1
|
Sultaire SM, Millspaugh JJ, Jackson PJ, Montgomery RA. The influence of fine‐scale topography on detection of a mammal assemblage at camera traps in a mountainous landscape. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sean M. Sultaire
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, Univ. of Montana Missoula MT USA
| | - Joshua J. Millspaugh
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, Univ. of Montana Missoula MT USA
| | | | - Robert A. Montgomery
- Wildlife Conservation Research Unit, Dept of Zoology, The Recanati‐Kaplan Centre, Univ. of Oxford, Tubney House Tubney Oxon UK
| |
Collapse
|
2
|
Alston JM, Fleming CH, Kays R, Streicher JP, Downs CT, Ramesh T, Reineking B, Calabrese JM. Mitigating pseudoreplication and bias in resource selection functions with autocorrelation‐informed weighting. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jesse M. Alston
- Center for Advanced Systems Understanding Görlitz Germany
- Helmholtz‐Zentrum Dresden Rossendorf (HZDR) Dresden Germany
- School of Natural Resources and the Environment University of Arizona Tucson Arizona USA
| | - Christen H. Fleming
- Smithsonian Conservation Biology Institute, National Zoological Park Front Royal Virginia USA
- Department of Biology University of Maryland College Park Maryland USA
| | - Roland Kays
- Department of Forestry and Environmental Resources North Carolina State University Raleigh North Carolina USA
- North Carolina Museum of Natural Sciences Raleigh North Carolina USA
| | - Jarryd P. Streicher
- Centre for Functional Biodiversity, School of Life Sciences University of KwaZulu‐Natal Pietermaritzburg South Africa
| | - Colleen T. Downs
- Centre for Functional Biodiversity, School of Life Sciences University of KwaZulu‐Natal Pietermaritzburg South Africa
| | - Tharmalingam Ramesh
- Centre for Functional Biodiversity, School of Life Sciences University of KwaZulu‐Natal Pietermaritzburg South Africa
- Sálim Ali Centre for Ornithology and Natural History (SACON) Coimbatore Tamil Nadu India
| | - Björn Reineking
- Université Grenoble Alpes, INRAE, LESSEM Saint‐Martin‐d'Hères France
| | - Justin M. Calabrese
- Center for Advanced Systems Understanding Görlitz Germany
- Helmholtz‐Zentrum Dresden Rossendorf (HZDR) Dresden Germany
- Department of Ecological Modelling Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany
| |
Collapse
|
3
|
Broekman MJE, Hilbers JP, Huijbregts MAJ, Mueller T, Ali AH, Andrén H, Altmann J, Aronsson M, Attias N, Bartlam‐Brooks HLA, van Beest FM, Belant JL, Beyer DE, Bidner L, Blaum N, Boone RB, Boyce MS, Brown MB, Cagnacci F, Černe R, Chamaillé‐Jammes S, Dejid N, Dekker J, L. J. Desbiez A, Díaz‐Muñoz SL, Fennessy J, Fichtel C, Fischer C, Fisher JT, Fischhoff I, Ford AT, Fryxell JM, Gehr B, Goheen JR, Hauptfleisch M, Hewison AJM, Hering R, Heurich M, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kappeler PM, Krofel M, LaPoint S, Latham ADM, Linnell JDC, Markham AC, Mattisson J, Medici EP, de Miranda Mourão G, Van Moorter B, Morato RG, Morellet N, Mysterud A, Mwiu S, Odden J, Olson KA, Ornicāns A, Pagon N, Panzacchi M, Persson J, Petroelje T, Rolandsen CM, Roshier D, Rubenstein DI, Saïd S, Salemgareyev AR, Sawyer H, Schmidt NM, Selva N, Sergiel A, Stabach J, Stacy‐Dawes J, Stewart FEC, Stiegler J, Strand O, Sundaresan S, Svoboda NJ, Ullmann W, Voigt U, Wall J, Wikelski M, Wilmers CC, Zięba F, Zwijacz‐Kozica T, Schipper AM, Tucker MA. Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2022; 31:1526-1541. [PMID: 36247232 PMCID: PMC9544534 DOI: 10.1111/geb.13523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/16/2023]
Abstract
Aim Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location Worldwide. Time period 1998-2021. Major taxa studied Forty-nine terrestrial mammal species. Methods Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.
