1
|
Hu D, Zhou X, Ma G, Pan J, Ma H, Chai Y, Li Y, Yue M. Increased soil bacteria-fungus interactions promote soil nutrient availability, plant growth, and coexistence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176919. [PMID: 39454778 DOI: 10.1016/j.scitotenv.2024.176919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Tree species and interkingdom relationships in the belowground metacommunity are key factors in determining soil microbial diversity and community composition. However, how bacterial-fungal interactions mediate soil nutrient and plant growth remains largely unexplored in the coniferous forests. Here, we selected three types of naturally growing coniferous forests on the Loess Plateau-pure stands of Platycladus orientalis, mixed stands of Platycladus orientalis and Pinus tabuliformis, and pure stands of Pinus tabuliformis-to compare the differences in soil properties, microbial diversity and community composition, soil enzymatic activity, and plant growth conditions across these stand types. We found that tree species mixing significantly alters soil microbial community diversity and composition, increasing the positive associations between bacteria and fungi. Compared to pure stands, mixed stands exhibit significantly higher bacterial diversity, whereas fungal diversity shows no significant difference. Additionally, available soil nutrients (ammonium nitrogen and available phosphorus) are significantly increased in mixed stands, along with their associated soil enzymatic activities. The partial least squares path model suggests that higher bacterial diversity enhances bacterial-fungal positive interactions, increasing the relative abundance of ectomycorrhizal fungi and the decomposition rate of organic matter in mixed stands, thereby boosting soil nutrient availability and plant growth. These results highlight the importance of positive bacterial-fungal associations for soil nutrient availability and plant growth, deepen the understanding of the role of soil microbial interactions in mediating plant species coexistence. Most importantly, our results implied a stable coexistence of the pioneer P. orientalis and the late successional species P. tabuliformis in the Loess Plateau region and provided a microbiological interpretation.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Xuehui Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Gaoyuan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Jiahao Pan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Huan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Yunshi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China; Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, PR China.
| |
Collapse
|
2
|
Sharma N, Tapwal A. Mycorrhizal symbiosis in Taxus: a review. MYCORRHIZA 2024; 34:173-180. [PMID: 38643436 DOI: 10.1007/s00572-024-01148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.
Collapse
Affiliation(s)
- Neha Sharma
- ICFRE-Himalayan Forest Research Institute, Shimla, 171013, India.
| | - Ashwani Tapwal
- ICFRE-Himalayan Forest Research Institute, Shimla, 171013, India
| |
Collapse
|
3
|
Singavarapu B, Ul Haq H, Darnstaedt F, Nawaz A, Beugnon R, Cesarz S, Eisenhauer N, Du J, Xue K, Wang Y, Bruelheide H, Wubet T. Influence of tree mycorrhizal type, tree species identity, and diversity on forest root-associated mycobiomes. THE NEW PHYTOLOGIST 2024; 242:1691-1703. [PMID: 38659111 DOI: 10.1111/nph.19722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Hafeez Ul Haq
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Friedrich Darnstaedt
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
| | - Ali Nawaz
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Department of Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Am Eichenhang 50, 57076, Siegen, Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293, Montpellier Cedex 5, France
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, 04103, Leipzig, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, 100101, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Chaudhury R, Chakraborty A, Rahaman F, Sarkar T, Dey S, Das M. Mycorrhization in trees: ecology, physiology, emerging technologies and beyond. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:145-156. [PMID: 38194349 DOI: 10.1111/plb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Mycorrhization has been an integral part of plants since colonization by the early land plants. Over decades, substantial research has highlighted its potential role in improving nutritional efficiency and growth, development and survival of crop plants. However, the focus of this review is trees. Evidence have been provided to explain ecological and physiological significance of mycorrhization in trees. Advances in recent technologies (e.g., metagenomics, artificial intelligence, machine learning, agricultural drones) may open new windows to apply this knowledge in promoting tree growth in forest ecosystems. Dual mycorrhization relationships in trees and even triple relationships among trees, mycorrhizal fungi and bacteria offer an interesting physiological system to understand how plants interact with other organisms for better survival. Besides, studies indicate additional roles of mycorrhization in learning, memorizing and communication between host trees through a common mycorrhizal network (CMN). Recent observations in trees suggest that mycorrhization may even promote tolerance to multiple abiotic (e.g., drought, salt, heavy metal stress) and biotic (e.g. fungi) stresses. Due to the extent of physiological reliance, local adaptation of trees is heavily impacted by the mycorrhizal community. This knowledge opens the possibility of a non-GMO avenue to promote tree growth and development. Indeed, mycorrhization could impact growth of trees in nurserys and subsequent survival of the inoculated trees in field conditions. Future studies might integrate hyperspectral imaging and drone technologies to identify tree communities that are deficient in nitrogen and spray mycorrhizal spore formulations on them.
