1
|
Hederström V, Ekroos J, Friberg M, Krausl T, Opedal ØH, Persson AS, Petrén H, Quan Y, Smith HG, Clough Y. Pollinator-mediated effects of landscape-scale land use on grassland plant community composition and ecosystem functioning - seven hypotheses. Biol Rev Camb Philos Soc 2024; 99:675-698. [PMID: 38118437 DOI: 10.1111/brv.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Environmental change is disrupting mutualisms between organisms worldwide. Reported declines in insect populations and changes in pollinator community compositions in response to land use and other environmental drivers have put the spotlight on the need to conserve pollinators. While this is often motivated by their role in supporting crop yields, the role of pollinators for reproduction and resulting taxonomic and functional assembly in wild plant communities has received less attention. Recent findings suggest that observed and experimental gradients in pollinator availability can affect plant community composition, but we know little about when such shifts are to be expected, or the impact they have on ecosystem functioning. Correlations between plant traits related to pollination and plant traits related to other important ecosystem functions, such as productivity, nitrogen uptake or palatability to herbivores, lead us to expect non-random shifts in ecosystem functioning in response to changes in pollinator communities. At the same time, ecological and evolutionary processes may counteract these effects of pollinator declines, limiting changes in plant community composition, and in ecosystem functioning. Despite calls to investigate community- and ecosystem-level impacts of reduced pollination, the study of pollinator effects on plants has largely been confined to impacts on plant individuals or single-species populations. With this review we aim to break new ground by bringing together aspects of landscape ecology, ecological and evolutionary plant-insect interactions, and biodiversity-ecosystem functioning research, to generate new ideas and hypotheses about the ecosystem-level consequences of pollinator declines in response to land-use change, using grasslands as a focal system. Based on an integrated set of seven hypotheses, we call for more research investigating the putative pollinator-mediated links between landscape-scale land use and ecosystem functioning. In particular, future research should use combinations of experimental and observational approaches to assess the effects of changes in pollinator communities over multiple years and across species on plant communities and on trait distributions both within and among species.
Collapse
Affiliation(s)
- Veronica Hederström
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Johan Ekroos
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Theresia Krausl
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yuanyuan Quan
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Henrik G Smith
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yann Clough
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| |
Collapse
|
2
|
Sardans J, Llusià J, Ogaya R, Vallicrosa H, Filella I, Gargallo-Garriga A, Peguero G, Van Langenhove L, Verryckt LT, Stahl C, Courtois EA, Bréchet LM, Tariq A, Zeng F, Alrefaei AF, Wang W, Janssens IA, Peñuelas J. Foliar elementome and functional traits relationships identify tree species niche in French Guiana rainforests. Ecology 2023; 104:e4118. [PMID: 37282712 DOI: 10.1002/ecy.4118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023]
Abstract
Biogeochemical niche (BN) hypothesis aims to relate species/genotype elemental composition with its niche based on the fact that different elements are involved differentially in distinct plant functions. We here test the BN hypothesis through the analysis of the 10 foliar elemental concentrations and 20 functional-morphological of 60 tree species in a French Guiana tropical forest. We observed strong legacy (phylogenic + species) signals in the species-specific foliar elemental composition (elementome) and, for the first time, provide empirical evidence for a relationship between species-specific foliar elementome and functional traits. Our study thus supports the BN hypothesis and confirms the general niche segregation process through which the species-specific use of bio-elements drives the high levels of α-diversity in this tropical forest. We show that the simple analysis of foliar elementomes may be used to test for BNs of co-occurring species in highly diverse ecosystems, such as tropical rainforests. Although cause and effect mechanisms of leaf functional and morphological traits in species-specific use of bio-elements require confirmation, we posit the hypothesis that divergences in functional-morphological niches and species-specific biogeochemical use are likely to have co-evolved.
