1
|
Rushmore J, Beechler BR, Tavalire H, Gorsich EE, Charleston B, Devan‐Song A, Glidden CK, Jolles AE. The heterogeneous herd: Drivers of close-contact variation in African buffalo and implications for pathogen invasion. Ecol Evol 2023; 13:e10447. [PMID: 37621318 PMCID: PMC10445036 DOI: 10.1002/ece3.10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Many infectious pathogens are shared through social interactions, and examining host connectivity has offered valuable insights for understanding patterns of pathogen transmission across wildlife species. African buffalo are social ungulates and important reservoirs of directly-transmitted pathogens that impact numerous wildlife and livestock species. Here, we analyzed African buffalo social networks to quantify variation in close contacts, examined drivers of contact heterogeneity, and investigated how the observed contact patterns affect pathogen invasion likelihoods for a wild social ungulate. We collected continuous association data using proximity collars and sampled host traits approximately every 2 months during a 15-month study period in Kruger National Park, South Africa. Although the observed herd was well connected, with most individuals contacting each other during each bimonthly interval, our analyses revealed striking heterogeneity in close-contact associations among herd members. Network analysis showed that individual connectivity was stable over time and that individual age, sex, reproductive status, and pairwise genetic relatedness were important predictors of buffalo connectivity. Calves were the most connected members of the herd, and adult males were the least connected. These findings highlight the role susceptible calves may play in the transmission of pathogens within the herd. We also demonstrate that, at time scales relevant to infectious pathogens found in nature, the observed level of connectivity affects pathogen invasion likelihoods for a wide range of infectious periods and transmissibilities. Ultimately, our study identifies key predictors of social connectivity in a social ungulate and illustrates how contact heterogeneity, even within a highly connected herd, can shape pathogen invasion likelihoods.
Collapse
Affiliation(s)
- Julie Rushmore
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
- One Health Institute, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- EpiCenter for Disease Dynamics, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Brianna R. Beechler
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Hannah Tavalire
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Erin E. Gorsich
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
- The Zeeman Institute: Systems Biology and Infectious Disease Epidemiology ResearchUniversity of WarwickCoventryUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Anne Devan‐Song
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Anna E. Jolles
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
2
|
Sisson D, Beechler B, Jabbar A, Jolles A, Hufschmid J. Epidemiology of Anaplasma marginale and Anaplasma centrale infections in African buffalo ( Syncerus caffer) from Kruger National Park, South Africa. Int J Parasitol Parasites Wildl 2023; 21:47-54. [PMID: 37124669 PMCID: PMC10140747 DOI: 10.1016/j.ijppaw.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Image 1.
Collapse
Affiliation(s)
- Danielle Sisson
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
- Corresponding author.
| | - Brianna Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Magruder Hall, 700 SW 30th St, Corvallis, OR, 97331, USA
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Anna Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Magruder Hall, 700 SW 30th St, Corvallis, OR, 97331, USA
- Department of Integrative Biology, Oregon State University, Cordley Hall, 3029, 2701 SW Campus Way, Corvallis, OR, 97331, USA
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
3
|
Bovine tuberculosis in African buffalo (Syncerus caffer): Progression of pathology during infection. PLoS Negl Trop Dis 2022; 16:e0010906. [DOI: 10.1371/journal.pntd.0010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/23/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background
Bovine tuberculosis (BTB) is a zoonotic disease of global importance endemic in African buffalo (Syncerus caffer) in sub-Saharan Africa. Zoonotic tuberculosis is a disease of global importance, accounting for over 12,000 deaths annually. Cattle affected with BTB have been proposed as a model for the study of human tuberculosis, more closely resembling the localization and progression of lesions in controlled studies than murine models. If disease in African buffalo progresses similarly to experimentally infected cattle, they may serve as a model, both for human tuberculosis and cattle BTB, in a natural environment.
