1
|
Li Y, Wang X, Chen X, Lu J, Jin Z, Li J. Functions of arbuscular mycorrhizal fungi in regulating endangered species Heptacodium miconioides growth and drought stress tolerance. PLANT CELL REPORTS 2023; 42:1967-1986. [PMID: 37812279 DOI: 10.1007/s00299-023-03076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE The important values of AMF in regulating endangered species Heptacodium miconioides growth and drought stress tolerance. The wild endangered tree Heptacodium miconioides is distributed sporadically in mountainous areas and often subjected to various abiotic stresses, such as drought. The mutualistic association between plants and arbuscular mycorrhizal fungi (AMF) is known to have a significant impact on plant growth and their ability to withstand drought conditions. However, the role of AMF in H. miconioides seedlings in regulating drought tolerance remains unknown. This study investigated the ability of AMF symbionts to mitigate drought and their underlying mechanism on H. miconioides leaves. The results showed that drought stress dramatically decreased the leaf biomass and damaged the chloroplast structure in seedlings. Conversely, inoculation with AMF noticeably alleviated the deleterious effects of drought stress by restoring leaf morphology and improving the photosynthetic capacity. Moreover, plants inoculated with AMF enhanced the proportion of palisade tissue to spongy tissue in the leaves and the size of starch grains and number of plastoglobules in the chloroplast ultrastructure. A transcriptomic analysis showed that 2157 genes (691 upregulated and 1466 downregulated) were differentially expressed between drought stress with AMF inoculation and drought treatment. Further examination demonstrated that the genes exhibiting differential expression were predominantly associated with the advancement of photosynthesis, sucrose and starch metabolism, nitrogen metabolism, chloroplast development, and phenylpropanoid biosynthetic pathways, and the key potential genes were screened. These findings conclusively provided the physiological and molecular mechanisms that underlie improved drought resistance in H. miconioides in the presence of AMF, which could contribute to improving the survival and species conservation of H. miconioides.
Collapse
Affiliation(s)
- Yueling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Xiaoyan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Xingyu Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Jieyang Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
2
|
Liu Y, Zhao X, Liu W, Yang X, Feng B, Zhang C, Yu Y, Cao Q, Sun S, Degen AA, Shang Z, Dong Q. Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow. FRONTIERS IN PLANT SCIENCE 2023; 14:1117372. [PMID: 36938013 PMCID: PMC10017739 DOI: 10.3389/fpls.2023.1117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Three different herbivore grazing assemblages, namely, yak grazing (YG), Tibetan sheep grazing (SG) and yak and Tibetan sheep co-grazing (MG), are practiced in alpine meadows on the Qinghai-Tibetan Plateau (QTP), but the effects of the different herbivore assemblages on soil microbes are relatively unknown. The microbial community plays an important role in the functional stability of alpine grassland ecosystems. Therefore, it is important to understand how the microbial community structure of grassland ecosystems changes under different herbivore grazing assemblages to ensure their sustainable development. To fill this gap, a field study was carried out to investigate the effects of YG, SG, and MG on plant communities, soil physico-chemical properties and microbial communities under moderate grazing intensity in alpine meadows. Grazing increased the β-diversity of the bacteria community and decreased the β-diversity of the fungal community. The herbivore assemblage affected the microbial community diversity, but not the plant community diversity. Total phosphorus, soil bulk density, root biomass, and plant α-diversity were correlated with both the bacterial and fungal community composition, available phosphorus and soil moisture were correlated only with the bacterial community composition, while available potassium and above-ground net primary production (ANPP) were correlated only with the fungal community composition. Soil available nitrogen, soil available phosphorus and soil bulk density were highest in SG, while ANPP was highest in MG. It was concluded that MG can improve ANPP and stabilize the soil microbial community, suggesting that MG is an effective method for sustainable use and conservation of alpine meadows on the QTP.
Collapse
Affiliation(s)
- Yuzhen Liu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Xinquan Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Wenting Liu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Xiaoxia Yang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Bin Feng
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Chunping Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Yang Yu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Quan Cao
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
| | - Shengnan Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - A. Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Quanmin Dong
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
A quantitative synthesis of soil microbial effects on plant species coexistence. Proc Natl Acad Sci U S A 2022; 119:e2122088119. [PMID: 35605114 DOI: 10.1073/pnas.2122088119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SignificanceUnderstanding the processes that maintain plant diversity is a key goal in ecology. Many previous studies have shown that soil microbes can generate stabilizing or destabilizing feedback loops that drive either plant species coexistence or monodominance. However, theory shows that microbial controls over plant coexistence also arise through microbially mediated competitive imbalances, which have been largely neglected. Using data from 50 studies, we found that soil microbes affect plant dynamics primarily by generating competitive fitness differences rather than stabilizing or destabilizing feedbacks. Consequently, in the absence of other competitive asymmetries among plants, soil microbes are predicted to drive species exclusion more than coexistence. These results underscore the need for measuring competitive fitness differences when evaluating microbial controls over plant coexistence.
Collapse
|
5
|
Powell JR, Rillig MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. THE NEW PHYTOLOGIST 2018; 220:1059-1075. [PMID: 29603232 DOI: 10.1111/nph.15119] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 1059 I. Introduction: pathways of influence and pervasiveness of effects 1060 II. AM fungal richness effects on ecosystem functions 1062 III. Other dimensions of biodiversity 1062 IV. Back to basics - primary axes of niche differentiation by AM fungi 1066 V. Functional diversity of AM fungi - a role for biological stoichiometry? 1067 VI. Past, novel and future ecosystems 1068 VII. Opportunities and the way forward 1071 Acknowledgements 1072 References 1072 SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research.
Collapse
Affiliation(s)
- Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, D-14195, Berlin, Germany
| |
Collapse
|