1
|
Chapman OS, McLean BS. Gastrointestinal morphology is an effective functional dietary proxy that predicts small mammal community structure. Ecology 2024:e4454. [PMID: 39460377 DOI: 10.1002/ecy.4454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 10/28/2024]
Abstract
The availability and quality of food resources can alter the intensity of competition and predation pressure within communities. Understanding species capacity to respond to global change-driven shifts in resource distribution is therefore crucial for biodiversity conservation. Small mammal communities are often structured by competition for food resources, but understanding and monitoring these processes are currently hindered by lack of functional dietary trait information in these hard-to-sample systems. In this study, we collected a comprehensive suite of gastrointestinal (GI) measurements from 26 small mammal species (including some never reported), compared them with more traditional craniodental traits in predicting dietary guild, and used them in a novel way to understand how diet structures 22 small mammal communities across the Appalachian Mountains of eastern North America. As predicted, we found GI traits to be effective dietary trait proxies; they were equally or more accurate than craniodental proportions in predicting the dietary guild of individual species. Furthermore, at the community level, we found that both the mean and functional dispersion of GI length were positively correlated with latitude and measures of temperature seasonality. Our results indicate that small mammal communities in more seasonal environments are filtered to include species with longer GI tracts (on average) as well as those that can partition food resources more finely, as expected based on the lower productivity of these regions. Conversely, communities in less seasonal environments display functional redundancy from the addition of species with short to intermediate GI lengths. Proportions of the GI tract represent novel dietary traits that can illuminate community assembly processes across regional environmental gradients and in the face of changing timing and availability of resources.
Collapse
Affiliation(s)
- Olivia S Chapman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Bryan S McLean
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
2
|
Betancourtt C, Catalán AM, Morales-Torres DF, Lopez DN, Escares-Aguilera V, Salas-Yanquin LP, Büchner-Miranda JA, Chaparro OR, Nimptsch J, Broitman BR, Valdivia N. Transient species driving ecosystem multifunctionality: Insights from competitive interactions between rocky intertidal mussels. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106422. [PMID: 38437777 DOI: 10.1016/j.marenvres.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions-rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion-were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.
Collapse
Affiliation(s)
- Claudia Betancourtt
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Alexis M Catalán
- Centro de Investigación en Ecosistemas de la Patagonia, CIEP, Coyhaique, Chile
| | - Diego F Morales-Torres
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Daniela N Lopez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Escares-Aguilera
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Luis P Salas-Yanquin
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Sisal, Mexico
| | - Joseline A Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Bernardo R Broitman
- Instituto Milenio en Socio-Ecología Costera (SECOS), Chile; Núcleo Milenio UPWELL, Chile; Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña Del Mar, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile
| |
Collapse
|
3
|
Justino JT, Demetrio GR, Neres PF, Meneses D, Pinto TK. A functional perspective of nematode assemblages as proxy of quality in tropical estuarine tidal flats. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105922. [PMID: 36812839 DOI: 10.1016/j.marenvres.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Functional aspects of biological communities influence ecosystem processes and it is urgent to understand how human disturbances affect functional diversity and ecosystem functions and services. Our purpose was to address the use of different functional metrics of nematode assemblages to evaluate the ecological status of tropical estuaries subjected to different human activities, aiming to advance and improve the knowledge about the usefulness of functional attributes as indicators of environmental quality. Three approaches were compared: functional diversity indexes, single trait, and multi traits using the Biological Traits Analysis. The RLQ + fourth-corner combined method was used to identify relationships among functional traits, inorganic nutrients, and metals concentrations. Lower values of FDiv, FSpe, and FOri indicate a convergence of functions, characterizing impacted conditions. A dominant set of traits was related to disturbance, mainly inorganic nutrient enrichment. All the approaches allowed for the detection of disturbed conditions, however, multi traits was the most sensitive one.
