous findings. But contrary to expectations, coastal H. cinerea had lower survival than H. squirella and H. chrysoscelis, indicating that all three species may be able to persist in saline wetlands. We also observed differences in tadpole plasma osmolality across species, locations and salinities, but these differences were not associated with survival rates in salt water. Instead, coastal occupancy may be affected by stage-specific processes like higher probability of total clutch loss as shown by inland H. chrysoscelis or maladaptive egg deposition patterns as shown by inland H. squirella. Although we expected salt water to be the primary filter driving species distributions along a coastal salinity gradient, it is likely that the factors dictating anuran ranges along the coast involve stage-, species- and location-specific processes that are mediated by ecological processes and life history traits.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd., Houston TX 77204
| | - Michael W McCoy
- Florida Atlantic University, Harbor Branch Oceanographic Institute, 3545 Ocean Drive #201, Vero Beach, FL, 32963, USA
| |
Collapse
|
10
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Turriago JL, Tejedo M, Hoyos JM, Camacho A, Bernal MH. The time course of acclimation of critical thermal maxima is modulated by the magnitude of temperature change and thermal daily fluctuations. J Therm Biol 2023; 114:103545. [PMID: 37290261 DOI: 10.1016/j.jtherbio.2023.103545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/10/2023]
Abstract
Plasticity in the critical thermal maximum (CTmax) helps ectotherms survive in variable thermal conditions. Yet, little is known about the environmental mechanisms modulating its time course. We used the larvae of three neotropical anurans (Boana platanera, Engystomops pustulosus and Rhinella horribilis) to test whether the magnitude of temperature changes and the existence of fluctuations in the thermal environment affected both the amount of change in CTmax and its acclimation rate (i.e., its time course). For that, we transferred tadpoles from a pre-treatment temperature (23 °C, constant) to two different water temperatures: mean (28 °C) and hot (33 °C), crossed with constant and daily fluctuating thermal regimes, and recorded CTmax values, daily during six days. We modeled changes in CTmax as an asymptotic function of time, temperature, and the daily thermal fluctuation. The fitted function provided the asymptotic CTmax value (CTmax∞) and CTmax acclimation rate (k). Tadpoles achieved their CTmax∞ between one and three days. Transferring tadpoles to the hot treatment generated higher CTmax∞ at earlier times, inducing faster acclimation rates in tadpoles. In contrast, thermal fluctuations equally led to higher CTmax∞ values but tadpoles required longer times to achieve CTmax∞ (i.e., slower acclimation rates). These thermal treatments interacted differently with the studied species. In general, the thermal generalist Rhinella horribilis showed the most plastic acclimation rates whereas the ephemeral-pond breeder Engystomops pustulosus, more exposed to heat peaks during larval development, showed less plastic (i.e., canalized) acclimation rates. Further comparative studies of the time course of CTmax acclimation should help to disentangle the complex interplay between the thermal environment and species ecology, to understand how tadpoles acclimate to heat stress.
Collapse
Affiliation(s)
- Jorge L Turriago
- Grupo de Herpetología, Eco-Fisiología & Etología, Department of Biology, Universidad del Tolima, Tolima, 730006299, Colombia; Programa Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, 11001000, Colombia.
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, 41092, Spain.
| | - Julio M Hoyos
- Grupo UNESIS, Department of Biology, Pontificia Universidad Javeriana, Bogotá, 11001000, Colombia.
| | - Agustín Camacho
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, 41092, Spain.
| | - Manuel H Bernal
- Grupo de Herpetología, Eco-Fisiología & Etología, Department of Biology, Universidad del Tolima, Tolima, 730006299, Colombia.
| |
Collapse
|
12
|
Phenotypic Plasticity in Juvenile Frogs That Experienced Predation Pressure as Tadpoles Does Not Alter Their Locomotory Performance. BIOLOGY 2023; 12:biology12030341. [PMID: 36979033 PMCID: PMC10045024 DOI: 10.3390/biology12030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Anuran species can respond to environmental changes via phenotypic plasticity, which can also result in ecological impacts across the life history of such species. We investigated the effects of predation pressure (i.e., the non-consumption effect) from the dragonfly larva (Anax parthenope) on the phenotypical change of tadpoles into juvenile frogs (specifically the black-spotted pond frog, Pelophylax nigromaculatus), and also analyzed the impact of morphological changes on locomotory performance after metamorphosis. The experiments on predator impact were conducted in the laboratory. Body length, weight, development timing, and metamorphosis timing in the presence of dragonfly nymphs were measured in both tadpoles and juvenile frogs. The body and tail shapes of the tadpoles, as well as the skeletal shape of the juvenile frogs, were analyzed using landmark-based geometric morphometrics. Furthermore, the locomotory performance of the juvenile frogs was tested by measuring their jumping and swimming speeds. Tadpoles that had grown with predators possessed smaller bodies, deeper tail fins, and slower development rates, and they waited longer periods of time before commencing metamorphosis. Having said this, however, the effect of predator cues on the body length and weight of juvenile frogs was not found to be significant. These juvenile frogs possessed longer limbs and narrower skulls, with subtle morphological changes in the pelvis and ilium, but there was no subsequent difference in their swimming and jumping speeds. Our results showed that the changes in anatomical traits that can affect locomotor performance are so subtle that they do not affect the jumping or swimming speeds. Therefore, we support the view that these morphological changes are thus by-products of an altered tadpole period, rather than an adaptive response to predator-escape ability or to post-metamorphosis life history. On the other hand, delayed metamorphosis, without an increase in body size, may still be disadvantageous to the reproduction, growth, and survival of frogs in their life history following metamorphosis.
