1
|
Rushmore J, Beechler BR, Tavalire H, Gorsich EE, Charleston B, Devan‐Song A, Glidden CK, Jolles AE. The heterogeneous herd: Drivers of close-contact variation in African buffalo and implications for pathogen invasion. Ecol Evol 2023; 13:e10447. [PMID: 37621318 PMCID: PMC10445036 DOI: 10.1002/ece3.10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Many infectious pathogens are shared through social interactions, and examining host connectivity has offered valuable insights for understanding patterns of pathogen transmission across wildlife species. African buffalo are social ungulates and important reservoirs of directly-transmitted pathogens that impact numerous wildlife and livestock species. Here, we analyzed African buffalo social networks to quantify variation in close contacts, examined drivers of contact heterogeneity, and investigated how the observed contact patterns affect pathogen invasion likelihoods for a wild social ungulate. We collected continuous association data using proximity collars and sampled host traits approximately every 2 months during a 15-month study period in Kruger National Park, South Africa. Although the observed herd was well connected, with most individuals contacting each other during each bimonthly interval, our analyses revealed striking heterogeneity in close-contact associations among herd members. Network analysis showed that individual connectivity was stable over time and that individual age, sex, reproductive status, and pairwise genetic relatedness were important predictors of buffalo connectivity. Calves were the most connected members of the herd, and adult males were the least connected. These findings highlight the role susceptible calves may play in the transmission of pathogens within the herd. We also demonstrate that, at time scales relevant to infectious pathogens found in nature, the observed level of connectivity affects pathogen invasion likelihoods for a wide range of infectious periods and transmissibilities. Ultimately, our study identifies key predictors of social connectivity in a social ungulate and illustrates how contact heterogeneity, even within a highly connected herd, can shape pathogen invasion likelihoods.
Collapse
Affiliation(s)
- Julie Rushmore
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
- One Health Institute, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- EpiCenter for Disease Dynamics, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Brianna R. Beechler
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Hannah Tavalire
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Erin E. Gorsich
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
- The Zeeman Institute: Systems Biology and Infectious Disease Epidemiology ResearchUniversity of WarwickCoventryUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Anne Devan‐Song
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Anna E. Jolles
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
2
|
Warburton EM, Budischak SA, Jolles AE, Ezenwa VO. Within-host and external environments differentially shape β-diversity across parasite life stages. J Anim Ecol 2023; 92:665-676. [PMID: 36567629 DOI: 10.1111/1365-2656.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
Uncovering drivers of community assembly is a key aspect of learning how biological communities function. Drivers of community similarity can be especially useful in this task as they affect assemblage-level changes that lead to differences in species diversity between habitats. Concepts of β-diversity originally developed for use in free-living communities have been widely applied to parasite communities to gain insight into how infection risk changes with local conditions by comparing parasite communities across abiotic and biotic gradients. Factors shaping β-diversity in communities of immature parasites, such as larvae, are largely unknown. This is a key knowledge gap as larvae are frequently the infective life-stage and understanding variation in these larval communities is thus key for disease prevention. Our goal was to uncover links between β-diversity of parasite communities at different life stages; therefore, we used gastrointestinal nematodes infecting African buffalo in Kruger National Park, South Africa, to investigate within-host and extra-host drivers of adult and larval parasite community similarity. We employed a cross-sectional approach using PERMANOVA that examined each worm community at a single time point to assess independent drivers of β-diversity in larvae and adults as well as a longitudinal approach with path analysis where adult and larval communities from the same host were compared to better link drivers of β-diversity between these two life stages. Using the cross-sectional approach, we generally found that intrinsic, within-host traits had significant effects on β-diversity of adult nematode communities, while extrinsic, extra-host variables had significant effects on β-diversity of larval nematode communities. However, the longitudinal approach provided evidence that intrinsic, within-host factors affected the larval community indirectly via the adult community. Our results provide key data for the comparison of community-level processes where adult and immature stages inhabit vastly different habitats (i.e. within-host vs. abiotic environment). In the context of parasitism, this helps elucidate host infection risk via larval stages and the drivers that shape persistence of adult parasite assemblages, both of which are useful for predicting and preventing infectious disease.