Collapse
Affiliation(s)
- R Chaudhury
- Department of Life Sciences, Presidency University, Kolkata, India
| | - A Chakraborty
- Department of Life Sciences, Presidency University, Kolkata, India
| | - F Rahaman
- Department of Life Sciences, Presidency University, Kolkata, India
| | - T Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - S Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - M Das
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
5
|
Tao S, Veen GFC, Zhang N, Yu T, Qu L. Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. MICROBIOME 2023; 11:261. [PMID: 37996939 PMCID: PMC10666335 DOI: 10.1186/s40168-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.
Collapse
Affiliation(s)
- Siqi Tao
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalstesteeg 10, Wageningen, 6708 PB, the Netherlands
| | - Naili Zhang
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China.
| | - Tianhe Yu
- Department of Biology, Mudanjiang Normal University, Mudanjiang, 157011, People's Republic of China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
6
|
Ray T, Delory BM, Beugnon R, Bruelheide H, Cesarz S, Eisenhauer N, Ferlian O, Quosh J, von Oheimb G, Fichtner A. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. SCIENCE ADVANCES 2023; 9:eadi2362. [PMID: 37801499 PMCID: PMC10558120 DOI: 10.1126/sciadv.adi2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.
Collapse
Affiliation(s)
- Tama Ray
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Benjamin M. Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, 04103 Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier Cedex 5, France
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
7
|
Hereira-Pacheco SE, Estrada-Torres A, Dendooven L, Navarro-Noya YE. Shifts in root-associated fungal communities under drought conditions in Ricinus communis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Heklau H, Schindler N, Eisenhauer N, Ferlian O, Bruelheide H. Temporal variation of mycorrhization rates in a tree diversity experiment. Ecol Evol 2023; 13:e10002. [PMID: 37091560 PMCID: PMC10115898 DOI: 10.1002/ece3.10002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
While mycorrhization rates have been studied in different contexts, not much is known about their temporal patterns across seasons. Here, we asked how mycorrhization rates of 10 deciduous trees assessed by microscopy changed from winter to spring to early summer. We made use of a tree diversity experiment on nutrient-rich soil (former farmland) in Central Germany. In the experiment, saplings of host species with a preference for either arbuscular mycorrhiza (AM) or ectomycorrhiza (EM) were planted in monocultures, two-species, and four-species mixtures. In addition, mixtures were composed of tree species of only one mycorrhizal type or by AM/EM trees. For almost all species, with the exception of Aesculus hippocastanum and Acer pseudoplatanus (only AM), dual mycorrhization with both types (AM and EM) was found at every sampling time (December, March, and May), although the expected preferences for certain mycorrhizal types were confirmed. The sampling date had a significant influence on mycorrhization rates of both EM and AM tree species. Frequencies of EM and AM were lowest in May, but there were no differences between December and March. The causes of this seasonal variation may be associated with climate-induced differences in carbon allocation to mycorrhizal tree roots in the temperate climate. Within individual trees, mycorrhization rates by AM and EM fungi were not correlated over time, pointing to asynchronous variation between both types and to independent drivers for AM and EM mycorrhization. At the community level, mycorrhiza frequency of either of the two types became more asynchronous from two-species to four-species mixtures. Thus, increased community asynchrony in mycorrhization could be another important mechanism in biodiversity-ecosystem functioning relationships.