Collapse
|
13
|
Fiorillo BF, Faggioni GP, Cerezer FO, Becker CG, Díaz‐Ricaurte JC, Martins M. Effects of environmental factors on the ecology and survival of a widespread, endemic Cerrado frog. Biotropica 2023. [DOI: 10.1111/btp.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Bruno F. Fiorillo
- Herp Trips, Reserva Particular do Patrimônio Natural Trápaga São Miguel Arcanjo Brazil
- Manacá Institute, Reserva Particular do Patrimônio Natural Trápaga São Miguel Arcanjo Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós‐Graduação em Ecologia Aplicada Universidade de São Paulo Piracicaba Brazil
| | | | - Felipe Osmari Cerezer
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Brazil
| | - C. Guilherme Becker
- Department of Biology The Pennsylvania State University University Park Pennsylvania USA
| | - Juan C. Díaz‐Ricaurte
- Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós‐Graduação em Ecologia Aplicada Universidade de São Paulo Piracicaba Brazil
- Horae Gene Therapy Center University of Massachusetts Medical School Worcester MA USA
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
- Semillero de investigación en Ecofisiologia y Biogeografía de Vertebrados (EcoBioVert), Grupo de Investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Programa de Biología, Facultad de Ciencias Básicas Universidad de la Amazonía Florencia Colombia
| | - Marcio Martins
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
14
|
Kijanović A, Vukov T, Mirč M, Krizmanić I, Tomašević Kolarov N. Inability of yellow‐bellied toad to accelerate metamorphosis in desiccation conditions. J Zool (1987) 2023. [DOI: 10.1111/jzo.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A. Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - T. Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - M. Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - I. Krizmanić
- Faculty of Biology, Institute of Zoology University of Belgrade Belgrade Serbia
| | - N. Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
15
|
Maier PA, Vandergast AG, Bohonak AJ. Using landscape genomics to delineate future adaptive potential for climate change in the Yosemite toad ( Anaxyrus canorus). Evol Appl 2023; 16:74-97. [PMID: 36699123 PMCID: PMC9850018 DOI: 10.1111/eva.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
An essential goal in conservation biology is delineating population units that maximize the probability of species persisting into the future and adapting to future environmental change. However, future-facing conservation concerns are often addressed using retrospective patterns that could be irrelevant. We recommend a novel landscape genomics framework for delineating future "Geminate Evolutionary Units" (GEUs) in a focal species: (1) identify loci under environmental selection, (2) model and map adaptive conservation units that may spawn future lineages, (3) forecast relative selection pressures on each future lineage, and (4) estimate their fitness and likelihood of persistence using geo-genomic simulations. Using this process, we delineated conservation units for the Yosemite toad (Anaxyrus canorus), a U.S. federally threatened species that is highly vulnerable to climate change. We used a genome-wide dataset, redundancy analysis, and Bayesian association methods to identify 24 candidate loci responding to climatic selection (R 2 ranging from 0.09 to 0.52), after controlling for demographic structure. Candidate loci included genes such as MAP3K5, involved in cellular response to environmental change. We then forecasted future genomic response to climate change using the multivariate machine learning algorithm Gradient Forests. Based on all available evidence, we found three GEUs in Yosemite National Park, reflecting contrasting adaptive optima: YF-North (high winter snowpack with moderate summer rainfall), YF-East (low to moderate snowpack with high summer rainfall), and YF-Low-Elevation (low snowpack and rainfall). Simulations under the RCP 8.5 climate change scenario suggest that the species will decline by 29% over 90 years, but the highly diverse YF-East lineage will be least impacted for two reasons: (1) geographically it will be sheltered from the largest climatic selection pressures, and (2) its standing genetic diversity will promote a faster adaptive response. Our approach provides a comprehensive strategy for protecting imperiled non-model species with genomic data alone and has wide applicability to other declining species.
Collapse
Affiliation(s)
- Paul A. Maier
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- FamilyTreeDNAGene by GeneHoustonTexasUSA
| | - Amy G. Vandergast
- Western Ecological Research CenterU.S. Geological SurveySan DiegoCaliforniaUSA
| | - Andrew J. Bohonak
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
16
|
Butterworth NJ, Benbow ME, Barton PS. The ephemeral resource patch concept. Biol Rev Camb Philos Soc 2022; 98:697-726. [PMID: 36517934 DOI: 10.1111/brv.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University Wellington Road Clayton VIC 3800 Australia
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| | - M. Eric Benbow
- Department of Entomology, Department of Osteopathic Medical Specialties, and Ecology, Evolution and Behavior Program Michigan State University 220 Trowbridge Rd East Lansing MI 48824 USA
| | - Philip S. Barton
- Future Regions Research Centre, Federation University University Drive, Mount Helen VIC 3350 Australia
| |
Collapse
|
17
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
18
|
Le Sage EH, Ohmer MEB, LaBumbard BC, Altman KA, Reinert LK, Bednark JG, Bletz MC, Inman B, Lindauer A, McDonnell NB, Parker SK, Skerlec SM, Wantman T, Rollins‐Smith LA, Woodhams DC, Voyles J, Richards‐Zawacki CL. Localized carry‐over effects of pond drying on survival, growth, and pathogen defenses in amphibians. Ecosphere 2022. [DOI: 10.1002/ecs2.4224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Michel E. B. Ohmer
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | | | - Karie A. Altman
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Laura K. Reinert
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Jeffery G. Bednark
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Molly C. Bletz
- Department of Biology University of Massachusetts Boston Massachusetts USA
| | - Brady Inman
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
- Department of Biology University of Massachusetts Boston Massachusetts USA
| | - Alexa Lindauer
- Department of Biology University of Nevada Reno Nevada USA
| | - Nina B. McDonnell
- Department of Biology University of Massachusetts Boston Massachusetts USA
| | - Sadie K. Parker
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Samantha M. Skerlec
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Trina Wantman
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Louise A. Rollins‐Smith
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
- Department of Biological Sciences Vanderbilt University Nashville Tennessee USA
- Department of Pediatrics Vanderbilt University School of Medicine Nashville Tennessee USA
| | | | - Jamie Voyles
- Department of Biology University of Nevada Reno Nevada USA
| | | |
Collapse
|
19
|
Peters H, Laberge F, Heyland A. Latent effect of larval rearing environment on post-metamorphic brain growth in an anuran amphibian. ZOOLOGY 2022; 152:126011. [DOI: 10.1016/j.zool.2022.126011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
20
|
Goldberg J, Quinzio SI, Vaira M. Lack of response to pond desiccation of eggs and tadpoles of the Yungas Red-belly Toad (Melanophryniscus rubriventris) to an unpredictable environment. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anuran amphibians that breed in ephemeral ponds of unpredictable environments have mechanisms to tolerate or avoid associated risks of egg and tadpole mortality, such as selection of oviposition sites, plasticity in larval development, and resistance of eggs to desiccation. The Red-belly Toad Melanophryniscus rubriventris (Vellard 1947) breeds in temporary ponds in the Andean Yungas under unpredictable events of flooding and droughts of reproductive sites. To determine whether this species possesses any developmental mechanisms to deal with the environmental conditions, we experimentally evaluated the resistance of eggs subjected to different times of exposure to air and the tadpoles to different levels of pond desiccation. The species has not developed mechanisms of resistance of its eggs or phenotypic plasticity to the recurrent risks of pond desiccation, and mass mortality is a common event. In such a context explosive breeding highly synchronized with rainfall, together with fast larval development, seems to be vitally important at these places where the duration of ponds is short and unpredictable.