Collapse
Affiliation(s)
- Maarten J. E. Broekman
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Jelle P. Hilbers
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Mark A. J. Huijbregts
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für NaturforschungFrankfurt (Main)Germany
- Department of Biological SciencesGoethe UniversityFrankfurt (Main)Germany
| | | | - Henrik Andrén
- Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
| | - Jeanne Altmann
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Malin Aronsson
- Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Nina Attias
- Ecology and Conservation Graduate ProgramFederal University of Mato Grosso do SulCampo GrandeMato Grosso do SulBrazil
- Instituto de Conservação de Animais Silvestres (ICAS)Campo GrandeMato Grosso do SulBrazil
| | | | | | - Jerrold L. Belant
- Global Wildlife Conservation CenterState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Dean E. Beyer
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Laura Bidner
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Niels Blaum
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Randall B. Boone
- Department of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsColoradoUSA
| | - Mark S. Boyce
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Michael B. Brown
- Giraffe Conservation FoundationErosNamibia
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular EcologyResearch and Innovation Centre, Fondazione Edmund MachTrentoItaly
| | - Rok Černe
- Slovenia Forest ServiceLjubljanaSlovenia
| | - Simon Chamaillé‐Jammes
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Nandintsetseg Dejid
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für NaturforschungFrankfurt (Main)Germany
| | | | - Arnaud L. J. Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS)Campo GrandeMato Grosso do SulBrazil
- IPÊ (Instituto de Pesquisas Ecológicas; Institute for Ecological Research)São PauloBrazil
- Royal Zoological Society of Scotland (RZSS)EdinburghUK
| | - Samuel L. Díaz‐Muñoz
- Department of Microbiology and Molecular GeneticsUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Claudia Fichtel
- German Primate Center, Behavioral Ecology and Sociobiology UnitGöttingenGermany
| | - Christina Fischer
- Faunistics and Wildlife Conservation, Department of Agriculture, Ecotrophology, and Landscape DevelopmentAnhalt University of Applied SciencesBernburgGermany
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | | | - Adam T. Ford
- Department of Biology, Faculty of ScienceUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - John M. Fryxell
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Jacob R. Goheen
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| | - Morgan Hauptfleisch
- Department of Agriculture And Natural Resources Sciences, Biodiversity Research CentreNamibia University of Science and TechnologyWindhoekNamibia
| | - A. J. Mark Hewison
- Université de Toulouse, INRAE, CEFSCastanet‐TolosanFrance
- LTSER ZA Pyrénées GaronneAuzeville‐TolosaneFrance
| | - Robert Hering
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Marco Heurich
- Department of Conservation and ResearchBavarian Forest National ParkGrafenauGermany
- Chair of Wildlife Ecology and ManagementAlbert Ludwigs University of FreiburgFreiburgGermany
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Lynne A. Isbell
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
- Animal Behavior Graduate GroupUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Florian Jeltsch
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Petra Kaczensky
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
- Norwegian Institute for Nature ResearchTrondheimNorway
- Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Peter M. Kappeler
- German Primate Center, Behavioral Ecology and Sociobiology UnitGöttingenGermany
| | - Miha Krofel
- Department of Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Scott LaPoint
- Black Rock ForestCornwallNew YorkUSA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNew YorkUSA
| | - A. David M. Latham
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Wildlife Ecology and ManagementManaaki Whenua – Landcare ResearchLincolnNew Zealand
| | - John D. C. Linnell
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
- Norwegian Institute for Nature ResearchTrondheimNorway
| | | | | | - Emilia Patricia Medici
- IPÊ (Instituto de Pesquisas Ecológicas; Institute for Ecological Research)São PauloBrazil
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Tapir Specialist Group (TSG)Campo GrandeMato Grosso do SulBrazil
| | | | | | - Ronaldo G. Morato
- National Research Center for Carnivores ConservationChico Mendes Institute for the Conservation of BiodiversityAtibaiaBrazil
| | - Nicolas Morellet
- Université de Toulouse, INRAE, CEFSCastanet‐TolosanFrance
- LTSER ZA Pyrénées GaronneAuzeville‐TolosaneFrance
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of BiosciencesUniversity of OsloOsloNorway
| | - Stephen Mwiu
- Wildlife Research and Training InstituteNaivashaKenya
| | - John Odden
- Norwegian Institute for Nature ResearchOsloNorway
| | - Kirk A. Olson
- Wildlife Conservation Society, Mongolia ProgramUlaanbaatarMongolia
| | - Aivars Ornicāns
- Latvian State Forest Research Institute “Silava”SalaspilsLatvia
| | | | | | - Jens Persson
- Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
| | - Tyler Petroelje
- Global Wildlife Conservation CenterState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | | | - David Roshier
- Australian Wildlife ConservancySubiacoWestern AustraliaAustralia
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Sonia Saïd
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéBirieuxFrance
| | - Albert R. Salemgareyev
- Association for the Conservation of Biodiversity of Kazakhstan (ACBK)Nur‐SultanKazakhstan
| | - Hall Sawyer
- Western Ecosystems Technology Inc.LaramieWyomingUSA
| | - Niels Martin Schmidt
- Department of BioscienceAarhus UniversityRoskildeDenmark