Collapse
Affiliation(s)
- Heike Heklau
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergAm Kirchtor 1Halle (Saale)06108Germany
| | - Nicole Schindler
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergAm Kirchtor 1Halle (Saale)06108Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigPuschstr. 4Leipzig04103Germany
- Institute of BiologyLeipzig UniversityPuschstr. 4Leipzig04103Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigPuschstr. 4Leipzig04103Germany
- Institute of BiologyLeipzig UniversityPuschstr. 4Leipzig04103Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergAm Kirchtor 1Halle (Saale)06108Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigPuschstr. 4Leipzig04103Germany
| |
Collapse
|
9
|
Eisenhauer N, Bonfante P, Buscot F, Cesarz S, Guerra C, Heintz-Buschart A, Hines J, Patoine G, Rillig M, Schmid B, Verheyen K, Wirth C, Ferlian O. Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e85873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biodiversity drives the maintenance and stability of ecosystem functioning as well as many of nature’s benefits to people, yet people cause substantial biodiversity change. Despite broad consensus about a positive relationship between biodiversity and ecosystem functioning (BEF), the underlying mechanisms and their context-dependencies are not well understood. This proposal, submitted to the European Research Council (ERC), aims at filling this knowledge gap by providing a novel conceptual framework for integrating biotic interactions across guilds of organisms, i.e. plants and mycorrhizal fungi, to explain the ecosystem consequences of biodiversity change. The overarching hypothesis is that EF increases when more tree species associate with functionally dissimilar mycorrhizal fungi. Taking a whole-ecosystem perspective, we propose to explore the role of tree-mycorrhiza interactions in driving BEF across environmental contexts and how this relates to nutrient dynamics. Given the significant role that mycorrhizae play in soil nutrient and water uptake, BEF relationships will be investigated under normal and drought conditions. Resulting ecosystem consequences will be explored by studying main energy channels and ecosystem multifunctionality using food web energy fluxes and by assessing carbon storage. Synthesising drivers of biotic interactions will allow us to understand context-dependent BEF relationships. This interdisciplinary and integrative project spans the whole gradient from local-scale process assessments to global relationships by building on unique experimental infrastructures like the MyDiv Experiment, iDiv Ecotron and the global network TreeDivNet, to link ecological mechanisms to reforestation initiatives. This innovative combination of basic scientific research with real-world interventions links trait-based community ecology, global change research and ecosystem ecology, pioneering a new generation of BEF research and represents a significant step towards implementing BEF theory for human needs.
Collapse
|
10
|
Ferlian O, Goldmann K, Eisenhauer N, Tarkka MT, Buscot F, Heintz-Buschart A. Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient. ISME COMMUNICATIONS 2021; 1:40. [PMID: 37938639 PMCID: PMC9723774 DOI: 10.1038/s43705-021-00042-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 04/26/2023]
Abstract
Plant diversity and plant-related ecosystem functions have been important in biodiversity-ecosystem functioning studies. However, biotic interactions with mycorrhizal fungi have been understudied although they are crucial for plant-resource acquisition. Here, we investigated the effects of tree species richness and tree mycorrhizal type on arbuscular (AMF) and ectomycorrhizal fungal (EMF) communities. We aimed to understand how dissimilarities in taxa composition and beta-diversity are related to target trees and neighbours of the same or different mycorrhizal type. We sampled a tree diversity experiment with saplings (~7 years old), where tree species richness (monocultures, 2-species, and 4-species mixtures) and mycorrhizal type were manipulated. AMF and EMF richness significantly increased with increasing tree species richness. AMF richness of mixture plots resembled that of the sum of the respective monocultures, whereas EMF richness of mixture plots was lower compared to the sum of the respective monocultures. Specialisation scores revealed significantly more specialised AMF than EMF suggesting that, in contrast to previous studies, AMF were more specialised, whereas EMF were not. We further found that AMF communities were little driven by the surrounding trees, whereas EMF communities were. Our study revealed drivers of mycorrhizal fungal communities and further highlights the distinct strategies of AMF and EMF.
Collapse
Affiliation(s)
- Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany.
| | - Kezia Goldmann
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| |
Collapse
|