Collapse
Affiliation(s)
- Javier Goldberg
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina., Cordoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina. , Córdoba, Argentina
| | - Silvia Inés Quinzio
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina., Córdoba, Cordoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina. , Córdoba, Córdoba, Argentina
| | - Marcos Vaira
- Centro de Investigaciones y Transferencia de Jujuy, San Salvador de Jujuy, Jujuy, Argentina,
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Salvador de Jujuy, Argentina., San Salvador de Jujuy, Argentina
| |
Collapse
|
21
|
Prokić MD, Petrović TG, Gavrilović BR, Despotović SG, Gavrić JP, Kijanović A, Tomašević Kolarov N, Vukov T, Radovanović TB. Carry-Over Effects of Desiccation Stress on the Oxidative Status of Fasting Anuran Juveniles. Front Physiol 2021; 12:783288. [PMID: 34925072 PMCID: PMC8674722 DOI: 10.3389/fphys.2021.783288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Amphibians are sensitive to deteriorating environmental conditions, especially during transition to a terrestrial environment which is full of uncertainties. Harsh conditions, such as desiccation during earlier stages, affect different larval traits with possible carry-over effects on juvenile and adult life histories. The first consequences of the effects can be seen in juveniles in the challenges to find food and the ability to survive without it in a terrestrial habitat. Body size and the internal energy reserves acquired during the larval phase play an important role in this period. Herein, we tested how different water regimes (low water availability, desiccation and constant high-water availability) during larval development reflect on the oxidative status and ability of yellow belly toad (Bombina variegata) juveniles to endure short-term fasting. The desiccation regime significantly reduced the body size of metamorphs. The same was observed after 2 weeks of fasting, while the feeding treatment reduced differences mostly in the body mass of individuals from different water regimes. This was the result of a greater gain in mass in juveniles pre-exposed to desiccation. Pre-exposure to desiccation also modified the parameters of the antioxidant system (AOS) under feeding conditions, leading to higher values of superoxide dismutase, glutathione reductase and glutathione S-transferase, glutathione and sulfhydryl group concentrations, and lower glutathione peroxidase in comparison to juveniles reared under constant water. The increase in the AOS of juveniles can be considered as a physiological carry-over effect of desiccation, probably as the result of compensatory growth and/or earlier exposure to chronic stress. However, water levels during larval development did not exert significant effects on the oxidative status of juveniles subjected to food unavailability. Fasting juveniles, both control and desiccated, were exposed to oxidative stress, significantly higher lipid peroxide concentrations, lower superoxide dismutase, glutathione peroxidase, glutathione S-transferase, glutathione and sulfhydryl group values in comparison to feeding individuals. The lack of food in juvenile anurans activated the AOS response in the same manner, regardless of body size and stress pre-exposure, suggesting that the generally accepted hypothesis about the influence of metamorphic body size on the fitness of the postmetamorphic stage should be tested further.
Collapse
Affiliation(s)
- Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G. Petrović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R. Gavrilović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G. Despotović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P. Gavrić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B. Radovanović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Oh D, Kim Y, Yoo S, Kang C. Habitat ephemerality affects the evolution of contrasting growth strategies and cannibalism in anuran larvae. PeerJ 2021; 9:e12172. [PMID: 34603854 PMCID: PMC8445080 DOI: 10.7717/peerj.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Ephemeral streams are challenging environments for tadpoles; thus, adaptive features that increase the survival of these larvae should be favored by natural selection. In this study, we compared the adaptive growth strategies of Bombina orientalis (the oriental fire-bellied toad) tadpoles from ephemeral streams with those of such tadpoles from non-ephemeral streams. Using a common garden experiment, we tested the interactive effects of location (ephemeral vs. non-ephemeral), food availability, and growing density on larval period, weight at metamorphosis, and cannibalism. We found that tadpoles from ephemeral streams underwent a shorter larval period compared with those from non-ephemeral streams but that this difference was contingent on food availability. The observed faster growth is likely to be an adaptive response because tadpoles in ephemeral streams experience more biotic/abiotic stressors, such as desiccation risk and limited resources, compared with those in non-ephemeral streams, with their earlier metamorphosis potentially resulting in survival benefits. As a trade-off for their faster growth, tadpoles from ephemeral streams generally had a lower body weight at metamorphosis compared with those from non-ephemeral streams. We also found lower cannibalism rates among tadpoles from ephemeral streams, which can be attributed to the indirect fitness costs of cannibalizing their kin. Our study demonstrates how ephemeral habitats have affected the evolutionary change in cannibalistic behaviors in anurans and provides additional evidence that natural selection has mediated the evolution of growth strategies of tadpoles in ephemeral streams.
