1
|
Nappo HC, Colli G. Colonization of North America Boosted the Diversification of Whiptail Lizards. Ecol Evol 2024; 14:e70418. [PMID: 39445179 PMCID: PMC11496772 DOI: 10.1002/ece3.70418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Diversification is frequently associated with change-anything from colonizing a new area to evolving a new trait. Once a lineage changes, the organisms may be able to exploit previously unavailable ecological opportunities and release pressures from predators, parasites, and competitors, which may increase the speciation rate. Modern teiid lizards originated in South America but managed to colonize and diversify in North America. We assessed whether geographic distribution, body size, and body temperatures are associated with teiid diversification using GeoHiSSE and inverse equal-splits statistics with simulation tests. We also estimated speciation rates with MiSSE to account for the effect of unmeasured variables. Moreover, we assessed the ecological niche overlap between North American (including Caribbean) teiids and their sister clade in South America. Our results indicate that only distribution range affected diversification, but we discuss that the available data might not have been enough to assess the effect of body temperatures. We also show that North American teiids have a broader ecological niche encompassing almost all environmental conditions used by their sister clade in South America but expanding mainly toward arid areas. Our results suggest that this expansion significantly impacted teiid diversification due to the seizing of ecological opportunities or ecological release, but we do not discard possible effects of phenotypic evolution.
Collapse
Affiliation(s)
- Humberto Coelho Nappo
- Programa de Pós‐Graduação em Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| |
Collapse
|
2
|
Massip-Veloso Y, Hoagstrom CW, McMahan CD, Matamoros WA. Biogeography of Greater Antillean freshwater fishes, with a review of competing hypotheses. Biol Rev Camb Philos Soc 2024; 99:901-927. [PMID: 38205676 DOI: 10.1111/brv.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In biogeography, vicariance and long-distance dispersal are often characterised as competing scenarios. However, they are related concepts, both relying on collective geological, ecological, and phylogenetic evidence. This is illustrated by freshwater fishes, which may immigrate to islands either when freshwater connections are temporarily present and later severed (vicariance), or by unusual means when ocean gaps are crossed (long-distance dispersal). Marine barriers have a strong filtering effect on freshwater fishes, limiting immigrants to those most capable of oceanic dispersal. The roles of vicariance and dispersal are debated for freshwater fishes of the Greater Antilles. We review three active hypotheses [Cretaceous vicariance, Greater Antilles-Aves Ridge (GAARlandia), long-distance dispersal] and propose long-distance dispersal to be an appropriate model due to limited support for freshwater fish use of landspans. Greater Antillean freshwater fishes have six potential source bioregions (defined from faunal similarity): Northern Gulf of México, Western Gulf of México, Maya Terrane, Chortís Block, Eastern Panamá, and Northern South America. Faunas of the Greater Antilles are composed of taxa immigrating from many of these bioregions, but there is strong compositional disharmony between island and mainland fish faunas (>90% of Antillean species are cyprinodontiforms, compared to <10% in Northern Gulf of México and Northern South America, and ≤50% elsewhere), consistent with a hypothesis of long-distance dispersal. Ancestral-area reconstruction analysis indicates there were 16 or 17 immigration events over the last 51 million years, 14 or 15 of these by cyprinodontiforms. Published divergence estimates and evidence available for each immigration event suggests they occurred at different times and by different pathways, possibly with rafts of vegetation discharged from rivers or washed to sea during storms. If so, ocean currents likely provide critical pathways for immigration when flowing from one landmass to another. On the other hand, currents create dispersal barriers when flowing perpendicularly between landmasses. In addition to high salinity tolerance, cyprinodontiforms collectively display a variety of adaptations that could enhance their ability to live with rafts (small body size, viviparity, low metabolism, amphibiousness, diapause, self-fertilisation). These adaptations likely also helped immigrants establish island populations after arrival and to persist long term thereafter. Cichlids may have used a pseudo bridge (Nicaragua Rise) to reach the Greater Antilles. Gars (Lepisosteidae) may have crossed the Straits of Florida to Cuba, a relatively short crossing that is not a barrier to gene flow for several cyprinodontiform immigrants. Indeed, widespread distributions of Quaternary migrants (Cyprinodon, Gambusia, Kryptolebias), within the Greater Antilles and among neighbouring bioregions, imply that long-distance dispersal is not necessarily inhibitory for well-adapted species, even though it appears to be virtually impossible for all other freshwater fishes.