Collapse
|
4
|
Tew ER, Conway GJ, Henderson IG, Milodowski DT, Swinfield T, Sutherland WJ. Recommendations to enhance breeding bird diversity in managed plantation forests determined using LiDAR. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2678. [PMID: 35588196 PMCID: PMC9787994 DOI: 10.1002/eap.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Widespread afforestation is a crucial component of climate mitigation strategies worldwide. This presents a significant opportunity for biodiversity conservation if forests are appropriately managed. Within forests, structural and habitat diversity are known to be critical for biodiversity but pragmatic management recommendations are lacking. We make a comprehensive assessment of the effects of habitat variables on bird populations using data from over 4000 ha of forested landscape. We combine high-resolution remote sensing data with comprehensive management databases to classify habitat attributes and measure the response of six taxonomic and functional diversity metrics: species richness, Shannon diversity, functional richness, functional evenness, functional divergence, and functional dispersion. We use a novel approach that combines hierarchical partitioning analysis with linear models to determine the relative importance of different habitat variables for each bird diversity metric. The age class of forest stands was consistently the most important variable across all bird diversity metrics, outperforming other structural measures such as horizontal and vertical heterogeneity and canopy density. Shrub density and gap fraction were each significantly associated with one bird diversity metric. In contrast, variables describing within-stand structural heterogeneity (vertical and horizontal) were generally less important while tree species identity (e.g., conifer or broadleaved) was not significant for any bird diversity metric. Each of the six bird diversity metrics had different patterns of independent variable importance and significance, emphasizing the need to consider multiple diversity metrics in biodiversity assessments. Similarly, the optimal resolution for remote sensing metrics varied between structural variables and bird diversity metrics, suggesting that the use of remote sensing data in biodiversity studies could be greatly improved by first exploring different resolutions and data aggregations. Based on the results from this comprehensive study, we recommend that managers focus on creating habitat diversity at the between-, rather than exclusively within-stand scale, such as by creating a matrix of different age classes, to maximize bird diversity. This recommendation for forest managers is powerful yet pragmatic in its simplicity.
Collapse
Affiliation(s)
- Eleanor R. Tew
- Department of ZoologyUniversity of Cambridge, The David Attenborough BuildingCambridgeUK
- Forestry EnglandBristolUK
| | | | | | - David T. Milodowski
- School of GeoSciencesUniversity of EdinburghEdinburghUK
- National Centre for Earth ObservationUniversity of EdinburghEdinburghUK
| | - Tom Swinfield
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - William J. Sutherland
- Department of ZoologyUniversity of Cambridge, The David Attenborough BuildingCambridgeUK
- Biosecurity Research Initiative at St Catharine's (BIORISC), St Catharine's CollegeUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Cid Alda FP, Valdivia N, Guillemin ML. More than What Meets the Eye: Differential Spatiotemporal Distribution of Cryptic Intertidal Bangiales. PLANTS (BASEL, SWITZERLAND) 2022; 11:605. [PMID: 35270075 PMCID: PMC8912569 DOI: 10.3390/plants11050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Morphologically similar but genetically distinct species have been termed cryptic and most have been assumed to be ecologically similar. However, if these species co-occur at a certain spatial scale, some niche differences at finer scales should be expected to allow for coexistence. Here, we demonstrate the existence of a disjointed distribution of cryptic bladed Bangiales along spatial (intertidal elevations) and temporal (seasons) environmental gradients. Bladed Bangiales were identified and quantified across four intertidal elevations and four seasons for one year, at five rocky intertidal sites (between 39° S and 43° S) in southern Chile. Species determination was based on partial sequences of the mitochondrial cytochrome c oxidase 1 (COI) gene amplification. To assess species gross morphology, thallus shape, color, and maximum length and width were recorded. Hundreds of organisms were classified into nine Bangiales species belonging to three genera (i.e., Fuscifolium, Porphyra, and Pyropia), including five frequent (>97% of specimens) and four infrequent species. All species, except for Pyropia saldanhae, had been previously reported along the coasts of Chile. The thallus shape and color were very variable, and a large overlap of the maximum width and length supported the cryptic status of these species. Multivariate analyses showed that the main variable affecting species composition was intertidal elevation. Species such as Py. orbicularis were more abundant in low and mid intertidal zones, while others, such as Po. mumfordii and Po. sp. FIH, were principally observed in high and spray elevations. Despite all numerically dominant species being present all year long, a slight effect of seasonal variation on species composition was also detected. These results strongly support the existence of spatial niche partitioning in cryptic Bangiales along the Chilean rocky intertidal zone.