Collapse
Affiliation(s)
- Dogeun Oh
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| | - Yongsu Kim
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| | - Sohee Yoo
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| | - Changku Kang
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| |
Collapse
|
23
|
Arietta AZA, Skelly DK. Rapid microgeographic evolution in response to climate change. Evolution 2021; 75:2930-2943. [PMID: 34519355 DOI: 10.1111/evo.14350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/30/2023]
Abstract
Environmental change is predicted to accelerate into the future and will exert strong selection pressure on biota. Although many species may be fated to extinction, others may survive through their capacity to evolve rapidly at highly localized (i.e., microgeographic) scales. Yet, even as new examples have been discovered, the limits to such evolutionary responses have not often been evaluated. One of the first examples of microgeographic variation involved pond populations of wood frogs (Rana sylvatica). Although separated by just tens to hundreds of meters, these populations exhibited countergradient variation in intrinsic embryonic development rates when reared in a common garden. We repeated this experiment 17 years (approximately six to nine generations) later and found that microgeographic variation persists in contemporary populations. Furthermore, we found that contemporary embryos have evolved to develop 14-19% faster than those in 2001. Structural equation models indicate that the predominant cause for this response is likely due to changes in climate over the intervening 17 years. Despite potential for rapid and fine-scale evolution, demographic declines in populations experiencing the greatest changes in climate and habitat imply a limit to the species' ability to mitigate extreme environmental change.
Collapse
Affiliation(s)
- A Z Andis Arietta
- School of the Environment, Yale University, New Haven, Connecticut, 06520
| | - David K Skelly
- School of the Environment, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
24
|
Azizishirazi A, Klemish JL, Pyle GG. Sensitivity of Amphibians to Copper. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1810-1821. [PMID: 33749926 DOI: 10.1002/etc.5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Amphibian populations are declining globally. Major drivers of these global declines are known. However, the contribution of these major drivers to population declines varies by the presence or absence and the interactive effect of drivers, thus creating local challenges for conservation of populations. Studies have determined that environmental contaminants contribute to amphibian population declines. However, there is a disagreement over the use of amphibians as sentinel species in ecotoxicological testing rather than the traditional taxa used, fish and invertebrates. Reviews of ecotoxicological studies have demonstrated that amphibians are generally less sensitive than fish and invertebrates to different groups of contaminants. Nonetheless, because of the distinct nature and mechanism of toxicity of various contaminants, it is necessary to study contaminants individually to be able to come to any conclusion on the relative sensitivity of amphibians. Copper is one of the most studied environmental contaminants. We conducted a literature review of Cu toxicity to amphibians and the relative sensitivity of amphibians to other aquatic animals. The available data suggest that although amphibians may be tolerant of acute Cu exposure, they are relatively sensitive to chronic exposure (i.e., 100-fold greater sensitivity to chronic compared to acute exposure). In addition, ecologically relevant endpoints specific to amphibians (e.g., duration of metamorphosis and behavior) are shown to provide a better understanding of their sensitivity compared to traditional endpoints (e.g., survival and growth). Our current knowledge on amphibian sensitivity is far from complete. Considering the current status of this globally threatened class of animals, it is necessary to fill the knowledge gaps regarding their sensitivity to individual contaminants, beginning with Cu. Environ Toxicol Chem 2021;40:1810-1821. © 2021 SETAC.
Collapse
Affiliation(s)
- Ali Azizishirazi
- British Columbia Ministry of Environment and Climate Change Strategy, Victoria, British Columbia, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jaimie L Klemish
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
25
|
Zheng X, Natuhara Y, Zhong S. Influence of midsummer drainage and agricultural modernization on the survival of Zhangixalus arboreus tadpoles in Japanese paddy fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18294-18299. [PMID: 33686597 DOI: 10.1007/s11356-021-13368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Previous studies reported that habitat degradation and alteration (e.g., urbanization, agricultural intensification, and abandonment, as well as contaminants) led to frog population decline, which has become a serious global ecological issue. However, the combined effects of midsummer drainage and agricultural modernization on tadpole populations are rarely investigated. In this study, we evaluated the effects of human activity-induced water management and the type of drainage system in paddy fields on the survival of Zhangixalus arboreus in central Japan. Our results revealed that the midsummer drainage negatively affected tadpole survival, whereas the modern drainage system showed no influence. This study provides a useful way to better understand the survival of frog populations in the paddy field ecosystems.
Collapse
Affiliation(s)
- Xiaojun Zheng
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Ecology Group, Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Yosihiro Natuhara
- Ecology Group, Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Shan Zhong
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
26
|
Petrović TG, Kijanović A, Kolarov Tomašević N, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Vukov T, Faggio C, Prokić MD. Effects of Desiccation on Metamorphic Climax in Bombina variegata: Changes in Levels and Patterns of Oxidative Stress Parameters. Animals (Basel) 2021; 11:ani11040953. [PMID: 33805554 PMCID: PMC8066544 DOI: 10.3390/ani11040953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Global warming alters patterns of precipitation and drought, which are important factors in the survival of amphibian populations. Metamorphosis is affected by environmental changes; this is especially true of metamorphic climax, the crucial stage of amphibian development that is accompanied by significant morphological, physiological and behavioral adaptations necessary for the transition to a terrestrial habitat. This study investigated naturally occurring changes in the cellular oxidative status (antioxidant system and oxidative damage) of yellow-bellied toad larvae during this phase, and how exposure to exogenous factors such as desiccation affected them. Our results revealed clear changes in the antioxidant system’s (AOS) response and the levels of oxidative damage during metamorphic climax, with the highest response and damage observed at the end stage. Decreasing water levels during larval development altered the components of the AOS and increased oxidative damage, resulting in increased oxidative stress. The knowledge gained from this study could contribute to a better understanding of the oxidative stress that larvae experience during this critical stage of development, and the consequences of global warming—such as water loss—on amphibians. Abstract In this paper, we examined how the oxidative status (antioxidant system and oxidative damage) of Bombina variegata larvae changed during the metamorphic climax (Gosner stages: 42—beginning, 44—middle and 46—end) and compared the patterns and levels of oxidative stress parameters between individuals developing under constant water availability (control) and those developing under decreasing water availability (desiccation group). Our results revealed that larvae developing under decreasing water availability exhibited increased oxidative damage in the middle and end stages. This was followed by lower levels of glutathione in stages 44 and 46, as well as lower values of catalase, glutathione peroxidase, glutathione S-transferase and sulfhydryl groups in stage 46 (all in relation to control animals). Comparison between stages 42, 44 and 46 within treatments showed that individuals in the last stage demonstrated the highest intensities of lipid oxidative damage in both the control and desiccation groups. As for the parameters of the antioxidant system, control individuals displayed greater variety in response to changes induced by metamorphic climax than individuals exposed to desiccation treatment. The overall decrease in water availability during development led to increased oxidative stress and modifications in the pattern of AOS response to changes induced by metamorphic climax in larvae of B. variegata.
