1
|
Zhou X, Dong L, Zhang Y, Li J, Ren Z, Niu K. Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment. Oecologia 2024; 205:107-119. [PMID: 38698244 DOI: 10.1007/s00442-024-05555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Community weighted mean trait, i.e., functional composition, has been extensively used for upscaling of individual traits to the community functional attributes and ecosystem functioning in recent years. Yet, the importance of intraspecific trait variation relative to species turnover in determining changes in CWM still remains unclear, especially under nutrient enrichment scenarios. In this study, we conducted a global data synthesis analysis and three nutrient addition experiments in two sites of alpine grassland to reveal the extent to which species turnover and ITV contribute to shift in CWM in response to nutrient enrichment. The results consistently show that the importance of ITV relative to species turnover in regulating CWM in response to nutrient enrichment strongly depends on trait attributes rather than on environmental factors (fertilization type, climatic factors, soil properties, and light transmittance). For whole plant traits (height) and leaf morphological traits, species turnover is generally more important than ITV in determining CWM following most treatments of nutrient addition. However, for leaf nutrient traits, ITV outweighed species turnover in determining shifts in CWM in response to almost all treatments of nutrient addition, regardless of types and gradients of the nutrient addition. Thus, our study not only provides robust evidence for trait-dependent importance of ITV in mediating community functional composition, but also highlights the need to consider the nature of functional traits in linking ITV to community assembly and ecosystem functioning under global nutrient enrichment scenarios.
Collapse
Affiliation(s)
- Xiaolong Zhou
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
- Technology Innovation Center for Ecological Monitoring and Restoration of Desert-Oasis, MNR, Urumqi, 830046, China
| | - Liuwen Dong
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
- Technology Innovation Center for Ecological Monitoring and Restoration of Desert-Oasis, MNR, Urumqi, 830046, China
| | - Yongjun Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
- Technology Innovation Center for Ecological Monitoring and Restoration of Desert-Oasis, MNR, Urumqi, 830046, China
| | - Jingdong Li
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
- Technology Innovation Center for Ecological Monitoring and Restoration of Desert-Oasis, MNR, Urumqi, 830046, China
| | - Zhengwei Ren
- College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Kechang Niu
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China.
- School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Wheeler GR, Brassil CE, Knops JMH. Functional traits' annual variation exceeds nitrogen-driven variation in grassland plant species. Ecology 2023; 104:e3886. [PMID: 36208107 PMCID: PMC10078297 DOI: 10.1002/ecy.3886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023]
Abstract
Effective application of functional trait approaches to ecological questions requires understanding the patterns of trait variation within species as well as between them. However, few studies address the potential for intraspecific variation to occur on a temporal basis and, thus, for trait-based findings to be contingent upon sampling year. To quantify annual variation in the functional traits of grassland plant species, we measured specific leaf area, leaf dry matter content, plant height, and chlorophyll content in 12 shortgrass prairie plant species. We repeated these measurements across 4 years, both in long-term nitrogen addition plots and in corresponding control plots. Three of the four traits showed significant year-to-year variation in a linear mixed model analysis, generally following a pattern of more acquisitive leaf economics spectrum traits in higher rainfall years. Furthermore, two of the measured traits responded interactively to nitrogen addition and sampling year, although only one, leaf dry matter content, showed the expected pattern of stronger nitrogen responses in high rainfall years. For leaf dry matter content and specific leaf area, trait responses to sampling year were larger than responses to the nitrogen addition treatment. These findings illustrate that species' functional traits can respond strongly to environmental changes across years, and thus that trait variation in a species or community is likely to extend beyond the values and patterns observed in any single year.
Collapse
Affiliation(s)
- George R Wheeler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chad E Brassil
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Johannes M H Knops
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Health and Environmental Sciences, Xian Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
3
|
Yu J, Hou G, Zhou T, Shi P, Zong N, Sun J. Variation of plant CSR strategies across a precipitation gradient in the alpine grasslands on the northern Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156512. [PMID: 35679928 DOI: 10.1016/j.scitotenv.2022.156512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Identifying ecological strategies based on functional traits can help us better understand plants' adaptations and changes in ecological processes, and thus predict the impact of climate change on ecosystems, especially in the vulnerable alpine grasslands. Herein, we investigated the plant CSR strategies of four grassland types (alpine meadows, AM; alpine meadow steppes, AMS; alpine steppes, AS; and alpine desert steppes, ADS) and its functional groups (grasses, sedges, legumes, and forbs) along the east-to-west gradient of decreasing precipitation on the northern Tibetan grasslands by using Grime's CSR (C: competitor, S: stress tolerator, and R: ruderal) analysis. Although alpine grasslands were dominated by S-strategy, our results also indicated that AM with higher water, nitrogen (N) and phosphorus (P) availability had significantly lower S-strategy values and relatively higher C- and R-strategy values (C: S: R = 6: 63: 31 %) than those in AMS (C: S: R = 3: 94: 3 %,), AS (C: S: R = 3: 87: 10 %), and ADS (C: S: R = 1: 94: 5 %). The CSR strategy values of forbs and legumes showed greater variability compared with grasses and sedges in the environmental gradient. Furthermore, water variability on the precipitation gradient eventually affected plant traits and CSR strategies through soil N and P availability and pH. Our findings highlighted that plant CSR strategies were regulated by the availability of soil resources, and plants adopted more flexible adaptation strategies in relatively resource-rich environments. This study sheds light on the mechanisms of plant adaptation to the changing environment in the alpine grasslands.
