1
|
Cuartero J, Querejeta JI, Prieto I, Frey B, Alguacil MM. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175006. [PMID: 39069184 DOI: 10.1016/j.scitotenv.2024.175006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this 9-year manipulative field experiment, we examined the impacts of experimental warming (2 °C, W), rainfall reduction (30 % decrease in annual rainfall, RR), and their combination (W + RR) on soil microbial communities and native vegetation in a semi-arid shrubland in south-eastern Spain. Warming had strong negative effects on plant performance across five coexisting native shrub species, consistently reducing their aboveground biomass growth and long-term survival. The impacts of rainfall reduction on plant growth and survival were species-specific and more variable. Warming strongly altered the soil microbial community alpha-diversity and changed the co-occurrence network structure. The relative abundance of symbiotic arbuscular mycorrhizal fungi (AMF) increased under W and W + RR, which could help buffer the direct negative impacts of climate change on their host plants nutrition and enhance their resistance to heat and drought stress. Indicator microbial taxa analyses evidenced that the marked sequence abundance of many plant pathogenic fungi, such as Phaeoacremonium, Cyberlindnera, Acremonium, Occultifur, Neodevriesia and Stagonosporopsis, increased significantly in the W and W + RR treatments. Moreover, the relative abundance of fungal animal pathogens and mycoparasites in soil also increased significantly under climate warming. Our findings indicate that warmer and drier conditions sustained over several years can alter the soil microbial community structure, composition, and network topology. The projected warmer and drier climate favours pathogenic fungi, which could offset the benefits of increased AMF abundance under warming and further aggravate the severe detrimental impacts of increased abiotic stress on native vegetation performance and ecosystem services in drylands.
Collapse
Affiliation(s)
- J Cuartero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - J I Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - I Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain; Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Alguacil
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
2
|
Silva DF, Mazza Rodrigues JL, Erikson C, Silva AMM, Huang L, Araujo VLVP, Matteoli FP, Mendes LW, Araujo ASF, Pereira APA, Melo VMM, Cardoso EJBN. Grazing exclusion-induced changes in soil fungal communities in a highly desertified Brazilian dryland. Microbiol Res 2024; 285:127763. [PMID: 38805979 DOI: 10.1016/j.micres.2024.127763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/09/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Soil desertification poses a critical ecological challenge in arid and semiarid climates worldwide, leading to decreased soil productivity due to the disruption of essential microbial community processes. Fungi, as one of the most important soil microbial communities, play a crucial role in enhancing nutrient and water uptake by plants through mycorrhizal associations. However, the impact of overgrazing-induced desertification on fungal community structure, particularly in the Caatinga biome of semiarid regions, remains unclear. In this study, we assessed the changes in both the total fungal community and the arbuscular mycorrhizal fungal community (AMF) across 1. Natural vegetation (native), 2. Grazing exclusion (20 years) (restored), and 3. affected by overgrazing-induced degradation (degraded) scenarios. Our assessment, conducted during both the dry and rainy seasons in Irauçuba, Ceará, utilized Internal Transcribed Spacer (ITS) gene sequencing via Illumina® platform. Our findings highlighted the significant roles of the AMF families Glomeraceae (∼71% of the total sequences) and Acaulosporaceae (∼14% of the total sequences) as potential key taxa in mitigating climate change within dryland areas. Moreover, we identified the orders Pleosporales (∼35% of the total sequences) and Capnodiales (∼21% of the total sequences) as the most abundant soil fungal communities in the Caatinga biome. The structure of the total fungal community differed when comparing native and restored areas to degraded areas. Total fungal communities from native and restored areas clustered together, suggesting that grazing exclusion has the potential to improve soil properties and recover fungal community structure amid global climate change challenges.
Collapse
Affiliation(s)
- Danilo F Silva
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil; Soil EcoGenomics Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Jorge L Mazza Rodrigues
- Soil EcoGenomics Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christian Erikson
- Soil EcoGenomics Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Antonio M M Silva
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Laibin Huang
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Victor L V P Araujo
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Filipe P Matteoli
- Laboratory of Microbial Bioinformatic, Faculty of Sciences, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, Piracicaba, São Paulo, Brazil
| | | | | | | | - Elke J B N Cardoso
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
4
|
Dyshko V, Hilszczańska D, Davydenko K, Matić S, Moser WK, Borowik P, Oszako T. An Overview of Mycorrhiza in Pines: Research, Species, and Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:506. [PMID: 38498468 PMCID: PMC10891885 DOI: 10.3390/plants13040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
In the latest literature, climate models show that the conditions for pines, spruces, larches, and birches will deteriorate significantly. In Poland, as well as in other European countries, there are already signs of the decline of these species. This review article deals with the symbiotic relationships between fungi and plants, which can hardly be overestimated, using the example of pine trees. These are the oldest known symbiotic relationships, which are of great benefit to both components and can help plants, in particular, survive periods of severe drought and the attack of pathogens on the roots. This article describes symbioses and their causal conditions, as well as the mycorrhizal components of pine trees and their properties; characterizes ectomycorrhizal fungi and their mushroom-forming properties; and provides examples of the cultivation of pure fungal cultures, with particular attention to the specificity of the mycorrhizal structure and its effects on the growth and development of Pinus species. Finally, the role of mycorrhiza in plant protection and pathogen control is described.
Collapse
Affiliation(s)
- Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine; (V.D.); (K.D.)
| | - Dorota Hilszczańska
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland;
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine; (V.D.); (K.D.)