Collapse
Affiliation(s)
- Tamara G. Petrović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.K.); (N.K.T.); (T.V.)
| | - Nataša Kolarov Tomašević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.K.); (N.K.T.); (T.V.)
| | - Jelena P. Gavrić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Svetlana G. Despotović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Branka R. Gavrilović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Tijana B. Radovanović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.K.); (N.K.T.); (T.V.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence:
| | - Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| |
Collapse
|
27
|
Gálvez Á, Mesquita‐Joanes F, Monrós JS. Are Iberian ribbed newts
Pleurodeles waltl
Michahelles, 1830 negatively affecting the populations of other amphibians? Ecol Res 2021. [DOI: 10.1111/1440-1703.12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ángel Gálvez
- Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Paterna Valencia Spain
| | - Francesc Mesquita‐Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Paterna Valencia Spain
| | - Juan S. Monrós
- Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Paterna Valencia Spain
| |
Collapse
|
28
|
Castro KMSA, Amado TF, Olalla-Tárraga MÁ, Gouveia SF, Navas CA, Martinez PA. Water constraints drive allometric patterns in the body shape of tree frogs. Sci Rep 2021; 11:1218. [PMID: 33441858 PMCID: PMC7806824 DOI: 10.1038/s41598-020-80456-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
The origin of morphological diversity is a critical question in evolutionary biology. Interactions between the environment and developmental processes have determining roles in morphological diversity, creating patterns through space and over time. Also, the shape of organisms tends to vary with increasing size as a result of those developmental processes, known as allometry. Several studies have demonstrated that the body sizes of anurans are associated with hydric conditions in their environments and that localities with high water stress tend to select for larger individuals. However, how environmental conditions alter those patterns of covariance between size and shape is still elusive. We used 3D geometric morphometric analyses, associated with phylogenetic comparative methods, to determine if the morphological variations and allometric patterns found in Arboranae (Anura) is linked to water conservation mechanisms. We found effects of the hydric stress on the shape of Arboranae species, favouring globular shapes. Also, the allometric patterns varied in intensity according to the water stress gradient, being particularly relevant for smaller frogs, and more intense in environments with higher water deficits. Our study provides empirical evidence that more spherical body shapes, especially among smaller species, reflect an important adaptation of anurans to water conservation in water-constrained environments.
Collapse
Affiliation(s)
- Kathleen M S A Castro
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49.000-100, Brazil.
- PIBi Lab - Laboratório de Pesquisas Integrativas em Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil.
| | - Talita F Amado
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, 28933, Madrid, Spain
- PIBi Lab - Laboratório de Pesquisas Integrativas em Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Miguel Á Olalla-Tárraga
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, 28933, Madrid, Spain
| | - Sidney F Gouveia
- Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
- PIBi Lab - Laboratório de Pesquisas Integrativas em Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Carlos A Navas
- Departamento de Fisiologia Geral, Instituto de Biociência, Universidade de São Paulo, São Paulo, Brazil
| | - Pablo A Martinez
- Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
- PIBi Lab - Laboratório de Pesquisas Integrativas em Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| |
Collapse
|
29
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
30
|
Sanabria EA, González E, Quiroga LB, Tejedo M. Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulational variation. J Zool (1987) 2020. [DOI: 10.1111/jzo.12850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E. A. Sanabria
- Instituto de Ciencias Básicas Facultad de Filosofía Humanidades y Artes Universidad Nacional de San Juan San Juan Argentina
- Facultad de Ciencias Exactas y Naturales Universidad Nacional de Cuyo Mendoza Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata Argentina
| | - E. González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata Argentina
- Museo de La Plata Universidad Nacional de La Plata La Plata Argentina
| | - L. B. Quiroga
- Instituto de Ciencias Básicas Facultad de Filosofía Humanidades y Artes Universidad Nacional de San Juan San Juan Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata Argentina
| | - M. Tejedo
- Departamento de Ecología Evolutiva Estación Biológica de Doñana CSIC Sevilla Spain
| |
Collapse
|
31
|
Gálvez Á, Aguilar-Alberola JA, Armengol X, Bonilla F, Iepure S, Monrós JS, Olmo C, Rojo C, Rueda J, Rueda R, Sasa M, Mesquita-Joanes F. Environment and Space Rule, but Time Also Matters for the Organization of Tropical Pond Metacommunities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.558833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Bardier C, Maneyro R, Toledo LF. The Correlates of in Situ Larval Survivorship of the Threatened South American Toad Melanophryniscus montevidensis (Anura, Bufonidae). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2020. [DOI: 10.2994/sajh-d-17-00019.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Cecilia Bardier
- Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Raúl Maneyro
- Laboratorio de Sistemática e Historia Natural de Vertebrados, Instituto de Ecología y Ciencias ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083‐970, Campinas, São Paulo, Brazil
| |
Collapse
|
33
|
Melotto A, Manenti R, Ficetola GF. Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation. Nat Commun 2020; 11:3608. [PMID: 32681028 PMCID: PMC7368066 DOI: 10.1038/s41467-020-17406-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive predators can exert strong selection on native populations. If selection is strong enough, populations could lose the phenotypic variation caused by adaptation to heterogeneous environments. We compare frog tadpoles prior to and 14 years following invasion by crayfish. Prior to the invasion, populations differed in their intrinsic developmental rate, with tadpoles from cold areas reaching metamorphosis sooner than those from warm areas. Following the invasion, tadpoles from invaded populations develop faster than those from non-invaded populations. This ontogenetic shift overwhelmed the intraspecific variation between populations in a few generations, to the point where invaded populations develop at a similar rate regardless of climate. Rapid development can have costs, as fast-developing froglets have a smaller body size and poorer jumping performance, but compensatory growth counteracts some costs of development acceleration. Strong selection by invasive species can disrupt local adaptations by dampening intraspecific phenotypic variation, with complex consequences on lifetime fitness.