Methodology/Principal findings
We utilized a herd of African buffalo that were captured, fitted with radio collars, and tested for BTB twice annually during a 4-year-cohort study. At the end of the project, BTB positive buffalo were culled, and necropsies performed. Here we describe the pathologic progression of BTB over time in African buffalo, utilizing gross and histological methods. We found that BTB in buffalo follows a pattern of infection like that seen in experimental studies of cattle. BTB localizes to the lymph nodes of the respiratory tract first, beginning with the retropharyngeal and tracheobronchial lymph nodes, gradually increasing in lymph nodes affected over time. At 36 months, rate of spread to additional lymph nodes sharply increases. The lung lesions follow a similar pattern, progressing slowly, then accelerating their progression at 36 months post infection. Lastly, a genetic marker that correlated to risk of M. bovis infection in previous studies was marginally associated with BTB progression. Buffalo with at least one risk allele at this locus tended to progress faster, with more lung necrosis.
Conclusions/Significance
The progression of disease in the African buffalo mirrors the progression found in experimental cattle models, offering insight into BTB and the interaction with its host in the context of naturally varying environments, host, and pathogen populations.
Collapse
|
4
|
Woodburn DB, Steyl J, Du Plessis EC, Last RD, Reininghaus B, Mitchell EP. Pathological findings in African buffaloes (Syncerus caffer) in South Africa. J S Afr Vet Assoc 2021; 92:e1-e11. [PMID: 34476957 PMCID: PMC8424707 DOI: 10.4102/jsava.v92i0.2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022] Open
Abstract
The African buffalo (Syncerus caffer) is an iconic species of South African megafauna. As the farmed buffalo population expands, the potential impacts on population health and disease transmission warrant investigation. A retrospective study of skin biopsy and necropsy samples from 429 animals was performed to assess the spectrum of conditions seen in buffaloes in South Africa. Determination of the cause of death (or euthanasia) could not be made in 33.1% (136/411) of the necropsy cases submitted due to autolysis or the absence of significant lesions in the samples submitted. Infectious and parasitic diseases accounted for 53.5% (147/275) of adult fatal cases and non-infectious conditions accounted for 34.9% (96/275). Abortions and neonatal deaths made up 11.6% (32/275) of necropsy cases. Rift Valley fever, bovine viral diarrhoea, malignant catarrhal fever, tuberculosis, bacterial pneumonia, anaesthetic deaths, cachexia and hepatotoxic lesions were the most common causes of death. The range of infectious, parasitic and non-infectious diseases to which African buffaloes were susceptible was largely similar to diseases in domestic cattle which supports concerns regarding disease transmission between the two species. The similarity between diseases experienced in both species will assist wildlife veterinarians in the diagnosis and treatment of diseases in captive African buffaloes. The present study likely does not represent accurate disease prevalence data within the source population of buffaloes, and diseases such as anthrax, brucellosis and foot and mouth disease are under-represented in this study. Hepatic ductal plate abnormalities and haemorrhagic septicaemia have not, to our knowledge, been previously reported in African buffaloes.
Collapse
Affiliation(s)
- Daniel B Woodburn
- Department of Pathobiology, Zoological Pathology Program, University of Illinois, Illinois.
| | | | | | | | | | | |
Collapse
|
5
|
Tavalire HF, Christie DM, Leve LD, Ting N, Cresko WA, Bohannan BJM. Shared Environment and Genetics Shape the Gut Microbiome after Infant Adoption. mBio 2021; 12:e00548-21. [PMID: 33785620 PMCID: PMC8092250 DOI: 10.1128/mbio.00548-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
The composition of the human gut microbiome is highly variable, and this variation has been repeatedly tied to variation in human health. However, the sources of microbial variation remain unclear, especially early in life. It is particularly important to understand sources of early life variation in the microbiome because the state of the microbiome in childhood can influence lifelong health. Here, we compared the gut microbiomes of children adopted in infancy to those of genetically unrelated children in the same household and genetically related children raised in other households. We observed that a shared home environment was the strongest predictor of overall microbiome similarity. Among those microbial taxa whose variation was significantly explained by our models, the abundance of a given taxon was more frequently explained by host genetic similarity (relatedness), while the presence of a given taxon was more dependent upon a shared home environment. This suggests that although the home environment may act as a species source pool for the gut microbiome in childhood, host genetic factors likely drive variation in microbial abundance once a species colonizes the gut.IMPORTANCE Our results demonstrate that the early life home environment can significantly alter the gut microbiome in childhood, potentially altering health outcomes or risk for adverse health outcomes. A better understanding of the drivers of gut microbiome variation during childhood could lead to more effective intervention strategies for overall health starting in early life.
