1
|
Tagliaferro M, Albariño R, Giorgi A. Assessment of leaf litter decomposition for biomonitoring in urban watercourses under contrasting thermal conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:549. [PMID: 40229488 DOI: 10.1007/s10661-025-14004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Urbanization affects the structure and function of aquatic ecosystems, and its effect might depend on seasonal conditions. We aim to evaluate the applicability of in situ leaf litter decomposition experiments to assess the ecological integrity of urbanized streams in cool (autumn-winter) and warm (spring-summer) periods. Along these two periods, three reaches were selected in urban and three in reference segments in Pampean streams. In each reach at both periods, 25 bags of 450 μm (FM) and 25 bags of 20 mm (CM) mesh size were placed containing dry leaves of Populus nigra, and five bags of each type were periodically collected up to day 104. Decomposition rates were determined from mass loss by fitting to a negative exponential model against time (kd) and cumulate degree days (kdd). In both periods, kdd were lower in urban than in reference reaches (pcondition = 0.020, df = 1, 137), but a larger difference occurred in the warm period. Even removing the effect of temperature, higher kdd were observed in warm than in cool waters (pperiod = 0.0004, df = 1, 137 for FM and pperiod = 0.002, df = 1, 129 for CM). During the warm period experiment, the kdd reduction due to urbanization was 2.5 times higher than during the cool period. Invertebrates colonizing litter bags differed between stream conditions and between seasons. Tolerant insect larvae were more abundant in the warm period; Gastropods, nematodes, and crabs during the cool period. In conclusion, our experimental methodology was effective to assess the effects of urbanization on stream ecological integrity. As we predicted, season stood out as an important factor in the assessment.
Collapse
Affiliation(s)
- Marina Tagliaferro
- Centro Austral de Investigaciones Científicas (CADIC; CONICET), B. Houssay 200, 9410, Ushuaia, Tierra del Fuego, Argentina.
- Instituto de Ecología y Desarrollo Sustentable (INEDES; UNLu-CONICET), Ruta 5 y 7, 6700, Luján, Buenos Aires, Argentina.
| | - Ricardo Albariño
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA; UNCo-CONICET), San Carlos de Bariloche, 8400, Rio Negro, Argentina
| | - Adonis Giorgi
- Instituto de Ecología y Desarrollo Sustentable (INEDES; UNLu-CONICET), Ruta 5 y 7, 6700, Luján, Buenos Aires, Argentina
- PEPHON (Departamento de Ciencias Básicas-Universidad Nacional de Luján), Luján, 6700, Buenos Aires, Argentina
| |
Collapse
|
2
|
Benavides-Gordillo S, González AL, Kersch-Becker MF, Moretti MS, Moi DA, Aidar MPM, Romero GQ. Warming and shifts in litter quality drive multiple responses in freshwater detritivore communities. Sci Rep 2024; 14:11137. [PMID: 38750097 PMCID: PMC11096378 DOI: 10.1038/s41598-024-61624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Aquatic detritivores are highly sensitive to changes in temperature and leaf litter quality caused by increases in atmospheric CO2. While impacts on detritivores are evident at the organismal and population level, the mechanisms shaping ecological communities remain unclear. Here, we conducted field and laboratory experiments to examine the interactive effects of changes in leaf litter quality, due to increasing atmospheric CO2, and warming, on detritivore survival (at both organismal and community levels) and detritus consumption rates. Detritivore community consisted of the collector-gathering Polypedilum (Chironomidae), the scraper and facultative filtering-collector Atalophlebiinae (Leptophlebiidae), and Calamoceratidae (Trichoptera), a typical shredder. Our findings reveal intricate responses across taxonomic levels. At the organismal level, poor-quality leaf litter decreased survivorship of Polypedilum and Atalophlebiinae. We observed taxon-specific responses to warming, with varying effects on growth and consumption rates. Notably, species interactions (competition, facilitation) might have mediated detritivore responses to climate stressors, influencing community dynamics. While poor-quality leaf litter and warming independently affected detritivore larvae abundance of Atalophebiinae and Calamoceratidae, their combined effects altered detritus consumption and emergence of adults of Atalophlebiinae. Furthermore, warming influenced species abundances differently, likely exacerbating intraspecific competition in some taxa while accelerating development in others. Our study underscores the importance of considering complex ecological interactions in predicting the impact of climate change on freshwater ecosystem functioning. Understanding these emergent properties contributes to a better understanding of how detritivore communities may respond to future environmental conditions, providing valuable insights for ecosystem management and conservation efforts.