Collapse
Affiliation(s)
- Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA - Laboratoire d'Écologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
34
|
Tolerant and avoiders in an urban landscape: anuran species richness and functional groups responses in the Yungas’ forest of NW Argentina. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Ruthsatz K, Dausmann KH, Drees C, Becker LI, Hartmann L, Reese J, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Altered thyroid hormone levels affect the capacity for temperature-induced developmental plasticity in larvae of Rana temporaria and Xenopus laevis. J Therm Biol 2020; 90:102599. [PMID: 32479394 DOI: 10.1016/j.jtherbio.2020.102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Anuran larvae show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. The capacity for temperature-induced developmental plasticity is determined by the thermal adaptation of a population. Multiple factors such as physiological responses to changing environmental conditions, however, might influence this capacity as well. In anuran larvae, thyroid hormone (TH) levels control growth and developmental rate and changes in TH status are a well-known stress response to sub-optimal environmental conditions. We investigated how chemically altered TH levels affect the capacity to exhibit temperature-induced developmental plasticity in larvae of the African clawed frog (Xenopus laevis) and the common frog (Rana temporaria). In both species, TH level influenced growth and developmental rate and modified the capacity for temperature-induced developmental plasticity. High TH levels reduced thermal sensitivity of metamorphic traits up to 57% (R. temporaria) and 36% (X. laevis). Rates of growth and development were more plastic in response to temperature in X. laevis (+30%) than in R. temporaria (+6%). Plasticity in rates of growth and development is beneficial to larvae in heterogeneous habitats as it allows a more rapid transition into the juvenile stage where rates of mortality are lower. Therefore, environmental stressors that increase endogenous TH levels and reduce temperature-dependent plasticity may increase risks and the vulnerability of anuran larvae. As TH status also influences metabolism, future studies should investigate whether reductions in physiological plasticity also increases the vulnerability of tadpoles to global change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Claudia Drees
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Laura I Becker
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Lisa Hartmann
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Janica Reese
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Steffen Reinhardt
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Tom Robinson
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| | - Myron A Peck
- Institute of Marine Ecosystems and Fisheries Science, University of Hamburg, Große Elbstrasse 133, 22767 Hamburg, Germany.
| | - Julian Glos
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
36
|
Erős N, Maloș CV, Horváth C, Hartel T. Temporary pond loss as a result of pasture abandonment: exploring the social-ecological drivers and consequences for amphibians. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Székely D, Cogălniceanu D, Székely P, Armijos-Ojeda D, Espinosa-Mogrovejo V, Denoël M. How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian. BMC Ecol 2020; 20:24. [PMID: 32316956 PMCID: PMC7175581 DOI: 10.1186/s12898-020-00291-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background In species with complex life cycles, size at metamorphosis is a key life-history trait which reflects the complex interactions between costs and benefits of life in the aquatic and terrestrial environments. Whereas the effects of a deteriorating larval habitat (e.g. pond desiccation) on triggering an early metamorphosis have been extensively investigated in amphibians, the consequences of the resulting reduced size at metamorphosis on fitness in the post-metamorphic terrestrial stage remain poorly understood. We tested the hypothesis that a smaller size at metamorphosis negatively affects performance and survival in the ensuing terrestrial stage. Using as model a tropical amphibian (Ceratophrys stolzmanni) showing a large phenotypic plasticity in metamorphosing traits, we evaluated the effects of size at metamorphosis on fitness-related trophic and locomotor performance traits, as well as on growth and survival rates. Results Our results support the hypothesis that a larger size at metamorphosis is correlated with better survival and performance. The survival rate of large metamorphosing individuals was 95%, compared to 60% for those completing metamorphosis at a small size. Locomotor performance and gape size were positively correlated with body size, larger animals being more mobile and capable to ingest larger prey. However, smaller individuals achieved higher growth rates, thus reducing the size gap. Conclusions Overall, size at metamorphosis affected profoundly the chances of survival in the short term, but smaller surviving individuals partly compensated their initial disadvantages by increasing growth rates.
Collapse
Affiliation(s)
- Diana Székely
- Departamento de Ciencias Biológicas, EcoSs Lab, Universidad Técnica Particular de Loja, Loja, Ecuador.,Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of ReSearch (FOCUS), University of Liège, Liège, Belgium
| | - Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania. .,Asociation Chelonia, Bucharest, Romania.