Collapse
Affiliation(s)
- Fernanda P. Cid Alda
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4780000, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile
| | - Marie-Laure Guillemin
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile
- CNRS, Sorbonne Université, IRL 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| |
Collapse
|
6
|
Morelli F, Benedetti Y, Ibáñez-Álamo JD, Tryjanowski P, Jokimäki J, Kaisanlahti-Jokimäki ML, Suhonen J, Díaz M, Møller AP, Moravec D, Prosek J, Bussière R, Mägi M, Kominos T, Galanaki A, Bukas N, Marko G, Pruscini F, Tonelli M, Jerzak L, Ciebiera O, Reif J. Effects of urbanization on taxonomic, functional and phylogenetic avian diversity in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148874. [PMID: 34246142 DOI: 10.1016/j.scitotenv.2021.148874] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Europe is an urbanized continent characterized by a long history of human-wildlife interactions. This study aimed to assess the effects of specific elements of urbanization and urban pollution on complementary avian diversity metrics, to provide new insights on the conservation of urban birds. Our study recorded 133 bird species at 1624 point counts uniformly distributed in seventeen different European cities. Our results thus covered a large spatial scale, confirming both effects of geographical and local attributes of the cities on avian diversity. However, we found contrasting effects for the different diversity components analyzed. Overall, taxonomic diversity (bird species richness), phylogenetic diversity and relatedness were significantly and negatively associated with latitude, while functional dispersion of communities showed no association whatsoever. At the local level (within the city), we found that urban greenery (grass, bush, and trees) is positively correlated with the number of breeding bird species, while the building cover showed a detrimental effect. Functional dispersion was the less affected diversity metric, while grass and trees and water (rivers or urban streams) positively affected the phylogenetic diversity of avian communities. Finally, the phylogenetic relatedness of species increased with all the main indicators of urbanization (building surface, floors, pedestrian's density and level of light pollution) and was only mitigated by the presence of bushes. We argue that maintaining adequate levels of avian diversity within the urban settlements can help to increase the potential resilience of urban ecosystems exposed to the stress provoked by rapid and continuous changes. We listed some characteristics of the cities providing positive and negative effects on each facet of urban avian diversity.
Collapse
Affiliation(s)
- Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic.
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic
| | | | - Piotr Tryjanowski
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic; Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, PL-60-625 Poznań, Poland
| | - Jukka Jokimäki
- Nature Inventory and EIA-services, Arctic Centre, University of Lapland, P. O. Box 122, FI-96101 Rovaniemi, Finland
| | | | - Jukka Suhonen
- Department of Biology, University of Turku, Turku, Finland
| | - Mario Díaz
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (BGC-MNCN-CSIC), E-28006 Madrid, Spain
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - David Moravec
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic
| | - Jiri Prosek
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic
| | | | - Marko Mägi
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Theodoros Kominos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonia Galanaki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikos Bukas
- Plegadis, Riga Feraiou 6A, 45444 Ioannina, Greece
| | - Gabor Marko
- Department of Plant Pathology, Szent István University, Budapest, Hungary; Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fabio Pruscini
- S. C. della Pantiera 23, 61029 Pantiera, Urbino (PU), Italy
| | - Mattia Tonelli
- Department of Biomolecular Sciences (DISB), University of Urbino "Carlo Bo", 61029 Urbino, PU, Italy
| | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Prof. Szafrana St. 1, PL 65-16 Zielona Góra, Poland
| | - Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Prof. Szafrana St. 1, PL 65-16 Zielona Góra, Poland
| | - Jiri Reif
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Czech Republic; Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University in Olomouc, Czech Republic
| |
Collapse
|
7
|
Figueroa NN, Brante A, Viard F, Leclerc JC. Greater functional similarity in mobile compared to sessile assemblages colonizing artificial coastal habitats. MARINE POLLUTION BULLETIN 2021; 172:112844. [PMID: 34399279 DOI: 10.1016/j.marpolbul.2021.112844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile assemblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.