Collapse
Affiliation(s)
- Yibril Massip-Veloso
- Programa de Doctorado en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | | | - Wilfredo A Matamoros
- Programa de Doctorado en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Laboratorio de Diversidad Acuática y Biogeografía, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
3
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. PAReTT: A Python Package for the Automated Retrieval and Management of Divergence Time Data from the TimeTree Resource for Downstream Analyses. J Mol Evol 2023:10.1007/s00239-023-10106-3. [PMID: 37079046 DOI: 10.1007/s00239-023-10106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Evolutionary processes happen gradually over time and are, thus, considered time dependent. In addition, several evolutionary processes are either adaptations to local habitats or changing habitats, otherwise restricted thereby. Since evolutionary processes driving speciation take place within the landscape of environmental and temporal bounds, several published studies have aimed at providing accurate, fossil-calibrated, estimates of the divergence times of both extant and extinct species. Correct calibration is critical towards attributing evolutionary adaptations and speciation both to the time and paleogeography that contributed to it. Data from more than 4000 studies and nearly 1,50,000 species are available from a central TimeTree resource and provide opportunities of retrieving divergence times, evolutionary timelines, and time trees in various formats for most vertebrates. These data greatly enhance the ability of researchers to investigate evolution. However, there is limited functionality when studying lists of species that require batch retrieval. To overcome this, a PYTHON package termed Python-Automated Retrieval of TimeTree data (PAReTT) was created to facilitate a biologist-friendly interaction with the TimeTree resource. Here, we illustrate the use of the package through three examples that includes the use of timeline data, time tree data, and divergence time data. Furthermore, PAReTT was previously used in a meta-analysis of candidate genes to illustrate the relationship between divergence times and candidate genes of migration. The PAReTT package is available for download from GitHub or as a pre-compiled Windows executable, with extensive documentation on the package available on GitHub wiki pages regarding dependencies, installation, and implementation of the various functions.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, Pretoria, 0001, South Africa.
- Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Antoinette Kotzé
- South African National Biodiversity Institute, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
4
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
5
|
Hileman ET, Powell R, Gifford ME. Senescence and Differential Size-Based Survival in Puerto Rican Giant Groundlizards, Pholidoscelis exsul (Squamata: Teiidae), on Guana Island, British Virgin Islands. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-22-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eric T. Hileman
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, MS 39762, USA
| | - Robert Powell
- Department of Biology, Avila University, Kansas City, MO 64145, USA
| | - Matthew E. Gifford
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| |
Collapse
|
6
|
Phylogenomic data resolve the historical biogeography and ecomorphs of Neotropical forest lizards (Squamata, Diploglossidae). Mol Phylogenet Evol 2022; 175:107577. [PMID: 35835424 DOI: 10.1016/j.ympev.2022.107577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
Few studies have been conducted on the biogeography and phylogenetic relationships of Neotropical forest lizards (Diploglossidae) because of incomplete taxon sampling, conflicting datasets, and low statistical support at phylogenetic nodes. Here, we enhance a recent nine-gene dataset with a genomic dataset of 3,232 loci and 642,775 aligned base pairs. The resulting phylogeny includes 30 diploglossid species, 10 of the 11 genera, and the three subfamilies. It shows significant support for all supra-specific taxa in either maximum likelihood or Bayesian analyses or both. With this well-supported phylogeny, we further investigate the historical biogeography of the group and how diploglossids reached the Caribbean islands. Our analyses indicate that Antillean diploglossid lizards originated from at least two overwater dispersals from South America. Our tests for the strength of convergent evolution between morphologically similar taxa support the recognition of a soil and a tree ecomorph. In addition, we propose grass, ground, rock, and swamp ecomorphs for species in this family based on ecological and morphological data and analyses.