Collapse
Affiliation(s)
- Hannah F Tavalire
- Prevention Science Institute, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Diana M Christie
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Leslie D Leve
- Prevention Science Institute, University of Oregon, Eugene, Oregon, USA
| | - Nelson Ting
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|
6
|
Tavalire HF, Budd EL, Natsuaki MN, Neiderhiser JM, Reiss D, Shaw DS, Ganiban JM, Leve LD. Using a sibling-adoption design to parse genetic and environmental influences on children's body mass index (BMI). PLoS One 2020; 15:e0236261. [PMID: 32687510 PMCID: PMC7371159 DOI: 10.1371/journal.pone.0236261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dietary and physical activity behaviors formed early in life can increase risk for childhood obesity and have continued negative consequences for lifelong health. Previous research has highlighted the importance of both genetic and environmental (e.g., cultural environment or parental lifestyle) contributions to obesity risk, although these studies typically involve genetically-related individuals residing in the same household, where genetic similarity and rearing environment are inextricably linked. Here we utilize a sibling-adoption design to independently estimate genetic and environmental contributions to obesity risk in childhood and describe how these influences might vary as children age. As part of a prospective adoption study, the current investigation used data from biological siblings reared either apart or together, and nonbiological siblings reared together to estimate the contributions of genetics and environment to body mass indices (BMI) in a large cohort of children (N = 711). We used a variance partitioning model to allocate variation in BMI to that which is due to shared genetics, common environment, or unique environment in this cohort during middle childhood and adolescence. We found 63% of the total variance in BMI could be attributed to heritable factors in middle childhood sibling pairs (age 5-11.99; 95% CI [0.41,0.85]). Additionally, we observed that common environment explained 31% of variation in BMI in this group (95% CI [0.11,0.5]), with unique environment and error explaining the remaining variance. We failed to detect an influence of genetics or common environment in older sibling pairs (12-18) or pairs spanning childhood and adolescence (large sibling age difference), but home type (adoptive versus birth) was an important predictor of BMI in adolescence. The presence of strong common environment effects during childhood suggests that early interventions at the family level in middle childhood could be effective in mitigating obesity risk in later childhood and adolescence.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Instutite of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Elizabeth L. Budd
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Counseling Psychology and Human Services Department, College of Education, University of Oregon, Eugene, Oregon, United States of America
| | - Misaki N. Natsuaki
- Department of Psychology, University of California, Riverside, California, United States of America
| | - Jenae M. Neiderhiser
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David Reiss
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jody M. Ganiban
- Department of Psychology, George Washington University, Washington, DC, United States of America
| | - Leslie D. Leve
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Counseling Psychology and Human Services Department, College of Education, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
7
|
Tavalire HF, Hoal EG, le Roex N, van Helden PD, Ezenwa VO, Jolles AE. Risk alleles for tuberculosis infection associate with reduced immune reactivity in a wild mammalian host. Proc Biol Sci 2019; 286:20190914. [PMID: 31311473 PMCID: PMC6661349 DOI: 10.1098/rspb.2019.0914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Integrating biological processes across scales remains a central challenge in disease ecology. Genetic variation drives differences in host immune responses, which, along with environmental factors, generates temporal and spatial infection patterns in natural populations that epidemiologists seek to predict and control. However, genetics and immunology are typically studied in model systems, whereas population-level patterns of infection status and susceptibility are uniquely observable in nature. Despite obvious causal connections, organizational scales from genes to host outcomes to population patterns are rarely linked explicitly. Here we identify two loci near genes involved in macrophage (phagocyte) activation and pathogen degradation that additively increase risk of bovine tuberculosis infection by up to ninefold in wild African buffalo. Furthermore, we observe genotype-specific variation in IL-12 production indicative of variation in macrophage activation. Here, we provide measurable differences in infection resistance at multiple scales by characterizing the genetic and inflammatory variation driving patterns of infection in a wild mammal.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Eileen G. Hoal
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nikki le Roex
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
Beechler BR, Boersma KS, Buss PE, Coon CAC, Gorsich EE, Henrichs BS, Siepielski AM, Spaan JM, Spaan RS, Ezenwa VO, Jolles AE. Bovine tuberculosis disturbs parasite functional trait composition in African buffalo. Proc Natl Acad Sci U S A 2019; 116:14645-14650. [PMID: 31262813 PMCID: PMC6642339 DOI: 10.1073/pnas.1903674116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo (Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections.