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden
| | - Slavica Matić
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - W. Keith Moser
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, AZ 86001, USA;
| | - Piotr Borowik
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland;
| | - Tomasz Oszako
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland;
| |
Collapse
|
5
|
Tang B, Man J, Lehmann A, Rillig MC. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecol Lett 2023; 26:2087-2097. [PMID: 37794719 DOI: 10.1111/ele.14320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Land plants play a key role in global carbon cycling, but the potential role of arbuscular mycorrhizal fungi (AMF) in the responses of a wide range of plant species to global change factors (GCFs) remains limited. Based on 1100 paired observations from 181 plant species, we conducted a meta-analysis to test the role of AMF in plant responses to four GCFs: drought, warming, nitrogen (N) addition and elevated CO2 . We show that AMF significantly ameliorate the negative effects of drought on plant performance. The GCFs N addition and elevated CO2 significantly enhance the performance of AM plants but not of non-inoculated plants. AM plants show better performance than their non-inoculated counterparts under warming, although neither of them showed a significant response to this GCF. These results suggest that AMF benefit plants in response to GCFs. Our study highlights the importance of AMF in enhancing plant performance under ongoing global change.
Collapse
Affiliation(s)
- Bo Tang
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jing Man
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
6
|
Yang J, Woo JJ, Kim W, Oh SY, Hur JS. Exploring the influence of climatic variables on mycobiome composition and community diversity in lichens: insights from structural equation modeling analysis. ENVIRONMENTAL MICROBIOME 2023; 18:79. [PMID: 37891696 PMCID: PMC10612307 DOI: 10.1186/s40793-023-00535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Lichens are symbiotic organisms composed of a fungus and a photosynthetic partner, which are key ecological bioindicators due to their sensitivity to environmental changes. The endolichenic fungi (ELF) living inside lichen thalli, are an important but understudied component of playing crucial ecological roles such as nutrient cycling and protection against environmental stressors. Therefore ELF community investigation is vital for fostering sustainable ecosystems and leveraging their ecological benefits. Deciphering the intricate relationships between ELF and their lichen hosts, alongside the influence of environmental factors on these communities, presents a significant challenge in pinpointing the underlying drivers of community structure and diversity. RESULTS Our research demonstrated that locational factors were the main drivers of the ELF community structure, rather than host haplotype. Several climatic factors affected the diversity of the ELF community and contributed to the prevalence of different types of fungal residents within the ELF community. A decrease in isothermality was associated with a greater prevalence of pathotrophic and saprotrophic fungi within the ELF community, resulting in an overall increase in community diversity. By conducting a structural equation modeling analysis, we identified a robust link between climatic variables, fungal trophic mode abundance, and the species diversity of the ELF community. CONCLUSION This study's discoveries emphasize the significance of examining climate-related factors when investigating ELF's structure and function. The connection between fungi and climate is intricate and complex, and can be influenced by various other factors. Investigating the potential for ELF to adapt to changing climatic conditions, as well as the potential effects of changes in ELF communities on lichen function, would be valuable research areas. We anticipate that our research results will establish a basis for numerous future ELF research projects and have a significant impact on the field.
Collapse
Affiliation(s)
- Jiho Yang
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
| | - Jung-Jae Woo
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, 20 Changwondaehak-ro, Changwon, 51140, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea.
| |
Collapse
|
7
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Duarte AG, Maherali H. Plant response to arbuscular mycorrhizal fungi at CO2 and temperature levels of the past and present. Symbiosis 2023. [DOI: 10.1007/s13199-023-00906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Bonfante P. How to reconnect mycorrhizal research with natural environments. Environ Microbiol 2023; 25:59-63. [PMID: 36655714 DOI: 10.1111/1462-2920.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
10
|
Zhou L, Zhou X, He Y, Fu Y, Du Z, Lu M, Sun X, Li C, Lu C, Liu R, Zhou G, Bai SH, Thakur MP. Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association. Nat Commun 2022; 13:4914. [PMID: 35987902 PMCID: PMC9392739 DOI: 10.1038/s41467-022-32671-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Yet, our knowledge regarding warming effects on root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis encompassing more than 300 studies and including angiosperms and gymnosperms as well as different biomes (cropland, desert, forest, grassland, tundra, and wetland). The meta-analysis shows that average warming of 2.50 °C (median = 2 °C) significantly increases biomass allocation to roots with a mean increase of 8.1% in R/S. Two factors associate significantly with this response to warming: mean annual precipitation and the type of mycorrhizal fungi associated with plants. Warming-induced allocation to roots is greater in drier habitats when compared to shoots (+15.1% in R/S), while lower in wetter habitats (+4.9% in R/S). This R/S pattern is more frequent in plants associated with arbuscular mycorrhizal fungi, compared to ectomycorrhizal fungi. These results show that precipitation variability and mycorrhizal association can affect terrestrial carbon dynamics by influencing biomass allocation strategies in a warmer world, suggesting that climate change could influence belowground C sequestration. Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Here, the authors conduct a meta-analysis showing that warming effect on plant root:shoot is influenced by precipitation and the type of mycorrhizal fungi associated.
Collapse
|
11
|
Arbuscular mycorrhizal fungi community in soils under desertification and restoration in the Brazilian semiarid. Microbiol Res 2022; 264:127161. [DOI: 10.1016/j.micres.2022.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
|