Collapse
Affiliation(s)
- Naily Nashira Figueroa
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| |
Collapse
|
8
|
Steger J, Dunne B, Zuschin M, Albano PG. Bad neighbors? Niche overlap and asymmetric competition between native and Lessepsian limpets in the Eastern Mediterranean rocky intertidal. MARINE POLLUTION BULLETIN 2021; 171:112703. [PMID: 34330002 DOI: 10.1016/j.marpolbul.2021.112703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The Eastern Mediterranean Sea hosts more non-indigenous species than any other marine region, yet their impacts on the native biota remain poorly understood. Focusing on mollusks from the Israeli rocky intertidal, we explored the hypothesis that this abiotically harsh habitat supports a limited trait diversity, and thus may promote niche overlap and competition between native and non-indigenous species. Indeed, native and non-indigenous assemblage components often had a highly similar trait composition, caused by functionally similar native (Patella caerulea) and non-indigenous (Cellana rota) limpets. Body size of P. caerulea decreased with increasing C. rota prevalence, but not vice versa, indicating potential asymmetric competition. Although both species have coexisted in Israel for >15 years, a rapid 'replacement' of native limpets by C. rota has been reported for a thermally polluted site, suggesting that competition and regionally rapid climate-related seawater warming might interact to progressively erode native limpet performance along the Israeli coast.
Collapse
Affiliation(s)
- Jan Steger
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Beata Dunne
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Paolo G Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
9
|
Larson EI, Poff NL, Funk WC, Harrington RA, Kondratieff BC, Morton SG, Flecker AS. A unifying framework for analyzing temporal changes in functional and taxonomic diversity along disturbance gradients. Ecology 2021; 102:e03503. [PMID: 34314030 DOI: 10.1002/ecy.3503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 01/29/2023]
Abstract
Frameworks exclusively considering functional diversity are gaining popularity, as they complement and extend the information provided by taxonomic diversity metrics, particularly in response to disturbance. Taxonomic diversity should be included in functional diversity frameworks to uncover the functional mechanisms causing species loss following disturbance events. We present and test a predictive framework that considers temporal functional and taxonomic diversity responses along disturbance gradients. Our proposed framework allows us to test different multidimensional metrics of taxonomic diversity that can be directly compared to calculated multidimensional functional diversity metrics. It builds on existing functional diversity-disturbance frameworks both by using a gradient approach and by jointly considering taxonomic and functional diversity. We used previously unpublished stream insect community data collected prior to, and for the two years following, an extreme flood event that occurred in 2013. Using 14 northern Colorado mountain streams, we tested our framework and determined that taxonomic diversity metrics calculated using multidimensional methods resulted in concordance between taxonomic and functional diversity responses. By considering functional and taxonomic diversity together and using a gradient approach, we were able to identify some of the mechanisms driving species losses following this extreme disturbance event.