Collapse
|
7
|
Maldonado JA, Firneno TJ, Hall AS, Fujita MK. Parthenogenesis doubles the rate of amino acid substitution in whiptail mitochondria. Evolution 2022; 76:1434-1442. [PMID: 35580923 DOI: 10.1111/evo.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
Abstract
Sexual reproduction is ubiquitous in the natural world, suggesting that sex must have extensive benefits to overcome the cost of males compared to asexual reproduction. One hypothesized advantage of sex with strong theoretical support is that sex plays a role in removing deleterious mutations from the genome. Theory predicts that transitions to asexuality should lead to the suppression of recombination and segregation and, in turn, weakened natural selection, allowing for the accumulation of slightly deleterious mutations. We tested this prediction by estimating the dN/dS ratios in asexual vertebrate lineages in the genus Aspidoscelis using whole mitochondrial genomes from seven asexual and five sexual species. We found higher dN/dS ratios in asexual Aspidoscelis species, indicating that asexual whiptails accumulate nonsynonymous substitutions due to weaker purifying selection. Additionally, we estimated nucleotide diversity and found that asexuals harbor significantly less diversity. Thus, despite their recent origins, slightly deleterious mutations accumulated rapidly enough in asexual lineages to be detected. We provide empirical evidence to corroborate the connection between asexuality and increased amino acid substitutions in asexual vertebrate lineages.
Collapse
Affiliation(s)
- Jose A Maldonado
- Amphibian and Reptile Diversity Research Center, Department of Biology, The University of Texas, Arlington, Texas, USA
| | - Thomas J Firneno
- Amphibian and Reptile Diversity Research Center, Department of Biology, The University of Texas, Arlington, Texas, USA
| | - Alexander S Hall
- Amphibian and Reptile Diversity Research Center, Department of Biology, The University of Texas, Arlington, Texas, USA
| | - Matthew K Fujita
- Amphibian and Reptile Diversity Research Center, Department of Biology, The University of Texas, Arlington, Texas, USA
| |
Collapse
|
8
|
Reynolds RG, Miller AH, Pasachnik SA, Knapp CR, Welch ME, Colosimo G, Gerber GP, Drawert B, Iverson JB. Phylogenomics and historical biogeography of West Indian Rock Iguanas (genus Cyclura). Mol Phylogenet Evol 2022; 174:107548. [PMID: 35690377 DOI: 10.1016/j.ympev.2022.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The genus Cyclura includes nine extant species and six subspecies of West Indian Rock Iguanas and is one of the most imperiled genera of squamate reptiles globally. An understanding of species diversity, evolutionary relationships, diversification, and historical biogeography in this group is crucial for implementing sound long-term conservation strategies. We collected DNA samples from 1 to 10 individuals per taxon from all Cyclura taxa (n = 70 ingroup individuals), focusing where possible on incorporating individuals from different populations of each species. We also collected 1-2 individuals from each of seven outgroup species of iguanas (Iguana delicatissima; five Ctenosaura species) and Anolis sagrei (n = 12 total outgroup individuals). We used targeted genomic sequence capture to isolate and to sequence 1,872 loci comprising of 687,308 base pairs (bp) from each of the 82 individuals from across the nuclear genome. We extracted mitochondrial reads and assembled and annotated mitogenomes for all Cyclura taxa plus outgroup species. We present well-supported phylogenomic gene tree/species tree analyses for all extant species of Cyclura using ASTRAL-III, SVDQuartets, and StarBEAST2 methods, and discuss the taxonomic, biogeographic, and conservation implications of these data. We find a most recent common ancestor of the genus 9.91 million years ago. The earliest divergence within Cyclura separates C. pinguis from a clade comprising all other Cyclura. Within the latter group, a clade comprising C. carinata from the southern Lucayan Islands and C. ricordii from Hispaniola is the sister taxon to a clade comprising the other Cyclura. Among the other Cyclura, the species C. cornuta and C. stejnegeri (from Hispaniola and Isla Mona) form the sister taxon to a clade of species from Jamaica (C. collei), Cuba and Cayman Islands (C. nubila and C. lewisi), and the eastern (C. rileyi) and western (C. cychlura) Lucayan Islands. Cyclura cychlura and C. rileyi form a clade whose sister taxa are C. nubila and C. lewisi. Cyclura collei is the sister taxon to these four species combined.