- Arctic Research CentreAarhus UniversityAarhusDenmark
| | - Nuria Selva
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Agnieszka Sergiel
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Jared Stabach
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jenna Stacy‐Dawes
- Conservation Science and Wildlife HealthSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Frances E. C. Stewart
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Jonas Stiegler
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Olav Strand
- Norwegian Institute for Nature ResearchTrondheimNorway
| | | | - Nathan J. Svoboda
- Carnivore Ecology Laboratory, Forest and Wildlife Research CenterMississippi State UniversityMississippi StateMississippiUSA
- Alaska Department of Fish and GameKodiakAlaskaUSA
| | - Wiebke Ullmann
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Ulrich Voigt
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | | | - Martin Wikelski
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzConstanceGermany
| | - Christopher C. Wilmers
- Center for Integrated Spatial Research, Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | | | - Aafke M. Schipper
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
| | - Marlee A. Tucker
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
4
|
Costa-Pereira R, Moll RJ, Jesmer BR, Jetz W. Animal tracking moves community ecology: Opportunities and challenges. J Anim Ecol 2022; 91:1334-1344. [PMID: 35388473 DOI: 10.1111/1365-2656.13698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
1. Individual decisions regarding how, why, and when organisms interact with one another and with their environment scale up to shape patterns and processes in communities. Recent evidence has firmly established the prevalence of intraspecific variation in nature and its relevance in community ecology, yet challenges associated with collecting data on large numbers of individual conspecifics and heterospecifics has hampered integration of individual variation into community ecology. 2. Nevertheless, recent technological and statistical advances in GPS-tracking, remote sensing, and behavioral ecology offer a toolbox for integrating intraspecific variation into community processes. More than simply describing where organisms go, movement data provide unique information about interactions and environmental associations from which a true individual-to-community framework can be built. 3. By linking the movement paths of both conspecifics and heterospecifics with environmental data, ecologists can now simultaneously quantify intra- and interspecific variation regarding the Eltonian (biotic interactions) and Grinnellian (environmental conditions) factors underpinning community assemblage and dynamics, yet substantial logistical and analytical challenges must be addressed for these approaches to realize their full potential. 4. Across communities, empirical integration of Eltonian and Grinnellian factors can support conservation applications and reveal metacommunity dynamics via tracking-based dispersal data. As the logistical and analytical challenges associated with multi-species tracking are surmounted, we envision a future where individual movements and their ecological and environmental signatures will bring resolution to many enduring issues in community ecology.
Collapse
Affiliation(s)
- Raul Costa-Pereira
- Departamento de Biologia Animal, Instituto de Biociências, Universidade Estadual de Campinas, Brazil
| | - Remington J Moll
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA
| | - Brett R Jesmer
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.,Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06520, USA.,Center for Biodiversity and Global Change, Yale University, 165 Prospect St., New Haven, CT 06520, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06520, USA.,Center for Biodiversity and Global Change, Yale University, 165 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
5
|
Newediuk L, Prokopenko CM, Vander Wal E. Individual differences in habitat selection mediate landscape level predictions of a functional response. Oecologia 2022; 198:99-110. [PMID: 34984521 DOI: 10.1007/s00442-021-05098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Predicting future space use by animals requires models that consider both habitat availability and individual differences in habitat selection. The functional response in habitat selection posits animals adjust their habitat selection to availability, but population-level responses to availability may differ from individual responses. Generalized functional response (GFR) models account for functional responses by including fixed effect interactions between habitat availability and selection. Population-level resource selection functions instead account for individual selection responses to availability with random effects. We compared predictive performance of both approaches using a functional response in elk (Cervus canadensis) selection for mixed forest in response to road proximity, and avoidance of roads in response to mixed forest availability. We also investigated how performance changed when individuals responded differently to availability from the rest of the population. Individual variation in road avoidance decreased performance of both models (random effects: β = 0.69, 95% CI 0.47, 0.91; GFR: β = 0.38, 95% CI 0.05, 0.71). Changes in individual road and forest availability affected performance of neither model, suggesting individual responses to availability different from the functional response mediated performance. We also found that overall, both models performed similarly for predicting mixed forest selection (F1, 58 = 0.14, p = 0.71) and road avoidance (F1, 58 = 0.28, p = 0.60). GFR estimates were slightly better, but its larger number of covariates produced greater variance than the random effects model. Given this bias-variance trade-off, we conclude that neither model performs better for future space use predictions.