Collapse
Affiliation(s)
- Sandra Benavides-Gordillo
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, 13083-862, Brazil.
| | - Angélica L González
- Biology Department and Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Mônica F Kersch-Becker
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, Universidade Vila Velha, Vila Velha, Espírito Santo, 29102920, Brazil
| | - Dieison A Moi
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, 13083-862, Brazil
| | - Marcos P M Aidar
- Plant Physiology and Biochemistry of Botany, Institute of Botany, CP 3005, São Paulo, 01061-970, Brazil
| | - Gustavo Q Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
3
|
Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev Camb Philos Soc 2023; 98:191-221. [PMID: 36173002 PMCID: PMC10088029 DOI: 10.1111/brv.12903] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Water temperature is one of the main abiotic factors affecting the structure and functioning of aquatic ecosystems and its alteration can have important effects on biological communities. Macroinvertebrates are excellent bio-indicators and have been used for decades to assess the status of aquatic ecosystems as a result of environmental stresses; however, their responses to temperature are poorly documented and have not been systematically evaluated. The aims of this review are: (i) to collate and summarize responses of freshwater macroinvertebrates to different temperature conditions, comparing the results of experimental and theoretical studies; (ii) to understand how the focus of research on the effects of temperature on macroinvertebrates has changed during the last 51 years; and (iii) to identify research gaps regarding temperature responses, ecosystem types, organism groups, spatiotemporal scales, and geographical regions to suggest possible research directions. We performed a comparative assessment of 223 publications that specifically consider freshwater macroinvertebrates and address the effects of temperature. Short-term studies performed in the laboratory and focusing on insects exposed to a range of temperatures dominated. Field studies were carried out mainly in Europe, at catchment scale and almost exclusively in rivers; they mainly investigated responses to water thermal regime at the community scale. The most frequent biological responses tested were growth rate, fecundity and the time and length of emergence, whereas ecological responses mainly involved composition, richness, and distribution. Thermal research on freshwater macroinvertebrates has undergone a shift since the 2000s when studies involving extended spatiotemporal scales and investigating the effects of global warming first appeared. In addition, recent studies have considered the effects of temperature at genetic and evolutionary scales. Our review revealed that the effects of temperature on macroinvertebrates are manifold with implications at different levels, from genes to communities. However, community-level physiological, phenological and fitness responses tested on individuals or populations should be studied in more detail given their macroecological effects are likely to be enhanced by climate warming. In addition, most field studies at regional scales have used air temperature as a proxy for water temperature; obtaining accurate water temperature data in future studies will be important to allow proper consideration of the spatial thermal heterogeneity of water bodies and any effects on macroinvertebrate distribution patterns. Finally, we found an uneven number of studies across different ecosystems and geographic areas, with lentic bodies and regions outside the West underrepresented. It will also be crucial to include macroinvertebrates of high-altitude and tropical areas in future work because these groups are most vulnerable to climate warming for multiple reasons. Further studies on temperature-macroinvertebrate relationships are needed to fill the current gaps and facilitate appropriate conservation strategies for freshwater ecosystems in an anthropogenic-driven era.
Collapse
Affiliation(s)
- Luca Bonacina
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federica Fasano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Valeria Mezzanotte
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
4
|
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J Anim Ecol 2022; 91:1975-1987. [PMID: 35471565 DOI: 10.1111/1365-2656.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
1. The balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions. 2. Here, we combined laboratory experiments and modeling to investigate the energetic balance of a stream detritivore (Gammarus fossarum) along a temperature gradient and the consequences for detritivore populations and organic matter decomposition. 3. We experimentally measured the energetic losses (metabolic rate) and supplies (ingestion rate) of Gammarus and we modeled the impact of rising temperatures and changes in Gammarus body size induced by warming on population dynamics and benthic organic matter dynamics in freshwater systems. 4. Our experimental results indicated an energetic mismatch in a Gammarus population where losses via metabolic rate increase faster than supplies via food ingestion with warming, which translated in a decrease of energetic efficiency with temperature rising from 5 to 20 °C. Moreover, our consumer-resource model predicts a decrease in the biomass of Gammarus population with warming, associated with lower maximum abundances and steeper abundance decreases after biomass annual peaks. These changes resulted in a decrease of leaf litter decomposition rate and thus longer persistence of leaf litter standing stock over years in the simulations. In addition, Gammarus body size reductions led to shorter persistence for both leaf litter and Gammarus biomasses at low temperature and the opposite trend at high temperature, revealing that body size reduction was weakening the effect of temperature on resource and consumer persistence. 5. Our model contributes to identifying the mechanisms that explain how thermal effects at the level of individuals may cascade through trophic interactions and influence important ecosystem processes. Considering the balance of physiological processes is crucial to improve our ability to predict the impact of climate change on carbon stocks and ecosystem functions.