Collapse
Affiliation(s)
- R Graham Reynolds
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA.
| | - Aryeh H Miller
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Charles R Knapp
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Giuliano Colosimo
- Department of Biology, University of Rome Tor Vergata, Rome, Latium 00133, Italy
| | - Glenn P Gerber
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Brian Drawert
- Department of Computer Science, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA
| | - John B Iverson
- Dept. of Biology, Earlham College, Richmond, IN 47374, USA
| |
Collapse
|
9
|
Yuan ML, Frederick JH, McGuire JA, Bell RC, Smith SR, Fenton C, Cassius J, Williams R, Wang IJ, Powell R, Hedges SB. Endemism, invasion, and overseas dispersal: the phylogeographic history of the Lesser Antillean frog, Eleutherodactylus johnstonei. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractCryptogenic species are those whose native and introduced ranges are unknown. The extent and long history of human migration rendered numerous species cryptogenic. Incomplete knowledge regarding the origin and native habitat of a species poses problems for conservation management and may confound ecological and evolutionary studies. The Lesser Antilles pose a particular challenge with regard to cryptogenic species because these islands have been anthropogenically connected since before recorded history. Here, we use population genetic and phylogeographic tools in an attempt to determine the origin of Eleutherodactylus johnstonei, a frog species with a potentially widespread introduced range and whose native range within the Lesser Antilles is unknown. Based on elevated estimates of genetic diversity and within-island geographic structure not present elsewhere in the range, we identify Montserrat as the native island of E. johnstonei. We also document two major clades within E. johnstonei, only one of which is the primary source of introduced populations throughout the Americas. Our results demonstrate the utility of genetic tools for resolving cryptogenic species problems and highlight E. johnstonei as a potential system for understanding differences in invasive potential among sister lineages.
Collapse
|
10
|
Martins LF, Choueri EL, Oliveira AFS, Domingos FMCB, Caetano GHO, Cavalcante VHGL, Leite RN, Fouquet A, Rodrigues MT, Carnaval AC, Colli GR, Werneck FP. Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1953185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lidia F. Martins
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Erik L. Choueri
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Alan F. S. Oliveira
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | | | - Gabriel H. O. Caetano
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 849900 Midreshet Ben-Gurion, Israel
| | | | - Rafael N. Leite
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Bâtiment 4R1, 118 Route de Narbonne 31077, Toulouse, France
| | - Miguel T. Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana C. Carnaval
- City College of New York and Biology Ph.D. Program, The Graduate Center City University of New York, New York, NY 10031, USA
| | - Guarino R. Colli
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda P. Werneck
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| |
Collapse
|
11
|
Rodriguez‐Silva R, Schlupp I. Biogeography of the West Indies: A complex scenario for species radiations in terrestrial and aquatic habitats. Ecol Evol 2021; 11:2416-2430. [PMID: 33767811 PMCID: PMC7981229 DOI: 10.1002/ece3.7236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of the biogeography of the West Indies are numerous but not all taxonomic groups have received the same attention. Many of the contributions to this field have historically focused on terrestrial vertebrates from a perspective closely linked to the classical theory of island biogeography. However, some recent works have questioned whether some of the assumptions of this theory are too simplistic. In this review, we compiled information about the West Indies biogeography based on an extensive and rigorous literature search. While we offer some background of the main hypotheses that explain the origin of the Caribbean biota, our main purpose here is to highlight divergent diversification patterns observed in terrestrial versus aquatic groups of the West Indian biota and also to shed light on the unbalanced number of studies covering the biogeography of these groups of organisms. We use an objective method to compile existing information in the field and produce a rigorous literature review. Our results show that most of the relevant literature in the field is related to the study of terrestrial organisms (mainly vertebrates) and only a small portion covers aquatic groups. Specifically, livebearing fishes show interesting deviations from the species-area relationship predicted by classical island biogeography theory. We found that species richness on the Greater Antilles is positively correlated with island size but also with the presence of elevations showing that not only island area but also mountainous relief may be an important factor determining the number of freshwater species in the Greater Antilles. Our findings shed light on mechanisms that may differently drive speciation in aquatic versus terrestrial environments suggesting that ecological opportunity could outweigh the importance of island size in speciation. Investigations into freshwater fishes of the West Indies offer a promising avenue for understanding origins and subsequent diversification of the Caribbean biota.