Collapse
Affiliation(s)
- Erin I Larson
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA.,Institute for Culture and Environment, Alaska Pacific University, Anchorage, Alaska, 99508, USA
| | - N LeRoy Poff
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, 2617, Australia
| | - W Chris Funk
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Rachel A Harrington
- Office of Wetlands, Oceans and Watersheds, U.S. Environmental Protection Agency, Washington, D.C., 20460, USA
| | - Boris C Kondratieff
- Department of Bioagricultural Sciences and Pest Management & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Scott G Morton
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
10
|
Midolo G, Kuss P, Wellstein C. Land use and water availability drive community-level plant functional diversity of grasslands along a temperature gradient in the Swiss Alps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142888. [PMID: 33131863 DOI: 10.1016/j.scitotenv.2020.142888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Functional traits of mountain grassland communities strongly depend upon temperature variation along elevational gradients. However, little is known to what degree the direction of such trait-temperature relationships is shaped by other environmental factors or land-use types. Here, we investigated context-dependent patterns of plant functional trait variation in alpine grassland communities. Specifically, we tested whether temperature (degree-days) variation along an elevational gradient, interacts with water availability, soil properties and land-use type to moderate such patterns. We used cover-abundance and plant-trait data from 236 grassland relevés of the Swiss Alps along an elevational range of 500-2400 m a.s.l. with plant traits being specific leaf area (L), seed releasing height (H) and seed mass (S). We used indices capturing different dimensions of plant functional diversity as response variables, i.e. community weighted mean (CWM), trait range (TR) and functional dispersion (FDis). Land-use type and water availability interacted significantly with degree-days determining the responses of multiple plant traits community attributes. Specific leaf area (CWML) and seed releasing height (CWMH) increased with temperature in meadows and pastures, while no significant trend was detected in fallows. In meadows, seed mass (CWMS) increased and was at the same time less constrained (higher TRS) with increasing temperature. In pastures and fallows, by contrast, no seed trait-temperature trends were detected. In addition, water availability interacted with increasing temperature affecting functional dispersion: FDisL decreased only in sites with higher site water balance and TRS and FDisS increased in sites with low mean summer precipitation. Our findings suggest that functional diversity of grasslands might respond to climate warming with strong ecological differences depending on land-use types and water availability. Based on our results, managed meadows and pastures most likely change in direction to species with more acquisitive strategies, whereas in fallows, no specific trajectory of change is expected.
Collapse
Affiliation(s)
- Gabriele Midolo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Patrick Kuss
- Institute of Systematic & Evolutionary Botany, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Camilla Wellstein
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy.
| |
Collapse
|
11
|
Catalán AM, Büchner-Miranda J, Riedemann B, Chaparro OR, Valdivia N, Scrosati RA. Community-wide consequences of nonconsumptive predator effects on a foundation species. J Anim Ecol 2021; 90:1307-1316. [PMID: 33630333 DOI: 10.1111/1365-2656.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Predators can exert nonconsumptive effects (NCEs) on prey, which often take place through prey behavioural adjustments to minimise predation risk. As NCEs are widespread in nature, interest is growing to determine whether NCEs on a prey species can indirectly influence several other species simultaneously, thus leading to changes in community structure. In this study, we investigate whether a predator can exert NCEs on a foundation species and indirectly affect community structure. Through laboratory experiments, we first tested whether the predatory marine snail Acanthina monodon exerts negative NCEs on larviphagy (consumption of pelagic larvae) and phytoplankton filtration rates of the mussel Perumytilus purpuratus, an intertidal foundation species. These hypotheses stem from the notion that mussels may decrease feeding activities in the presence of predator cues to limit detection by predators. Afterwards, a field experiment tested whether the presence of A. monodon near mussel beds leads to higher colonisation rates of invertebrates that reproduce through pelagic larvae (expected under a lower larviphagy in P. purpuratus) and to a lower algal biomass on P. purpuratus shells (expected under a lower metabolite excretion in the mussels), thereby changing the community structure of the species typically found in P. purpuratus beds. The laboratory experiments revealed that waterborne cues from A. monodon limit the larviphagy and filtration rates of P. purpuratus. In turn, the field experiment showed that A. monodon cues led to greater abundances of barnacles and bivalves and a lower algal biomass in P. purpuratus beds, thus altering community structure. Overall, this study shows that a predator can indirectly affect community structure through NCEs on an invertebrate foundation species. As invertebrate foundation species are ubiquitous worldwide, understanding predator NCEs on these organisms could help to better understand community regulation in systems structured by such species.