Collapse
Affiliation(s)
- Tom Réveillon
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Thibaut Rota
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Éric Chauvet
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Antoine Lecerf
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Arnaud Sentis
- INRAE, Aix Marseille Université, UMR RECOVER, 3275 route Cézanne, FR-13182, Aix-en-Provence, France
| |
Collapse
|
5
|
Wu X, Niklas KJ, Sun S. Climate change affects detritus decomposition rates by modifying arthropod performance and species interactions. CURRENT OPINION IN INSECT SCIENCE 2021; 47:62-66. [PMID: 34033945 DOI: 10.1016/j.cois.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Climate change can indirectly affect ecosystem functions including detritus decomposition by modifying physiological traits, feeding behavior, and species interactions (including consumptive and non-consumptive top-down cascading effects) of decomposing arthropods. It is known that the effect of climate change on decomposition can be negative, neutral, or positive, and that it is highly context-dependent, depending on detritus quality, species identity, species interactions, and ecosystem type. Thus, ongoing climate change will undoubtedly influence the effects of arthropods on decomposition rates. More comprehensive studies are urgently needed to elucidate the effect of climate change on arthropod-detritus decomposers, particularly in the context of the decomposition of animal droppings and carrion.
Collapse
Affiliation(s)
- Xinwei Wu
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Karl J Niklas
- Department of Plant Biology, Cornell University, Ithaca, NY 14850, USA
| | - Shucun Sun
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Hines J, Eisenhauer N. Species identity and the functioning of ecosystems: the role of detritivore traits and trophic interactions in connecting of multiple ecosystem responses. OIKOS 2021. [DOI: 10.1111/oik.08333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Leipzig Univ. Leipzig Germany
- Smithsonian Environmental Research Center Edgewater MD USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Leipzig Univ. Leipzig Germany
| |
Collapse
|
7
|
Little CJ, Fronhofer EA, Altermatt F. Nonlinear Effects of Intraspecific Competition Alter Landscape-Wide Scaling Up of Ecosystem Function. Am Nat 2020; 195:432-444. [DOI: 10.1086/707018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Tabi A, Petchey OL, Pennekamp F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol Lett 2019; 22:1061-1071. [PMID: 30985066 DOI: 10.1111/ele.13262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023]
Abstract
Warming and nutrient enrichment are major environmental factors shaping ecological dynamics. However, cross-scale investigation of their combined effects by linking theory and experiments is lacking. We collected data from aquatic microbial ecosystems investigating the interactive effects of warming (constant and rising temperatures) and enrichment across levels of organisation and contrasted them with community models based on metabolic theory. We found high agreement between our observations and theoretical predictions: we observed in many cases the predicted antagonistic effects of high temperature and high enrichment across levels of organisation. Temporal stability of total biomass decreased with warming but did not differ across enrichment levels. Constant and rising temperature treatments with identical mean temperature did not show qualitative differences. Overall, we conclude that model and empirical results are in broad agreement due to robustness of the effects of temperature and enrichment, that the mitigating effects of temperature on effects of enrichment may be common, and that models based on metabolic theory provide qualitatively robust predictions of the combined ecological effects of enrichment and temperature.