Collapse
Affiliation(s)
- Elizabeth M Warburton
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Sarah A Budischak
- W.M. Keck Department of Science, Claremont McKenna College, Claremont, California, USA
| | - Anna E Jolles
- College of Veterinary Medicine and Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Bagchi B, Seal S, Raina M, Basu DN, Khan I. Carcass Scavenging Relaxes Chemical-Driven Female Interference Competition in Flour Beetles. Am Nat 2022; 199:E1-E14. [DOI: 10.1086/717250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Jolles A, Gorsich E, Gubbins S, Beechler B, Buss P, Juleff N, de Klerk-Lorist LM, Maree F, Perez-Martin E, van Schalkwyk OL, Scott K, Zhang F, Medlock J, Charleston B. Endemic persistence of a highly contagious pathogen: Foot-and-mouth disease in its wildlife host. Science 2021; 374:104-109. [PMID: 34591637 DOI: 10.1126/science.abd2475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Extremely contagious pathogens are a global biosecurity threat because of their high burden of morbidity and mortality, as well as their capacity for fast-moving epidemics that are difficult to quell. Understanding the mechanisms enabling persistence of highly transmissible pathogens in host populations is thus a central problem in disease ecology. Through a combination of experimental and theoretical approaches, we investigated how highly contagious foot-and-mouth disease viruses persist in the African buffalo, which serves as their wildlife reservoir. We found that viral persistence through transmission among acutely infected hosts alone is unlikely. However, the inclusion of occasional transmission from persistently infected carriers reliably rescues the most infectious viral strain from fade-out. Additional mechanisms such as antigenic shift, loss of immunity, or spillover among host populations may be required for persistence of less transmissible strains.
Collapse
Affiliation(s)
- Anna Jolles
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA.,Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin Gorsich
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, CV4 7AL, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Brianna Beechler
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Peter Buss
- SANParks, Veterinary Wildlife Services, Kruger National Park, 1350 Skukuza, South Africa
| | - Nick Juleff
- Bill & Melinda Gates Foundation, Livestock Program, Seattle 98109, WA, USA
| | - Lin-Mari de Klerk-Lorist
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Government of South Africa, 1350 Skukuza, South Africa
| | - Francois Maree
- Vaccine and Diagnostic Research Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort 0110, South Africa.,South Africa Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Eva Perez-Martin
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - O L van Schalkwyk
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Government of South Africa, 1350 Skukuza, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1 Radolfzell, 78315, Germany
| | - Katherine Scott
- Vaccine and Diagnostic Research Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort 0110, South Africa
| | - Fuquan Zhang
- Institute of Prion Diseases, University College London, London, WC1E 6BT, UK
| | - Jan Medlock
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
5
|
Glidden CK, Coon CAC, Beechler BR, McNulty C, Ezenwa VO, Jolles AE. Co-infection best predicts respiratory viral infection in a wild host. J Anim Ecol 2021; 90:602-614. [PMID: 33232513 DOI: 10.1111/1365-2656.13391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
The dynamics of directly transmitted pathogens in natural populations are likely to result from the combined effects of host traits, pathogen biology, and interactions among pathogens within a host. Discovering how these factors work in concert to shape variation in pathogen dynamics in natural host-multi-pathogen systems is fundamental to understanding population health. Here, we describe temporal variation in incidence and then elucidate the effect of hosts trait, season and pathogen co-occurrence on host infection risk using one of the most comprehensive studies of co-infection in a wild population: a suite of seven directly transmitted viral and bacterial respiratory infections from a 4-year study of 200 free-ranging African buffalo Syncerus caffer. Incidence of upper respiratory infections was common throughout the study-five out of the seven pathogens appeared to be consistently circulating throughout our study population. One pathogen exhibited clear outbreak dynamics in our final study year and another was rarely detected. Co-infection was also common in this system: The strongest indicator of pathogen occurrence for respiratory viruses was in fact the presence of other viral respiratory infections. Host traits had minimal effects on odds of pathogen occurrence but did modify pathogen-pathogen associations. In contrast, only season predicted bacterial pathogen occurrence. Though a combination of environmental, behavioural, and physiological factors work together to shape disease dynamics, we found pathogen associations best determined infection risk. Our study demonstrates that, in the absence of very fine-scale data, the intricate changes among these factors are best represented by co-infection.
