1
|
Kilpeläinen J, Domisch T, Lehto T, Kivimäenpää M, Martz F, Piirainen S, Repo T. Separating the effects of air and soil temperature on silver birch. Part II. The relation of physiology and leaf anatomy to growth dynamics. TREE PHYSIOLOGY 2022; 42:2502-2520. [PMID: 35939341 PMCID: PMC9743009 DOI: 10.1093/treephys/tpac093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
The aboveground parts of boreal forest trees grow earlier in the growing season, the roots mostly later. The idea was to examine whether root growth followed soil temperature, or whether shoot growth also demanded most resources in the early growing season (soil temperature vs internal sink strengths for resources). The linkage between air and soil temperature was broken by switching the soil temperature. We aimed here to identify the direct effects of different soil temperature patterns on physiology, leaf anatomy and their interactions, and how they relate to the control of the growth dynamics of silver birch (Betula pendula Roth). Sixteen 2-year-old seedlings were grown in a controlled environment for two 14-week simulated growing seasons (GS1, GS2). An 8-week dormancy period interposed the GSs. In GS2, soil temperature treatments were applied: constant 10 °C (Cool), constant 18 °C (Warm), early growing season at 10 °C switched to 18 °C later (Early Cool Late Warm) and 18 °C followed by 10 °C (Early Warm Late Cool) were applied during GS2. The switch from cool to warm enhanced the water status, net photosynthesis, chlorophyll content index, effective yield of photosystem II (ΔF/Fm') and leaf expansion of the seedlings. Warm treatment increased the stomatal number per leaf. In contrast, soil cooling increased glandular trichomes. This investment in increasing the chemical defense potential may be associated with the decreased growth in cool soil. Non-structural carbohydrates were accumulated in leaves at a low soil temperature showing that growth was more hindered than net photosynthesis. Leaf anatomy differed between the first and second leaf flush of silver birch, which may promote tree fitness in the prevailing growing conditions. The interaction of birch structure and function changes with soil temperature, which can further reflect to ecosystem functioning.
Collapse
Affiliation(s)
- Jouni Kilpeläinen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Timo Domisch
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80100 Joensuu, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
- Natural Resources Institute Finland (Luke), Juntintie 154, 77600 Suonenjoki, Finland
| | - Françoise Martz
- Natural Resources Institute Finland (Luke), Ounasjoentie 6, 96200 Rovaniemi, Finland
| | - Sirpa Piirainen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Tapani Repo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| |
Collapse
|
2
|
Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine. REMOTE SENSING 2021. [DOI: 10.3390/rs13152934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many studies have attempted to predict soil organic matter (SOM), whereas mapping high-precision and high-resolution SOM maps remains a challenge due to the difficulty of selecting appropriate satellite data sources and prediction algorithms. This study aimed to investigate the influence of different remotely sensed images and machine learning algorithms on SOM prediction. We constructed two comparative experiments, i.e., full-band and common-band variable datasets of Sentinel-2A and MODIS images using Google Earth Engine (GEE). The predictive performances of random forest (RF), artificial neural network (ANN), and support vector regression (SVR) algorithms were evaluated, and the SOM map was generated for the Songnen Plain. Results showed that the model based on the full-band Sentinel-2A dataset achieved the best performance. The application of Sentinel-2A data resulted in mean relative improvements (RIs) of 7.67% and 5.87%, respectively. The RF achieved a lower root mean squared error (RMSE = 0.68%) and a higher coefficient of determination (R2 = 0.67) in all of the predicted scenarios than ANN and SVR. The resultant SOM map accurately characterized the SOM spatial distribution. Therefore, the Sentinel-2A data have obvious advantages over MODIS due to their higher spectral and spatial resolutions, and the combination of the RF algorithm and GEE is an effective approach to SOM mapping.
Collapse
|
3
|
Harrison JL, Sanders-DeMott R, Reinmann AB, Sorensen PO, Phillips NG, Templer PH. Growing-season warming and winter soil freeze/thaw cycles increase transpiration in a northern hardwood forest. Ecology 2020; 101:e03173. [PMID: 32852804 DOI: 10.1002/ecy.3173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
Climate models project higher growing-season temperatures and a decline in the depth and duration of winter snowpack throughout many north temperate ecosystems over the next century. A smaller snowpack is projected to induce more frequent soil freeze/thaw cycles in winter in northern hardwood forests of the northeastern United States. We measured the combined effects of warmer growing-season soil temperatures and increased winter freeze/thaw cycles on rates of leaf-level photosynthesis and transpiration (sap flow) of red maple (Acer rubrum) trees in a northern hardwood forest at the Climate Change Across Seasons Experiment at Hubbard Brook Experimental Forest in New Hampshire. Soil temperatures were warmed 5°C above ambient temperatures during the growing season and soil freeze/thaw cycles were induced in winter to mimic the projected changes in soil temperature over the next century. Relative to reference plots, growing-season soil warming increased rates of leaf-level photosynthesis by up to 85.32 ± 4.33%, but these gains were completely offset by soil freeze/thaw cycles in winter, suggesting that increased freeze/thaw cycles in winter over the next 100 yr will reduce the effect of warming on leaf-level carbon gains. Soil warming in the growing season increased rates of transpiration per kilopascal of vapor pressure deficit (VPD) by up to 727.39 ± 0.28%, even when trees were exposed to increased frequency of soil freeze/thaw cycles in the previous winter, which could influence regional hydrology in the future. Using climate projections downscaled from the Coupled Model Intercomparison Project, we project increased rates of whole-season transpiration in these forests over the next century by 42-61%. We also project 52-77 additional days when daily air temperatures will be above the long-term average daily maximum during the growing season at Hubbard Brook. Together, these results show that projected changes in climate across both the growing season and winter are likely to cause greater rates of water uptake and have no effect on rates of leaf-level carbon uptake by trees, with potential ecosystem consequences for hydrology and carbon cycling in northern hardwood forests.
Collapse
Affiliation(s)
- Jamie L Harrison
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215, USA
| | - Rebecca Sanders-DeMott
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215, USA
| | - Andrew B Reinmann
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215, USA
| | - Patrick O Sorensen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215, USA
| | - Nathan G Phillips
- Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Pamela H Templer
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215, USA
| |
Collapse
|
4
|
Harrison JL, Reinmann AB, Maloney AS, Phillips N, Juice SM, Webster AJ, Templer PH. Transpiration of Dominant Tree Species Varies in Response to Projected Changes in Climate: Implications for Composition and Water Balance of Temperate Forest Ecosystems. Ecosystems 2020. [DOI: 10.1007/s10021-020-00490-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Marchin RM, Broadhead AA, Bostic LE, Dunn RR, Hoffmann WA. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. PLANT, CELL & ENVIRONMENT 2016; 39:2221-2234. [PMID: 27392307 DOI: 10.1111/pce.12790] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short-term stomatal responses to VPD may not be representative of long-term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.
Collapse
Affiliation(s)
- Renée M Marchin
- Centre for Carbon, Water and Food, University of Sydney, Camden, New South Wales, 2570, Australia.
- Department of Plant Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | - Alice A Broadhead
- Department of Plant Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Laura E Bostic
- Department of Plant Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Robert R Dunn
- Department of Applied Ecology and Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7617, USA
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - William A Hoffmann
- Department of Plant Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| |
Collapse
|