Collapse
Affiliation(s)
- Andrea Tabi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
9
|
Grinath JB. Short-term, low-level nitrogen deposition dampens a trophic cascade between bears and plants. Ecol Evol 2018; 8:11213-11223. [PMID: 30519438 PMCID: PMC6262928 DOI: 10.1002/ece3.4593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 11/11/2022] Open
Abstract
Human activities have substantially increased atmospheric nitrogen (N) deposition in ecosystems worldwide, often leading to higher plant quality for herbivores and greater herbivory. Predators frequently suppress herbivores and indirectly benefit plants via "trophic cascades", and the strength of these interactions can also depend on N availability. However, the evidence for N deposition effects on cascades primarily comes from studies of high-level N deposition. Most terrestrial ecosystems currently receive elevated, but low-level N deposition, and it is unclear whether this subtle N enrichment has any effect on cascades. Here, I asked whether low-level N deposition alters a trophic cascade from black bears to plants in Colorado. In this ecological network, bears indirectly benefit plants by consuming ants and suppressing positive effects of ants on herbivores. Using a three year N enrichment experiment, I assessed changes in this cascade by measuring plant and arthropod responses to simulated N deposition, bear damage to ant nests, and the presence of mutualist herbivores and ants. I found that low-level N enrichment and bears had interacting effects on plant reproduction. In ambient N conditions, bears indirectly increased plant reproduction by causing ant nests to become inactive and suppressing positive ant effects on herbivores that were detrimental for plants. Yet, bear-induced ant nest inactivity had no effect on plant reproduction in N-enriched conditions. When N was added, ants had greater positive effects on herbivores, but herbivores had weak effects on plants, potentially because plants were more resistant to herbivores. Ultimately, the results indicate that N enrichment strengthened resource control of the community and weakened plant-herbivore interactions and the cascade from bears to plants. This study suggests that common rates of low-level N deposition are changing the strength of trophic cascades and may have already altered resource versus consumer control of ecological community structure in many ecosystems.
Collapse
Affiliation(s)
- Joshua B. Grinath
- Department of BiologyMiddle Tennessee State UniversityMurfreesboroTennessee
- Rocky Mountain Biological LaboratoryCrested ButteColorado
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida
| |
Collapse
|
10
|
The Necessity of Multitrophic Approaches in Community Ecology. Trends Ecol Evol 2018; 33:754-764. [DOI: 10.1016/j.tree.2018.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022]
|
11
|
Griffith KA, Grinath JB. Interactive effects of precipitation and nitrogen enrichment on multi-trophic dynamics in plant-arthropod communities. PLoS One 2018; 13:e0201219. [PMID: 30070991 PMCID: PMC6072000 DOI: 10.1371/journal.pone.0201219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 07/11/2018] [Indexed: 11/27/2022] Open
Abstract
Patterns of precipitation and nitrogen (N) deposition are changing in ecosystems worldwide. Simultaneous increases in precipitation and N deposition can relieve co-limiting soil resource conditions for plants and result in synergistic plant responses, which may affect animals and plant responses to higher trophic levels. However, the potential for synergistic effects of precipitation and N deposition on animals and plant responses to herbivores and predators (via trophic cascades) is unclear. We investigated the influence of precipitation and N enrichment on ecological dynamics across three trophic levels, hypothesizing that herbivores and plants would exhibit synergistic responses to the combined influence of precipitation, N amendments and predators. To test this, we conducted a field experiment with arthropods on two model plant species, Nicotiana tabacum and Nicotiana rustica. First, we characterized the plant-arthropod assemblages, finding that N. tabacum hosted greater abundances of caterpillars, while N. rustica hosted more sap-sucking herbivores. Next, we evaluated the effects of rainwater, soil N, and predatory spider manipulations for both plant-arthropod assemblages. On N. tabacum, water and N availability had an interactive effect on caterpillars, where caterpillars were most abundant with rainwater additions and least abundant when both rainwater and N were added. For N. rustica, foliar chemistry had a synergistic response to all three experimental factors. Compared to spider-absent conditions, leaf N concentration increased and C/N decreased when spiders were present, but this response only occurred under high water and N availability. Spiders indirectly altered plant chemistry via a facilitative effect of spiders on sap-sucking herbivores, potentially due to intra-guild predation, and a positive effect of sap-suckers on foliar N concentration. Our study suggests that predictions of the ecological impacts of altered precipitation and N deposition may need to account for the effects of resource co-limitation on dynamics across trophic levels.
Collapse
Affiliation(s)
- Kaitlin A. Griffith
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Joshua B. Grinath
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
12
|
Santschi F, Gounand I, Harvey E, Altermatt F. Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12980] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabienne Santschi
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zürich Switzerland
| | - Isabelle Gounand
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zürich Switzerland
| | - Eric Harvey
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zürich Switzerland
| | - Florian Altermatt
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zürich Switzerland
| |
Collapse
|