Collapse
Affiliation(s)
- Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tiancai Zhou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Menalled UD, Adeux G, Cordeau S, Smith RG, Mirsky SB, Ryan MR. Cereal rye mulch biomass and crop density affect weed suppression and community assembly in no‐till planted soybean. Ecosphere 2022. [DOI: 10.1002/ecs2.4147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Uriel D. Menalled
- Soil and Crop Sciences Section School of Integrative Plant Science, Cornell University Ithaca New York USA
| | - Guillaume Adeux
- Agroécologie, AgroSup Dijon INRAE, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté Dijon France
| | - Stéphane Cordeau
- Agroécologie, AgroSup Dijon INRAE, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté Dijon France
| | - Richard G. Smith
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Steven B. Mirsky
- USDA–ARS Sustainable Agricultural Systems Laboratory Beltsville Maryland USA
| | - Matthew R. Ryan
- Soil and Crop Sciences Section School of Integrative Plant Science, Cornell University Ithaca New York USA
| |
Collapse
|
5
|
Guo A, Zuo X, Zhang S, Hu Y, Yue P, Lv P, Li X, Zhao S, Yu Q. Contrasting effects of plant inter- and intraspecific variation on community trait responses to nitrogen addition and drought in typical and meadow steppes. BMC PLANT BIOLOGY 2022; 22:90. [PMID: 35232383 PMCID: PMC8886796 DOI: 10.1186/s12870-022-03486-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Inter- and intraspecific variation in plant traits play an important role in grassland community assembly under global change scenarios. However, explorations of how these variations contribute to the responses of community traits to nitrogen (N) addition and drought in different grassland types are lacking. We measured the plant height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf N content (LNC) and the ratio of leaf carbon (C) to leaf N (C:N) in a typical and a meadow steppe after three years of N addition, drought and their interaction. We determined the community-weighted means (CWMs) of the six traits to quantify the relative contribution of inter- and intraspecific variation to the responses of community traits to N addition and drought in the two steppes. RESULTS The communities in the two steppes responded to N addition and the interaction by increasing the CWM of LNC and decreasing C:N. The community in the meadow steppe responded to drought through increased CWM of LNC and reduced C:N. Significant differences were observed in SLA, LDMC, LNC and C:N between the two steppes under different treatments. The SLA and LNC of the community in the meadow steppe were greater than those of the typical steppe, and the LDMC and C:N exhibited the opposite results. Moreover, variation in community traits in the typical steppe in response to N addition and drought was caused by intraspecific variation. In contrast, the shifts in community traits in the meadow steppe in response to N addition and drought were influenced by both inter- and intraspecific variation. CONCLUSIONS The results demonstrate that intraspecific variation contributed more to community functional shifts in the typical steppe than in the meadow steppe. Intraspecific variation should be considered to understand better and predict the response of typical steppe communities to global changes. The minor effects of interspecific variation on meadow steppe communities in response to environmental changes also should not be neglected.
Collapse
Affiliation(s)
- Aixia Guo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Senxi Zhang
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ya Hu
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Peng Lv
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiangyun Li
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Shenglong Zhao
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| |
Collapse
|
6
|
Zhang Y, He N, Yu G. Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming. Sci Rep 2021; 11:15736. [PMID: 34344961 PMCID: PMC8333091 DOI: 10.1038/s41598-021-95281-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Global warming has significantly altered the distribution and productivity of vegetation owing to shifts in plant functional traits. However, chlorophyll adaptations-good representative of plant production-in grasslands have not been investigated on a large scale, hindering ecological predictions of climate change. Three grassland transects with a natural temperature gradient were designed in the Tibetan, Mongolian, and Loess Plateau to describe the changes in chlorophyll under different warming scenarios for 475 species. In the three plateaus, variations and distributions of species chlorophyll concentration and composition were compared. The results showed that the means of chlorophyll concentration and composition (chlorophyll a/b) increased with the mean annual temperature. Still, their distributions shifted in opposite manners: chlorophyll concentration was distributed in a broader but more differential manner, while chlorophyll composition was distributed in a narrower but more uniform manner. Compared to chlorophyll concentration, chlorophyll composition was more conservative, with a slight shift in distribution. At the regional level, the chlorophyll concentration and composition depend on the limitations of the local climate or resources. The results implied that warming might drive shifts in grassland chlorophyll distribution mainly by alternations in species composition. Large-scale chlorophyll investigations will be useful for developing prediction techniques.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|