Collapse
Affiliation(s)
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
12
|
Percequillo AR, Prado JRD, Abreu EF, Dalapicolla J, Pavan AC, de Almeida Chiquito E, Brennand P, Steppan SJ, Lemmon AR, Lemmon EM, Wilkinson M. Tempo and mode of evolution of oryzomyine rodents (Rodentia, Cricetidae, Sigmodontinae): A phylogenomic approach. Mol Phylogenet Evol 2021; 159:107120. [PMID: 33610650 DOI: 10.1016/j.ympev.2021.107120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
The tribe Oryzomyini is an impressive group of rodents, comprising 30 extant genera and an estimated 147 species. Recent remarkable advances in the understanding of the diversity, taxonomy and systematics of the tribe have mostly derived from analyses of single or few genetic markers. However, the evolutionary history and biogeography of Oryzomyini, its origin and diversification across the Neotropics, remain unrevealed. Here we use a multi-locus dataset (over 400 loci) obtained through anchored phylogenomics to provide a genome-wide phylogenetic hypothesis for Oryzomyini and to investigate the tempo and mode of its evolution. Species tree and supermatrix analyses produced topologies with strong support for most branches, with all genera confirmed as monophyletic, a result that previous studies failed to obtain. Our analyses also corroborated the monophyly and phylogenetic relationship of three main clades of Oryzomyini (B, C and D). The origin of the tribe is estimated to be in the Miocene (8.93-5.38 million years ago). The cladogenetic events leading to the four main clades occurred during the late Miocene and early Pliocene and most speciation events in the Pleistocene. Geographic range estimates suggested an east of Andes origin for the ancestor of oryzomyines, most likely in the Boreal Brazilian region, which includes the north bank of Rio Amazonas and the Guiana Shield. Oryzomyini rodents are an autochthonous South America radiation, that colonized areas and dominions of this continent mainly by dispersal events. The evolutionary history of the tribe is deeply associated with the Andean cordillera and the landscape history of Amazon basin.
Collapse
Affiliation(s)
- Alexandre Reis Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil; Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Joyce Rodrigues do Prado
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Edson Fiedler Abreu
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Jeronymo Dalapicolla
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil; Instituto Tecnológico Vale, Desenvolvimento Sustentável, 66055-090 Belém, PA, Brazil.
| | - Ana Carolina Pavan
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Elisandra de Almeida Chiquito
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil; Laboratório de Mastozoologia e Biogeografia, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil.
| | - Pamella Brennand
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Scott J Steppan
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Alan R Lemmon
- Department of Scientific Computing, 400 Dirac Science Library, Florida State University, Tallahassee, FL 32306, USA.
| | - Emily Moriarty Lemmon
- Department of Scientific Computing, 400 Dirac Science Library, Florida State University, Tallahassee, FL 32306, USA.