Collapse
Affiliation(s)
- Alexis M Catalán
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Bárbara Riedemann
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
12
|
Oliveira HS, Gouveia SF, Ruiz-Esparza J, Ferrari SF. Fragment size and the disassembling of local bird communities in the Atlantic Forest: A taxonomic and functional approach. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Cappelatti L, Mauffrey ARL, Griffin JN. Functional diversity of habitat formers declines scale-dependently across an environmental stress gradient. Oecologia 2020; 194:135-149. [PMID: 32895733 PMCID: PMC7561580 DOI: 10.1007/s00442-020-04746-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Marine habitat formers such as seaweeds and corals are lynchpins of coastal ecosystems, but their functional diversity and how it varies with scale and context remains poorly studied. Here, we investigate the functional diversity of seaweed assemblages across the rocky intertidal stress gradient at large (zones) and small (quadrat) scales. We quantified complementary metrics of emergent group richness, functional richness (functional space occupied) and functional dispersion (trait complementarity of dominant species). With increasing shore height, under species loss and turnover, responses of functional diversity were scale- and metric-dependent. At the large scale, functional richness contracted while—notwithstanding a decline in redundancy—emergent group richness and functional dispersion were both invariant. At the small scale, all measures declined, with the strongest responses evident for functional and emergent group richness. Comparisons of observed versus expected values based on null models revealed that functional richness and dispersion were greater than expected in the low shore but converged with expected values higher on the shore. These results show that functional diversity of assemblages of marine habitat formers can be especially responsive to environmental stress gradients at small scales and for richness measures. Furthermore, niche-based processes at the small—neighbourhood—scale can favour co-occurrence of functionally distinctive species under low, but not high, stress, magnifying differences in functional diversity across environmental gradients. As assemblages of marine habitat formers face accelerating environmental change, further studies examining multiple aspects of functional diversity are needed to elucidate patterns, processes, and ecosystem consequences of community (dis-)assembly across diverse groups.
Collapse
Affiliation(s)
- Laura Cappelatti
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK.
| | - Alizée R L Mauffrey
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK
| | - John N Griffin
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
14
|
Törnroos A, Pecuchet L, Olsson J, Gårdmark A, Blomqvist M, Lindegren M, Bonsdorff E. Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem. GLOBAL CHANGE BIOLOGY 2019; 25:1235-1246. [PMID: 30570820 PMCID: PMC6850384 DOI: 10.1111/gcb.14552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 05/27/2023]
Abstract
The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long-term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series-data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long-term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi-trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long-term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi-trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups.
Collapse
Affiliation(s)
- Anna Törnroos
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
- Centre for Ocean Life, DTU‐AquaKngs. LyngbyDenmark
| | - Laurene Pecuchet
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
- Centre for Ocean Life, DTU‐AquaKngs. LyngbyDenmark
| | - Jens Olsson
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | | | | | - Erik Bonsdorff
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
15
|
Valdivia N, Segovia-Rivera V, Fica E, Bonta CC, Aguilera MA, Broitman BR. Context-dependent functional dispersion across similar ranges of trait space covered by intertidal rocky shore communities. Ecol Evol 2017; 7:1882-1891. [PMID: 28331595 PMCID: PMC5355202 DOI: 10.1002/ece3.2762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 11/23/2022] Open
Abstract
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected.
Collapse
Affiliation(s)
- Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Valdivia Chile
| | - Viviana Segovia-Rivera
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Eliseo Fica
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile
| | - César C Bonta
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Moisés A Aguilera
- Departamento de Biología Marina Facultad de Ciencias del Mar Universidad Católica del Norte Coquimbo Chile
| | - Bernardo R Broitman
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA) Universidad Católica del Norte Coquimbo Chile
| |
Collapse
|