| | - Paul Székely
- Departamento de Ciencias Biológicas, EcoSs Lab, Universidad Técnica Particular de Loja, Loja, Ecuador.,Asociation Chelonia, Bucharest, Romania
| | - Diego Armijos-Ojeda
- Departamento de Ciencias Biológicas, EcoSs Lab, Universidad Técnica Particular de Loja, Loja, Ecuador.,Programa de Doctorado en Conservación de Recursos Naturales, Universidad Rey Juan Carlos, Móstoles, Spain
| | | | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of ReSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
38
|
Cayuela H, Valenzuela-Sánchez A, Teulier L, Martínez-Solano Í, Léna JP, Merilä J, Muths E, Shine R, Quay L, Denoël M, Clobert J, Schmidt BR. Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/707862] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Awkerman J, Raimondo S, Schmolke A, Galic N, Rueda-Cediel P, Kapo K, Accolla C, Vaugeois M, Forbes V. Guidance for Developing Amphibian Population Models for Ecological Risk Assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:223-233. [PMID: 31538699 PMCID: PMC8425957 DOI: 10.1002/ieam.4215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 05/05/2023]
Abstract
Despite widespread acceptance of the utility of population modeling and advocacy of this approach for a more ecologically relevant perspective, it is not routinely incorporated in ecological risk assessments (ERA). A systematic framework for situation-specific model development is one of the major challenges to broadly adopting population models in ERA. As risk assessors confront the multitude of species and chemicals requiring evaluation, an adaptable stepwise guide for model parameterization would facilitate this process. Additional guidance on interpretation of model output and evaluating uncertainty would further contribute to establishing consensus on good modeling practices. We build on previous work that created a framework and decision guide for developing population models for ERA by focusing on data types, model structure, and extrinsic stressors relevant to anuran amphibians. Anurans have a unique life cycle with varying habitat requirements and high phenotypic plasticity. These species belong to the amphibian class, which is facing global population decline in large part due to anthropogenic stressors, including chemicals. We synthesize information from databases and literature relevant to amphibian risks to identify traits that influence exposure likelihood, inherent sensitivity, population vulnerability, and environmental constraints. We link these concerns with relevant population modeling methods and structure in order to evaluate pesticide effects with appropriate scale and parameterization. A standardized population modeling approach, with additional guidance for anuran ERA, offers an example method for quantifying population risks and evaluating long-term impacts of chemical stressors to populations. Integr Environ Assess Manag 2020;16:223-233. © 2019 SETAC.
Collapse
Affiliation(s)
- Jill Awkerman
- Gulf Ecology Division, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Sandy Raimondo
- Gulf Ecology Division, US Environmental Protection Agency, Gulf Breeze, Florida
| | | | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Pamela Rueda-Cediel
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | | | - Chiara Accolla
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Maxime Vaugeois
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Valery Forbes
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
40
|
Albecker MA, Pahl M, Smith M, Wilson JG, McCoy MW. Influence of density and salinity on larval development of salt-adapted and salt-naïve frog populations. Ecol Evol 2020; 10:2436-2445. [PMID: 32184991 PMCID: PMC7069285 DOI: 10.1002/ece3.6069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt-adapted ("coastal") and nonsalt-adapted ("inland") populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high-density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.
Collapse
Affiliation(s)
- Molly A. Albecker
- Department of BiologyNortheastern University Marine Science CenterNortheastern UniversityNahantMAUSA
| | - Matthew Pahl
- Department of BiologyHowell Science ComplexEast Carolina UniversityGreenvilleNCUSA
| | - Melanie Smith
- Department of BiologyHowell Science ComplexEast Carolina UniversityGreenvilleNCUSA
| | - Jefferson G. Wilson
- Department of BiologyHowell Science ComplexEast Carolina UniversityGreenvilleNCUSA
| | - Michael W. McCoy
- Department of BiologyHowell Science ComplexEast Carolina UniversityGreenvilleNCUSA
| |
Collapse
|
41
|
Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00469-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Womack MC, Metz MJ, Hoke KL. Larger Genomes Linked to Slower Development and Loss of Late-Developing Traits. Am Nat 2019; 194:854-864. [PMID: 31738099 DOI: 10.1086/705897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genome size varies widely among organisms and is known to affect vertebrate development, morphology, and physiology. In amphibians, genome size is hypothesized to contribute to loss of late-forming structures, although this hypothesis has mainly been discussed in salamanders. Here we estimated genome size for 22 anuran species and combined this novel data set with existing genome size data for an additional 234 anuran species to determine whether larger genome size is associated with loss of a late-forming anuran sensory structure, the tympanic middle ear. We established that genome size is negatively correlated with development rate across 90 anuran species and found that genome size evolution is correlated with evolutionary loss of the middle ear bone (columella) among 241 species (224 eared and 17 earless). We further tested whether the development of the tympanic middle ear could be constrained by large cell sizes and small body sizes during key stages of tympanic middle ear development (metamorphosis). Together, our evidence suggests that larger genomes, slower development rate, and smaller body sizes at metamorphosis may contribute to the loss of the anuran tympanic middle ear. We conclude that increases in anuran genome size, although less drastic than those in salamanders, may affect development of late-forming traits.
Collapse
|
43
|
Brannelly LA, Ohmer MEB, Saenz V, Richards‐Zawacki CL. Effects of hydroperiod on growth, development, survival and immune defences in a temperate amphibian. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura A. Brannelly
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| | - Michel E. B. Ohmer
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| | - Veronica Saenz
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| | - Corinne L. Richards‐Zawacki
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
44
|
Garcia TS, Bredeweg EM, Urbina J, Ferrari MCO. Evaluating adaptive, carry-over, and plastic antipredator responses across a temporal gradient in Pacific chorus frogs. Ecology 2019; 100:e02825. [PMID: 31325377 DOI: 10.1002/ecy.2825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 11/07/2022]
Abstract
The development of antipredator traits is dependent on the frequency and intensity of predator exposure over evolutionary and ecological time. We hypothesized that prey species would respond with increasing accuracy when exposed to predators across generational, ontogenetic, and immediate time scales. We assessed larval Pacific chorus frog (PSRE; Pseudacris regilla) individuals that varied in population sympatry, embryonic conditioning, and immediate exposure to stocked populations of rainbow trout (Oncorhynchus mykiss). Using PSRE populations from sites with and without resident rainbow trout, we conditioned embryos to trout odor, PSRE alarm cues, trout odor in combination with alarm cues, or control water. After being hatched and reared in control water, individuals were exposed to the four predator cue treatments using a fully factorial design. Tadpoles from populations with resident rainbow trout did not behave or develop differently than tadpoles originating from fishless sites. However, we found evidence that PSRE reduced predation risk with a combination of carry-over effect (i.e., transfer of information across life history stages) and within-life stage phenotypically plastic mechanisms. We found both developmental and behavioral carry-over effects: tadpoles conditioned with trout odor as embryos grew more slowly and took refuge more often than control animals. Within-life-stage behavioral plasticity was observed in tadpoles from all treatment groups, responding to predator cues with increased refuge use. Potentially additive effects of predator exposure on prey response should be considered when predicting the ability of prey to recognize novel threats.