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| |
Collapse
|
13
|
Buckley M, Harvey VL, Orihuela J, Mychajliw AM, Keating JN, Milan JNA, Lawless C, Chamberlain AT, Egerton VM, Manning PL. Collagen Sequence Analysis Reveals Evolutionary History of Extinct West Indies Nesophontes (Island-Shrews). Mol Biol Evol 2020; 37:2931-2943. [PMID: 32497204 PMCID: PMC7530613 DOI: 10.1093/molbev/msaa137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this study, we demonstrate the ability to use collagen sequence analyses via proteomics to assist species delimitation as a foundation for informing evolutionary patterns. We uncover biogeographic information of an enigmatic and recently extinct lineage of Nesophontes across their range on the Caribbean islands. First, evolutionary relationships reconstructed from collagen sequences reaffirm the affinity of Nesophontes and Solenodon as sister taxa within Solenodonota. This relationship helps lay the foundation for testing geographical isolation hypotheses across islands within the Greater Antilles, including movement from Cuba toward Hispaniola. Second, our results are consistent with Cuba having just two species of Nesophontes (N. micrus and N. major) that exhibit intrapopulation morphological variation. Finally, analysis of the recently described species from the Cayman Islands (N. hemicingulus) indicates that it is a closer relative to N. major rather than N. micrus as previously speculated. This proteomic sequencing improves our understanding of the origin, evolution, and distribution of this extinct mammal lineage, particularly with respect to the approximate timing of speciation. Such knowledge is vital for this biodiversity hotspot, where the magnitude of recent extinctions may obscure true estimates of species richness in the past.
Collapse
Affiliation(s)
- Michael Buckley
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Virginia L Harvey
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Johanset Orihuela
- Department of Earth and Environment, Florida International University, Miami, FL
| | - Alexis M Mychajliw
- La Brea Tar Pits & Museum, Natural History Museum of Los Angeles County, Los Angeles, CA
| | - Joseph N Keating
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Juan N Almonte Milan
- Museo Nacional de Historia Natural “Prof. Eugenio de Jesús Marcano”, Santo Domingo, Dominican Republic
| | - Craig Lawless
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew T Chamberlain
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Victoria M Egerton
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Children’s Museum of Indianapolis, Natural Sciences, Indianapolis, IN
| | - Phillip L Manning
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Children’s Museum of Indianapolis, Natural Sciences, Indianapolis, IN
| |
Collapse
|
14
|
Scarpetta SG. Combined-evidence analyses of ultraconserved elements and morphological data: an empirical example in iguanian lizards. Biol Lett 2020; 16:20200356. [PMID: 32842896 PMCID: PMC7480163 DOI: 10.1098/rsbl.2020.0356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
Genomic datasets generated by next-generation sequencing are increasingly prevalent in phylogenetics, but morphological data are required to phylogenetically place fossils, corroborate molecular hypotheses and date phylogenies. Combined-evidence analyses provide an integrative assessment of tree topology. However, no attempt has been made to simultaneously analyse next-generation genomic datasets and morphological data, and the future of morphology in the context of genomic data is uncertain. I conducted combined-evidence analyses that include genomic and morphological datasets, specifically, with ultraconserved elements and two morphological matrices. In unweighted maximum-likelihood and Bayesian combined-evidence analyses, morphological signal was dwarfed by the ultraconserved elements, and some node support values were reduced relative to ultraconserved element-only analyses. Increasing the weight of morphological characters allowed those data to influence the tree, but weighting subjectivity should be considered in future analyses. More attempts should be made to simultaneously analyse genomic and morphological datasets.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
15
|
Scarpetta SG. Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200317. [PMID: 32968509 PMCID: PMC7481707 DOI: 10.1098/rsos.200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Teiid lizards are well represented in the fossil record and are common components of modern ecosystems in North and South America. Many fossils were referred to the cnemidophorine teiid group (whiptails, racerunners and relatives), particularly from North America. However, systematic interpretations of morphological features in cnemidophorines were hampered by the historically problematic taxonomy of the clade, and the biogeography and chronology of cnemidophorine evolution in North America is poorly understood from the fossil record. Few fossil cnemidophorines were identified with an apomorphy-based diagnosis, and there are almost no fossil cnemidophorines that could be used to anchor node calibrations. Here, I describe a cnemidophorine from the Miocene Ogallala Group of Nebraska and diagnose the fossil using apomorphies. In that process, I clarify the systematic utility of several morphological features of cnemidophorine lizards. I refer the fossil to the least inclusive clade containing Aspidoscelis, Holcosus and Pholidoscelis. The most conservative minimum age of the locality of the fossil is a fission-track date of 6.3 Ma, but mammal biochronology provides a more refined age of 9.4 Ma, which can be used as a minimum age for the crown cnemidophorine clade in divergence time analyses. The fossil indicates that a cnemidophorine lineage that does not live in Nebraska today inhabited the area during the Miocene. I refrain from naming a new taxon pending discovery of additional fossil material of the lineage to which the fossil belonged.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
The reduced limbed lizards of the genus Bachia (Reptilia, Squamata, Gymnophthalmidae); biogeography, cryptic diversity, and morphological convergence in the eastern Caribbean. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00393-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Čandek K, Agnarsson I, Binford GJ, Kuntner M. Biogeography of the Caribbean Cyrtognatha spiders. Sci Rep 2019; 9:397. [PMID: 30674906 PMCID: PMC6344596 DOI: 10.1038/s41598-018-36590-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
Collapse
Affiliation(s)
- Klemen Čandek
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia.