Collapse
Affiliation(s)
- Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Romà Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Helen Vallicrosa
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Guille Peguero
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Leandro Van Langenhove
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Lore T Verryckt
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Clément Stahl
- INRAE, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
| | - Elodie A Courtois
- INRAE, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
| | - Laëtitia M Bréchet
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerpen, Belgium
- INRAE, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | | | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Ivan A Janssens
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Theron KJ, Pryke JS, Samways MJ. Identifying managerial legacies within conservation corridors using remote sensing and grasshoppers as bioindicators. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02496. [PMID: 34783414 DOI: 10.1002/eap.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity conservation under global change requires effective management of key biodiversity areas, even areas not under formal protection. Natural grassland conservation corridors between plantation forests are such areas, as they improve landscape connectivity, mitigate the impact of landscape fragmentation, and conserve biodiversity. However, empirical evidence is required to identify the extent to which past management actions promote effectiveness of conservation corridors into the future. We address this issue using grasshoppers, which are well-established indicators of habitat quality. In particular, we assess grasshopper response within corridors to historic grassland photosynthetic activity using a 25-yr normalized difference vegetation index (NDVI) time series. We then use vegetation characteristics measured in the field to understand the potential mechanisms driving grasshopper response. Furthermore, we explore the efficacy of satellite remote sensing for monitoring grasshopper habitat using additive models. We found that grasshopper evenness responded positively to deviation in NDVI within a 3-yr period, whereas assemblage composition responded positively over a shorter time of two years. Grasshopper richness and evenness responded strongly to the local vegetation height and bare ground, whereas grasshopper assemblage composition also responded to plant species richness. We found a major negative impact of the invasive alien bramble (Rubus cuneifolius) on large-sized grasshoppers and species of conservation concern. Overall, the results illustrate the importance of maintaining primary high-quality habitat for maintaining grasshopper diversity, alongside removal of invasive bramble. We recommend prescribed burning to maintain high-quality habitat heterogeneity, with sites burned within three years. Furthermore, high-resolution satellite imagery is effective for monitoring grasshopper richness and assemblage composition response to changes in vegetation within the corridors. Grassland conservation corridors do conserve biodiversity, although effective management and monitoring needs to be in place to ensure biodiversity resembles that of neighbouring protected areas.
Collapse
Affiliation(s)
- K Jurie Theron
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - James S Pryke
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Michael J Samways
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
4
|
White HJ, Gaul W, León‐Sánchez L, Sadykova D, Emmerson MC, Caplat P, Yearsley JM. Ecosystem stability at the landscape scale is primarily associated with climatic history. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hannah J. White
- School of Life Sciences Anglia Ruskin University Cambridge UK
- School of Biology and Environmental Science University College Dublin Dublin Ireland
- Earth Institute University College Dublin Dublin Ireland
| | - Willson Gaul
- School of Biology and Environmental Science University College Dublin Dublin Ireland
- Earth Institute University College Dublin Dublin Ireland
| | | | - Dinara Sadykova
- School of Biological Sciences Queen's University Belfast Belfast UK
- Centre for Ecology and Hydrology Wallingford UK
| | - Mark C. Emmerson
- School of Biological Sciences Queen's University Belfast Belfast UK
- Institute of Global Food Security (IGFS) Queen's University Belfast Belfast UK
| | - Paul Caplat
- School of Biological Sciences Queen's University Belfast Belfast UK
- Institute of Global Food Security (IGFS) Queen's University Belfast Belfast UK
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - Jon M. Yearsley
- School of Biology and Environmental Science University College Dublin Dublin Ireland
- Earth Institute University College Dublin Dublin Ireland
| |
Collapse
|
5
|
Cheng H, Gong Y, Zuo X. Precipitation Variability Affects Aboveground Biomass Directly and Indirectly via Plant Functional Traits in the Desert Steppe of Inner Mongolia, Northern China. FRONTIERS IN PLANT SCIENCE 2021; 12:674527. [PMID: 34456934 PMCID: PMC8385370 DOI: 10.3389/fpls.2021.674527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
Clarifying the response of community and dominance species to climate change is crucial for disentangling the mechanism of the ecosystem evolution and predicting the prospective dynamics of communities under the global climate scenario. We examined how precipitation changes affect community structure and aboveground biomass (AGB) according to manipulated precipitation experiments in the desert steppe of Inner Mongolia, China. Bayesian model and structural equation models (SEM) were used to test variation and causal relationship among precipitation, plant diversity, functional attributes, and AGB. The results showed that the responses of species richness, evenness, and plant community weighted means traits to precipitation changes in amount and year were significant. The SEM demonstrated that precipitation change in amount and year has a direct effect on richness, evenness, and community-weighted mean (CWM) for height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), and leaf carbon content (LCC) and AGB; there into CWM for height and LDMC had a direct positive effect on AGB; LA had a direct negative effect on AGB. Three dominant species showed diverse adaptation and resource utilization strategies in response to precipitation changes. A. polyrhizum showed an increase in height under the precipitation treatments that promoted AGB, whereas the AGB of P. harmala and S. glareosa was boosted through alterations in height and LA. Our results highlight the asynchronism of variation in community composition and structure, leaf functional traits in precipitation-AGB relationship. We proposed that altered AGB resulted from the direct and indirect effects of plant functional traits (plant height, LA, LDMC) rather than species diversity, plant functional traits are likely candidate traits, given that they are mechanistically linked to precipitation changes and affected aboveground biomass in a desert steppe.
Collapse
Affiliation(s)
- Huan Cheng
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Yuanbo Gong
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| |
Collapse
|