1
|
Olson AM, Prentice C, Monteith ZL, VanMaanen D, Juanes F, Hessing-Lewis M. Grazing preference and isotopic contributions of kelp to Zostera marina mesograzers. FRONTIERS IN PLANT SCIENCE 2022; 13:991744. [PMID: 36311148 PMCID: PMC9608150 DOI: 10.3389/fpls.2022.991744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In seagrass food webs, small invertebrate mesograzers often exert top-down control on algal epiphytes growing on seagrass blades, which in turn releases the seagrass from competition for light and nutrients. Yet, nearshore habitat boundaries are permeable, and allochthonous subsidies can provide alternative food sources to in-situ production in seagrass meadows, which may in turn alter mesograzer-epiphyte interactions. We examined the contribution of allochthonous kelp (Nereocystis luetkeana), autochthonous epiphytic macroalgal (Smithora naiadum), Ulva lactuca, and seagrass production to mesograzer diets in a subtidal Zostera marina (eelgrass) meadow. In both choice feeding experiments and isotopic analysis, mesograzer diets revealed a preference for allochthonous N. luetkeana over Z. marina, S. naiadum, and U. lactuca. Notably, Idotea resecata showed an ~20x greater consumption rate for N. luetkeana in feeding experiments over other macrophytes. In the meadow, we found a positive relationship between epiphytic S. naiadum and gammarid amphipod biomass suggesting weak top-down control on the S. naiadum biomass. Epiphyte biomass may be driven by bottom-up factors such as environmental conditions, or the availability and preference of allochthonous kelp, though further work is needed to disentangle these interactions. Additionally, we found that gammarid and caprellid amphipod biomass were positively influenced by adjacency to kelp at seagrass meadow edges. Our findings suggest that N. luetkeana kelp subsidies are important to the diets of mesograzers in Z. marina meadows. Spatial planning and management of marine areas should consider trophic linkages between kelp and eelgrass habitats as a critical seascape feature if the goal is to conserve nearshore food web structure and function.
Collapse
Affiliation(s)
- Angeleen M. Olson
- Nearshore Ecology, Hakai Institute, Heriot Bay, BC, Canada
- Fisheries Ecology and Conservation Lab, Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | | | | - Francis Juanes
- Fisheries Ecology and Conservation Lab, Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Margot Hessing-Lewis
- Nearshore Ecology, Hakai Institute, Heriot Bay, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Morton DN, Lafferty KD. Parasites in kelp‐forest food webs increase food‐chain length, complexity, and specialization, but reduce connectance. ECOL MONOGR 2022; 92:e1506. [PMID: 35865510 PMCID: PMC9286845 DOI: 10.1002/ecm.1506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Dana N. Morton
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
- Marine Science Institute University of California Santa Barbara California USA
| | - Kevin D. Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute University of California Santa Barbara California USA
| |
Collapse
|
3
|
Murphy EJ, Johnston NM, Hofmann EE, Phillips RA, Jackson JA, Constable AJ, Henley SF, Melbourne-Thomas J, Trebilco R, Cavanagh RD, Tarling GA, Saunders RA, Barnes DKA, Costa DP, Corney SP, Fraser CI, Höfer J, Hughes KA, Sands CJ, Thorpe SE, Trathan PN, Xavier JC. Global Connectivity of Southern Ocean Ecosystems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
Collapse
|
4
|
Solan M, Bennett EM, Mumby PJ, Leyland J, Godbold JA. Benthic-based contributions to climate change mitigation and adaptation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190107. [PMID: 31983332 DOI: 10.1098/rstb.2019.0107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Innovative solutions to improve the condition and resilience of ecosystems are needed to address societal challenges and pave the way towards a climate-resilient future. Nature-based solutions offer the potential to protect, sustainably manage and restore natural or modified ecosystems while providing multiple other benefits for health, the economy, society and the environment. However, the implementation of nature-based solutions stems from a discourse that is almost exclusively derived from a terrestrial and urban context and assumes that risk reduction is resolved locally. We argue that this position ignores the importance of complex ecological interactions across a range of temporal and spatial scales and misses the substantive contribution from marine ecosystems, which are notably absent from most climate mitigation and adaptation strategies that extend beyond coastal disaster management. Here, we consider the potential of sediment-dwelling fauna and flora to inform and support nature-based solutions, and how the ecology of benthic environments can enhance adaptation plans. We illustrate our thesis with examples of practice that are generating, or have the potential to deliver, transformative change and discuss where further innovation might be applied. Finally, we take a reflective look at the realized and potential capacity of benthic-based solutions to contribute to adaptation plans and offer our perspectives on the suitability and shortcomings of past achievements and the prospective rewards from sensible prioritization of future research. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
Affiliation(s)
- Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Elena M Bennett
- Department of Natural Resource Sciences and McGill School of Environment, McGill University-Macdonald Campus, 21,111 Lakeshore Road, St Anne-de-Bellevue, Quebec, Canada H9X 3 V9
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Julian Leyland
- School of Geography and Environmental Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
5
|
Boero F, De Leo F, Fraschetti S, Ingrosso G. The Cells of Ecosystem Functioning: Towards a holistic vision of marine space. ADVANCES IN MARINE BIOLOGY 2019; 82:129-153. [PMID: 31229149 DOI: 10.1016/bs.amb.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Marine space is three dimensional, the turnover of life forms is rapid, defining a fourth dimension: time. The definition of ecologically significant spatial units calls for the spatio-temporal framing of significant ecological connections in terms of extra-specific (biogeochemical cycles), intra-specific (life cycles), and inter-specific (food webs) fluxes. The oceanic volume can be split in sub-systems that can be further divided into smaller sub-units where ecosystem processes are highly integrated. The volumes where oceanographic and ecological processes take place are splittable into hot spots of ecosystem functioning, e.g., upwelling currents triggering plankton blooms, whose products are then distributed by horizontal currents, so defining Cells of Ecosystem Functioning (CEFs), whose identification requires the collaboration of physical and chemical oceanography, biogeochemistry, marine geology, plankton, nekton and benthos ecology and biology, food web dynamics, marine biogeography. CEFs are fuzzy objects that reflect the instability of marine systems.
Collapse
Affiliation(s)
- Ferdinando Boero
- Department of Biology, University of Naples Federico II, Naples, Italy; Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Impatti Antropici e sostenibilità in Ambiente Marino (CNR-IAS), Genoa, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | - Francesco De Leo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Bologna, Italy
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Gianmarco Ingrosso
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|