1
|
Wagner I, Smolina I, Koop MEL, Bal T, Lizano AM, Choo LQ, Hofreiter M, Gennari E, de Sabata E, Shivji MS, Noble LR, Jones CS, Hoarau G. Genome analysis reveals three distinct lineages of the cosmopolitan white shark. Curr Biol 2024; 34:3582-3590.e4. [PMID: 39047735 DOI: 10.1016/j.cub.2024.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The white shark (Carcharodon carcharias) (Linnaeus, 1758), an iconic apex predator occurring in all oceans,1,2 is classified as Vulnerable globally3-with global abundance having dropped to 63% of 1970s estimates,4-and as Critically Endangered in Europe.5 Identification of evolutionary significant units and their management are crucial for conservation,6 especially as the white shark is facing various but often region-specific anthropogenic threats.7,8,9,10,11 Assessing connectivity in a cosmopolitan marine species requires worldwide sampling and high-resolution genetic markers.12 Both are lacking for the white shark, with studies to date typified by numerous but geographically limited sampling, and analyses relying largely on relatively small numbers of nuclear microsatellites,13,14,15,16,17,18,19 which can be plagued by various genotyping artefacts and thus require cautious interpretation.20 Sequencing and computational advances are finally allowing genomes21,22,23 to be leveraged into population studies,24,25,26,27 with datasets comprising thousands of single-nucleotide polymorphisms (SNPs). Here, combining target gene capture (TGC)28 sequencing (89 individuals, 4,000 SNPs) and whole-genome re-sequencing (17 individuals, 391,000 SNPs) with worldwide sampling across most of the distributional range, we identify three genetically distinct allopatric lineages (North Atlantic, Indo-Pacific, and North Pacific). These diverged 100,000-200,000 years ago during the Penultimate Glaciation, when low sea levels, different ocean currents, and water temperatures produced significant biogeographic barriers. Our results show that without high-resolution genomic analyses of samples representative of a species' range,12 the true extent of diversity, presence of past and contemporary barriers to gene flow, subsequent speciation, and local evolutionary events will remain enigmatic.
Collapse
Affiliation(s)
- Isabel Wagner
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Martina E L Koop
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Thijs Bal
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Apollo M Lizano
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Marine Science Institute, University of the Philippines, Diliman Quezon City 1101, Philippines
| | - Le Qin Choo
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa
| | | | - Mahmood S Shivji
- Save Our Seas Shark Foundation Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Leslie R Noble
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK.
| | - Catherine S Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK.
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| |
Collapse
|
2
|
Gilman E, Chaloupka M, Benaka LR, Bowlby H, Fitchett M, Kaiser M, Musyl M. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis. Sci Rep 2022; 12:18164. [PMID: 36307432 PMCID: PMC9616952 DOI: 10.1038/s41598-022-21976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Apex and mesopredators such as elasmobranchs are important for maintaining ocean health and are the focus of conservation efforts to mitigate exposure to fishing and other anthropogenic hazards. Quantifying fishing mortality components such as at-vessel mortality (AVM) is necessary for effective bycatch management. We assembled a database for 61 elasmobranch species and conducted a global meta-synthesis to estimate pelagic longline AVM rates. Evolutionary history was a significant predictor of AVM, accounting for up to 13% of variance in Bayesian phylogenetic meta-regression models for Lamniformes and Carcharhiniformes clades. Phylogenetically related species may have a high degree of shared traits that explain AVM. Model-estimated posterior mean AVM rates ranged from 5% (95% HDI 0.1%-16%) for pelagic stingrays and 76% (95% HDI 49%-90%) for salmon sharks. Measures that reduce catch, and hence AVM levels, such as input controls, bycatch quotas and gear technology to increase selectivity are appropriate for species with higher AVM rates. In addition to reducing catchability, handling-and-release practices and interventions such as retention bans in shark sanctuaries and bans on shark finning and trade hold promise for species with lower AVM rates. Robust, and where applicable, phylogenetically-adjusted elasmobranch AVM rates are essential for evidence-informed bycatch policy.
Collapse
Affiliation(s)
- Eric Gilman
- The Safina Center, Honolulu, USA.