Collapse
Affiliation(s)
- Caroline K Glidden
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Courtney A C Coon
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Brianna R Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Chase McNulty
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Vanessa O Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.,College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
6
|
Dwyer RA, Witte C, Buss P, Goosen WJ, Miller M. Epidemiology of Tuberculosis in Multi-Host Wildlife Systems: Implications for Black ( Diceros bicornis) and White ( Ceratotherium simum) Rhinoceros. Front Vet Sci 2020; 7:580476. [PMID: 33330701 PMCID: PMC7672123 DOI: 10.3389/fvets.2020.580476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Cases of tuberculosis (TB) resulting from infection with Mycobacterium tuberculosis complex (MTBC) have been recorded in captive white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. More recently, cases have been documented in free-ranging populations of both species in bovine tuberculosis (bTB) endemic areas of South Africa. There is limited information on risk factors and transmission patterns for MTBC infections in African rhinoceros, however, extrapolation from literature on MTBC infections in other species and multi-host systems provides a foundation for understanding TB epidemiology in rhinoceros species. Current diagnostic tests include blood-based immunoassays but distinguishing between subclinical and active infections remains challenging due to the lack of diagnostic techniques. In other species, demographic risk factors for MTBC infection include sex and age, where males and adults are generally at higher risk than females and younger individuals. Limited available historical information reflects similar age- and sex-associated patterns for TB in captive black and white rhinoceros, with more reports of MTBC-associated disease in black rhinoceros than in white rhinoceros. The degree of MTBC exposure in susceptible wildlife depends on their level of interaction, either directly with other infected individuals or indirectly through MTBC contaminated environments, which is dependent on the presence and abundance of infected reservoir hosts and the amount of MTBC shed in their excreta. Captive African rhinoceros have shown evidence of MTBC shedding, and although infection levels are low in free-ranging rhinoceros, there is a risk for intraspecies transmission. Free-ranging rhinoceros in bTB endemic areas may be exposed to MTBC from other infected host species, such as the African buffalo (Syncerus caffer) and greater kudu (Tragelaphus strepsiceros), through shared environmental niches, and resource co-utilization. This review describes current knowledge and information gaps regarding the epidemiology of TB in African rhinoceros.
Collapse
Affiliation(s)
- Rebecca A Dwyer
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Carmel Witte
- Disease Investigations, San Diego Zoo Global, San Diego, CA, United States
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Behney AC. Ignoring uncertainty in predictor variables leads to false confidence in results: a case study of duck habitat use. Ecosphere 2020. [DOI: 10.1002/ecs2.3273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Adam C. Behney
- Avian Research Section Colorado Parks and Wildlife 317 W Prospect Road Fort Collins Colorado80526USA
| |
Collapse
|
8
|
Owen‐Smith N, Hopcraft G, Morrison T, Chamaillé‐Jammes S, Hetem R, Bennitt E, Van Langevelde F. Movement ecology of large herbivores in African savannas: current knowledge and gaps. Mamm Rev 2020. [DOI: 10.1111/mam.12193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Norman Owen‐Smith
- Centre for African Ecology School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits 2050 South Africa
| | - Grant Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow G12 8QQ UK
| | - Thomas Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow G12 8QQ UK
| | | | - Robyn Hetem
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits 2050 South Africa
| | - Emily Bennitt
- Okavango Research Institute University of Botswana Maun Botswana
| | | |
Collapse
|