Collapse
Affiliation(s)
- Levi Newediuk
- Department of Biology, Memorial University, St. John's, NL, A1B 3X9, Canada.
| | | | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
6
|
Northrup JM, Vander Wal E, Bonar M, Fieberg J, Laforge MP, Leclerc M, Prokopenko CM, Gerber BD. Conceptual and methodological advances in habitat-selection modeling: guidelines for ecology and evolution. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02470. [PMID: 34626518 PMCID: PMC9285351 DOI: 10.1002/eap.2470] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Habitat selection is a fundamental animal behavior that shapes a wide range of ecological processes, including animal movement, nutrient transfer, trophic dynamics and population distribution. Although habitat selection has been a focus of ecological studies for decades, technological, conceptual and methodological advances over the last 20 yr have led to a surge in studies addressing this process. Despite the substantial literature focused on quantifying the habitat-selection patterns of animals, there is a marked lack of guidance on best analytical practices. The conceptual foundations of the most commonly applied modeling frameworks can be confusing even to those well versed in their application. Furthermore, there has yet to be a synthesis of the advances made over the last 20 yr. Therefore, there is a need for both synthesis of the current state of knowledge on habitat selection, and guidance for those seeking to study this process. Here, we provide an approachable overview and synthesis of the literature on habitat-selection analyses (HSAs) conducted using selection functions, which are by far the most applied modeling framework for understanding the habitat-selection process. This review is purposefully non-technical and focused on understanding without heavy mathematical and statistical notation, which can confuse many practitioners. We offer an overview and history of HSAs, describing the tortuous conceptual path to our current understanding. Through this overview, we also aim to address the areas of greatest confusion in the literature. We synthesize the literature outlining the most exciting conceptual advances in the field of habitat-selection modeling, discussing the substantial ecological and evolutionary inference that can be made using contemporary techniques. We aim for this paper to provide clarity for those navigating the complex literature on HSAs while acting as a reference and best practices guide for practitioners.
Collapse
Affiliation(s)
- Joseph M Northrup
- Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, K9L 1Z8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| | - Maegwin Bonar
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada
| | - John Fieberg
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michel P Laforge
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| | - Martin Leclerc
- Département de Biologie, Caribou Ungava and Centre d'études nordiques, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Christina M Prokopenko
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| | - Brian D Gerber
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
Mayer AE, McGreevy TJ, Sullivan ME, Brown C, Husband TP, Gerber BD. Population Genetics and Spatial Ecology of Bobcats (Lynx rufus) in a Landscape with a High Density of Humans in New England. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.028.0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Amy E. Mayer
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881
| | - Thomas J. McGreevy
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881
| | - Mary E. Sullivan
- USDA Agricultural Research Service, National Cold Water Marine Aquaculture Center, Kingston, RI 02881
| | - Charles Brown
- Division of Fish and Wildlife, Rhode Island Department of Environmental Management, West Kingston, RI 02892
| | - Thomas P. Husband
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881
| | - Brian D. Gerber
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881
| |
Collapse
|
8
|
Carlson BS, Rotics S, Nathan R, Wikelski M, Jetz W. Individual environmental niches in mobile organisms. Nat Commun 2021; 12:4572. [PMID: 34315894 PMCID: PMC8316569 DOI: 10.1038/s41467-021-24826-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Individual variation is increasingly recognized as a central component of ecological processes, but its role in structuring environmental niche associations remains largely unknown. Species' responses to environmental conditions are ultimately determined by the niches of single individuals, yet environmental associations are typically captured only at the level of species. Here, we develop scenarios for how individual variation may combine to define the compound environmental niche of populations, use extensive movement data to document individual environmental niche variation, test associated hypotheses of niche configuration, and examine the consistency of individual niches over time. For 45 individual white storks (Ciconia ciconia; 116 individual-year combinations), we uncover high variability in individual environmental associations, consistency of individual niches over time, and moderate to strong niche specialization. Within populations, environmental niches follow a nested pattern, with individuals arranged along a specialist-to-generalist gradient. These results reject common assumptions of individual niche equivalency among conspecifics, as well as the separation of individual niches into disparate parts of environmental space. These findings underscore the need for a more thorough consideration of individualistic environmental responses in global change research.