Collapse
Affiliation(s)
- Tiffany S Garcia
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Evan M Bredeweg
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Jenny Urbina
- Environmental Science Program, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| |
Collapse
|
45
|
Albecker MA, McCoy MW. Local adaptation for enhanced salt tolerance reduces non‐adaptive plasticity caused by osmotic stress. Evolution 2019; 73:1941-1957. [DOI: 10.1111/evo.13798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Molly A. Albecker
- Department of BiologyEast Carolina University Greenville North Carolina 27858
| | - Michael W. McCoy
- Department of BiologyEast Carolina University Greenville North Carolina 27858
| |
Collapse
|
46
|
Pašukonis A, Loretto MC, Rojas B. How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. Evol Ecol 2019; 33:613-623. [PMID: 31404198 PMCID: PMC6647546 DOI: 10.1007/s10682-019-09994-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/05/2019] [Indexed: 11/06/2022]
Abstract
Parents can influence offspring dispersal through breeding site selection, competition, or by directly moving their offspring during parental care. Many animals move their young, but the potential role of this behavior in dispersal has rarely been investigated. Neotropical poison frogs (Dendrobatidae) are well known for shuttling their tadpoles from land to water, but the associated movements have rarely been quantified and the potential function of tadpole transport in dispersal has not been addressed. We used miniature radio-transmitters to track the movements of two poison frog species during tadpole transport, and surveyed pool availability in the study area. We found that parental males move farther than expected by the distance to the nearest pool and spread their offspring across multiple pools. We argue that these movement patterns cannot be fully explained by pool quality and availability, and suggest that adaptive benefits related to offspring dispersal also shape the spatial behavior of parental frogs.
Collapse
Affiliation(s)
- Andrius Pašukonis
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305 USA
- Department of Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Bibiana Rojas
- Department of Biological and Environmental Sciences, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
47
|
Kohli AK, Lindauer AL, Brannelly LA, Ohmer MEB, Richards-Zawacki C, Rollins-Smith L, Voyles J. Disease and the Drying Pond: Examining Possible Links among Drought, Immune Function, and Disease Development in Amphibians. Physiol Biochem Zool 2019; 92:339-348. [PMID: 30990770 DOI: 10.1086/703137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drought can heavily impact aquatic ecosystems. For amphibian species that rely on water availability for larval development, drought can have direct and indirect effects on larval survival and postmetamorphic fitness. Some amphibian species can accelerate the timing of metamorphosis to escape drying habitats through developmental plasticity. However, trade-offs associated with premature metamorphosis, such as reduced body size and altered immune function in the recently metamorphosed individual, may have downstream effects on susceptibility to disease. Here, we review the physiological mechanisms driving patterns in larval amphibian development under low water conditions. Specifically, we discuss drought-induced accelerated metamorphosis and how it may alter immune function, predisposing juvenile amphibians to infectious disease. In addition, we consider how these physiological and immunological adjustments could play out in a lethal disease system, amphibian chytridiomycosis. Last, we propose avenues for future research that adopt an ecoimmunological approach to evaluate the combined threats of drought and disease for amphibian populations.
Collapse
|
48
|
Enriquez-Urzelai U, Sacco M, Palacio AS, Pintanel P, Tejedo M, Nicieza AG. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 2019; 189:385-394. [DOI: 10.1007/s00442-019-04342-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/21/2019] [Indexed: 11/28/2022]
|
49
|
Gómez VI, Kehr AI. Habitat size changes morphological traits of Physalaemus albonotatus tadpoles. TROPICAL ZOOLOGY 2019. [DOI: 10.1080/03946975.2018.1549887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Valeria Isabel Gómez
- Centro de Ecología Aplicada del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, (CECOAL-CONICET), Corrientes, Argentina
| | - Arturo Ignacio Kehr
- Centro de Ecología Aplicada del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, (CECOAL-CONICET), Corrientes, Argentina
| |
Collapse
|
50
|
Venturelli DP, Klein W. Effect of hydric stress on locomotion and morphology of tadpoles from temporary ponds. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:175-184. [PMID: 30592162 DOI: 10.1002/jez.2251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022]
Abstract
Many frog species reproduce in temporary ponds maintained exclusively by rainfall, thereby being exposed to drought and possibly mortality of eggs and tadpoles. Some tadpoles, however, can survive for up to 5 days out of water but few data are available regarding the effects of dehydration on their development. The aim of this study was to evaluate whether hydric stress affects the locomotor capacity and the morphology in tadpoles of two leptodactylid frog species showing different reproductive modes (Leptodactylus fuscus and Physalaemus nattereri), examining specifically: (a) difference in survival rate and body mass between tadpoles at different hydration levels, (b) the hydric stress effect on locomotor performance, (c) difference in external morphology, and (d) visceral volume among tadpoles suffering hydric stress. Tadpoles for both species were divided into two groups, one staying in 100 ml of water and the other maintained on absorbent paper with 4 ml of water for 12, 24, and 72 hr (n = 20 each). Significant differences in weight loss were found between the groups of both species, the treatment losing more weight in all stress levels. Almost half of P. nattereri tadpoles died within 36 hr of hydric stress. We found no difference in locomotor performance between groups of L. fuscus tadpoles, but significant differences in locomotor performance, tail morphometry, and visceral volume between groups of P. nattereri tadpoles. Our results suggest that hydric stress has a significant effect on locomotion and morphology of P. nattereri tadpoles but not in L. fuscus.
Collapse
Affiliation(s)
- Diego Pimentel Venturelli
- Laboratório de Morfo-Fisiologia de Vertebrados, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Laboratório de Morfo-Fisiologia de Vertebrados, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|