Collapse
Affiliation(s)
- Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331;
| | - Kate S Boersma
- Department of Biology, University of San Diego, San Diego, CA 92110
| | - Peter E Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Courtney A C Coon
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
- Felidae Conservation Fund, Mill Valley, CA 94941
| | - Erin E Gorsich
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
- Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Brian S Henrichs
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | - Johannie M Spaan
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Robert S Spaan
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331
| | - Vanessa O Ezenwa
- Odum School of Ecology & Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Anna E Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
9
|
Dziedzic KE, Elder H, Tavalire H, Meyer E. Heritable variation in bleaching responses and its functional genomic basis in reef‐building corals (
Orbicella faveolata
). Mol Ecol 2019; 28:2238-2253. [DOI: 10.1111/mec.15081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Holland Elder
- Department of Integrative Biology Oregon State University Corvallis Oregon
| | - Hannah Tavalire
- Institute of Ecology and Evolution University of Oregon Eugene Oregon
- Prevention Science Institute University of Oregon Eugene Oregon
| | - Eli Meyer
- Department of Integrative Biology Oregon State University Corvallis Oregon
| |
Collapse
|
10
|
Spaan RS, Epps CW, Ezenwa VO, Jolles AE. Why did the buffalo cross the park? Resource shortages, but not infections, drive dispersal in female African buffalo ( Syncerus caffer). Ecol Evol 2019; 9:5651-5663. [PMID: 31160988 PMCID: PMC6540691 DOI: 10.1002/ece3.5145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/04/2022] Open
Abstract
Dispersal facilitates population health and maintains resilience in species via gene flow. Adult dispersal occurs in some species, is often facultative, and is poorly understood, but has important management implications, particularly with respect to disease spread. Although the role of adult dispersal in spreading disease has been documented, the potential influence of disease on dispersal has received little attention. African buffalo (Syncerus caffer) are wide-ranging and harbor many pathogens that can affect nearby livestock. Dispersal of adult buffalo has been described, but ecological and social drivers of buffalo dispersal are poorly understood. We investigated drivers of adult buffalo dispersal during a 4-year longitudinal study at Kruger National Park, South Africa. We monitored the spatial movement of 304 female buffalo in two focal areas using satellite and radio collars, capturing each buffalo every 6 months to assess animal traits and disease status. We used generalized linear mixed models to determine whether likelihood of dispersal for individual female buffalo was influenced by animal traits, herd identity, environmental variables, gastrointestinal parasites, or microparasite infections. The likelihood and drivers of buffalo dispersal varied by herd, area, and year. In the Lower Sabie herd, where resources were abundant, younger individuals were more likely to disperse, with most dispersal occurring in the early wet season and during an unusually dry year, 2009. In the resource-poor Crocodile Bridge area, buffalo in poor condition were most likely to disperse. Our findings suggest that dispersal of female buffalo is driven by either seasonal (Lower Sabie) or perhaps social (Crocodile Bridge) resource restriction, indicating resource limitation and dispersal decisions are tightly linked for this social ungulate. We found no direct effects of infections on buffalo dispersal, assuaging fears that highly infectious individuals might be more prone to dispersing, which could accelerate the spatial spread of infectious diseases.
Collapse
Affiliation(s)
- Robert S. Spaan
- Department of Fisheries and WildlifeOregon State UniversityCorvallisOregon
| | - Clinton W. Epps
- Department of Fisheries and WildlifeOregon State UniversityCorvallisOregon
| | - Vanessa O. Ezenwa
- Department of Infectious Diseases, Odum School of EcologyUniversity of GeorgiaAthensGeorgia
| | - Anna E. Jolles
- Department of Biomedical SciencesOregon State UniversityCorvallisOregon
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| |
Collapse
|