Collapse
Affiliation(s)
- Ben S Carlson
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
| | - Shay Rotics
- Department of Zoology, University of Cambridge, Cambridge, UK
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Stratmann TSM, Dejid N, Calabrese JM, Fagan WF, Fleming CH, Olson KA, Mueller T. Resource selection of a nomadic ungulate in a dynamic landscape. PLoS One 2021; 16:e0246809. [PMID: 33577613 PMCID: PMC7880454 DOI: 10.1371/journal.pone.0246809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Nomadic movements are often a consequence of unpredictable resource dynamics. However, how nomadic ungulates select dynamic resources is still understudied. Here we examined resource selection of nomadic Mongolian gazelles (Procapra gutturosa) in the Eastern Steppe of Mongolia. We used daily GPS locations of 33 gazelles tracked up to 3.5 years. We examined selection for forage during the growing season using the Normalized Difference Vegetation Index (NDVI). In winter we examined selection for snow cover which mediates access to forage and drinking water. We studied selection at the population level using resource selection functions (RSFs) as well as on the individual level using step-selection functions (SSFs) at varying spatio-temporal scales from 1 to 10 days. Results from the population and the individual level analyses differed. At the population level we found selection for higher than average NDVI during the growing season. This may indicate selection for areas with more forage cover within the arid steppe landscape. In winter, gazelles selected for intermediate snow cover, which may indicate preference for areas which offer some snow for hydration but not so much as to hinder movement. At the individual level, in both seasons and across scales, we were not able to detect selection in the majority of individuals, but selection was similar to that seen in the RSFs for those individuals showing selection. Difficulty in finding selection with SSFs may indicate that Mongolian gazelles are using a random search strategy to find forage in a landscape with large, homogeneous areas of vegetation. The combination of random searches and landscape characteristics could therefore obscure results at the fine scale of SSFs. The significant results on the broader scale used for the population level RSF highlight that, although individuals show uncoordinated movement trajectories, they ultimately select for similar vegetation and snow cover.
Collapse
Affiliation(s)
- Theresa S. M. Stratmann
- Department of Biological Sciences, Goethe University, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- * E-mail:
| | - Nandintsetseg Dejid
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | - William F. Fagan
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Christen H. Fleming
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Kirk A. Olson
- Mongolia Program, Wildlife Conservation Society, Ulaanbaatar, Mongolia
| | - Thomas Mueller
- Department of Biological Sciences, Goethe University, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Gerber BD, Northrup JM. Improving spatial predictions of animal resource selection to guide conservation decision making. Ecology 2019; 101:e02953. [PMID: 31840242 DOI: 10.1002/ecy.2953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/07/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022]
Abstract
Resource selection is often studied by ecologists interested in the environmental drivers of animal space use and movement. These studies commonly produce spatial predictions, which are of considerable utility to resource managers making habitat and population management decisions. It is thus paramount that predictions from resource selection studies are accurate. We evaluated model building and fitting strategies for optimizing resource selection function predictions in a use-availability framework. We did so by simulating low- and high-intensity spatial sampling data that respectively predicted study area and movement-based resource selection. We compared one of the most commonly used forms of statistical regularization, Akaike's Information Criterion (AIC), with the lesser used least absolute shrinkage and selection operator (LASSO). LASSO predictions were less variable and more accurate than AIC and were often best when considering additive and interacting variables. We explicitly demonstrate the predictive equivalence using the logistic and Poisson likelihoods and how it is lost when the available sample is too small. Regardless of modeling approach, interpreting the sign of coefficients as a measure of selection can be misleading when optimizing for prediction.
Collapse
Affiliation(s)
- Brian D Gerber
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, 02881-2018, USA
| | - Joseph M Northrup
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry and Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada
| |
Collapse
|