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK.
| | - Milani Chaloupka
- Ecological Modelling Services Pty Ltd and Marine Spatial Ecology Lab, University of Queensland, Brisbane, Australia
| | - Lee R Benaka
- Office of Science and Technology, U.S. NOAA Fisheries, Silver Spring, USA
| | - Heather Bowlby
- Bedford Institute of Oceanography, Fisheries and Oceans, Dartmouth, Canada
| | - Mark Fitchett
- Western Pacific Regional Fishery Management Council, Honolulu, USA
| | - Michel Kaiser
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
3
|
Bowlby HD, Hammerschlag N, Irion DT, Gennari E. How continuing mortality affects recovery potential for prohibited sharks: The case of white sharks in South Africa. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.988693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It can be difficult to determine whether a prohibition to exploitation ensures effective conservation or recovery for species that remain exposed to fishing effort and other sources of mortality throughout their range. Here we used simulation modeling of four life history scenarios (different productivity and population size) to contextualize potential population response to multiple levels of mortality, using white sharks (Carcharodon carcharias) in South Africa as a case study. The species has been protected since 1991, yet substantial uncertainty about population dynamics persists and recent declines at two aggregation sites have renewed conservation concern. All scenarios indicated that annual removals in the 10s of individuals would substantially limit the potential for and magnitude of any abundance increase following prohibition. Because average known removals from the KwaZulu-Natal Sharks Board’s Bather Protection Program have typically remained higher than these thresholds, they likely eliminated much of the conservation benefit derived from prohibition. The only life history scenario to achieve appreciable increase when simulated removals were similar to published averages assumed maturation occurred at a much younger age than currently understood. Our results demonstrate why general application of life history-based simulations can provide a useful mechanism to evaluate the biological plausibility of life history information and abundance trends, and to explore the scope for population response to recovery actions. For South Africa, our results suggest that even known levels of white shark removals, which likely underestimate total removals within their range, may be sufficient to drive abundance decline and new mitigation measures may be required to ensure population recovery.
Collapse
|
4
|
O'Connor PJ, Moss J, Adams J, Matemberere C, Kaya M. What drives consumer automobile choice? Investigating personality trait predictors of vehicle preference factors. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022. [DOI: 10.1016/j.paid.2021.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Davenport D, Butcher P, Andreotti S, Matthee C, Jones A, Ovenden J. Effective number of white shark ( Carcharodon carcharias, Linnaeus) breeders is stable over four successive years in the population adjacent to eastern Australia and New Zealand. Ecol Evol 2021; 11:186-198. [PMID: 33437422 PMCID: PMC7790646 DOI: 10.1002/ece3.7007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Population size is a central parameter for conservation; however, monitoring abundance is often problematic for threatened marine species. Despite substantial investment in research, many marine species remain data-poor presenting barriers to the evaluation of conservation management outcomes and the modeling of future solutions. Such is the case for the white shark (Carcharodon carcharias), a highly mobile apex predator for whom recent and substantial population declines have been recorded in many globally distributed populations. Here, we estimate the effective number of breeders that successfully contribute offspring in one reproductive cycle (Nb) to provide a snapshot of recent reproductive effort in an east Australian-New Zealand population of white shark. Nb was estimated over four consecutive age cohorts (2010, 2011, 2012, and 2013) using two genetic estimators (linkage disequilibrium; LD and sibship assignment; SA) based on genetic data derived from two types of genetic markers (single nucleotide polymorphisms; SNPs and microsatellite loci). While estimates of Nb using different marker types produced comparable estimates, microsatellite loci were the least precise. The LD and SA estimates of Nb within cohorts using SNPs were comparable; for example, the 2013 age cohort Nb(SA) was 289 (95% CI 200-461) and Nb(LD) was 208.5 (95% CI 116.4-712.7). We show that over the time period studied, Nb was stable and ranged between 206.1 (SD ± 45.9) and 252.0 (SD ± 46.7) per year using a combined estimate of Nb(LD+SA) from SNP loci. In addition, a simulation approach showed that in this population the effective population size (Ne) per generation can be expected to be larger than Nb per reproductive cycle. This study demonstrates how breeding population size can be monitored over time to provide insight into the effectiveness of recovery and conservation measures for the white shark, where the methods described here may be applicable to other data-poor species of conservation concern.
Collapse
Affiliation(s)
- Danielle Davenport
- Molecular Fisheries Laboratory and Schools of Biomedical SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| | - Paul Butcher
- New South Wales Department of Primary IndustriesCoffs HarbourNSWAustralia
| | - Sara Andreotti
- Evolutionary Genomics GroupDepartment of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
| | - Conrad Matthee
- Evolutionary Genomics GroupDepartment of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
| | - Andrew Jones
- Molecular Fisheries Laboratory and Schools of Biomedical SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| | - Jennifer Ovenden
- Molecular Fisheries Laboratory and Schools of Biomedical SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| |
Collapse
|