- Evolutionary Zoology Laboratory, Institute of Biology, Research Centre of the Slovenian Academy of the Sciences and Arts, Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
| | - Greta J Binford
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
- College of Life Sciences, Hubei University, Wuhan, Hubei, China
- Evolutionary Zoology Laboratory, Institute of Biology, Research Centre of the Slovenian Academy of the Sciences and Arts, Ljubljana, Slovenia
| |
Collapse
|
18
|
Tucker DB, Hedges SB, Colli GR, Pyron RA, Sites JW. Genomic timetree and historical biogeography of Caribbean island ameiva lizards ( Pholidoscelis: Teiidae). Ecol Evol 2017; 7:7080-7090. [PMID: 28904785 PMCID: PMC5587475 DOI: 10.1002/ece3.3157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 01/07/2023] Open
Abstract
The phylogenetic relationships and biogeographic history of Caribbean island ameivas (Pholidoscelis) are not well-known because of incomplete sampling, conflicting datasets, and poor support for many clades. Here, we use phylogenomic and mitochondrial DNA datasets to reconstruct a well-supported phylogeny and assess historical colonization patterns in the group. We obtained sequence data from 316 nuclear loci and one mitochondrial marker for 16 of 19 extant species of the Caribbean endemic genus Pholidoscelis. Phylogenetic analyses were carried out using both concatenation and species tree approaches. To estimate divergence times, we used fossil teiids to calibrate a timetree which was used to elucidate the historical biogeography of these lizards. All phylogenetic analyses recovered four well-supported species groups (clades) recognized previously and supported novel relationships of those groups, including a (P. auberi + P. lineolatus) clade (western + central Caribbean), and a (P. exsul + P. plei) clade (eastern Caribbean). Divergence between Pholidoscelis and its sister clade was estimated to have occurred ~25 Ma, with subsequent diversification on Caribbean islands occurring over the last 11 Myr. Of the six models compared in the biogeographic analyses, the scenario which considered the distance among islands and allowed dispersal in all directions best fit the data. These reconstructions suggest that the ancestor of this group colonized either Hispaniola or Puerto Rico from Middle America. We provide a well-supported phylogeny of Pholidoscelis with novel relationships not reported in previous studies that were based on significantly smaller datasets. We propose that Pholidoscelis colonized the eastern Greater Antilles from Middle America based on our biogeographic analysis, phylogeny, and divergence time estimates. The closing of the Central American Seaway and subsequent formation of the modern Atlantic meridional overturning circulation may have promoted dispersal in this group.
Collapse
Affiliation(s)
- Derek B. Tucker
- Biology DepartmentUniversity of West FloridaPensacolaFLUSA
- Department of Biology LSB 4102Brigham Young UniversityProvoUTUSA
| | | | - Guarino R. Colli
- Departamento de ZoologiaUniversidade de BrasíliaBrasíliaDFBrazil
| | | | - Jack W. Sites
- Department of Biology LSB 4102Brigham Young UniversityProvoUTUSA
| |
Collapse
|