1
|
Calhoun KL, Connor T, Gaynor KM, Van Scoyoc A, McInturff A, Kreling SES, Brashares JS. Movement behavior in a dominant ungulate underlies successful adjustment to a rapidly changing landscape following megafire. MOVEMENT ECOLOGY 2024; 12:53. [PMID: 39085926 PMCID: PMC11293098 DOI: 10.1186/s40462-024-00488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Movement plays a key role in allowing animal species to adapt to sudden environmental shifts. Anthropogenic climate and land use change have accelerated the frequency of some of these extreme disturbances, including megafire. These megafires dramatically alter ecosystems and challenge the capacity of several species to adjust to a rapidly changing landscape. Ungulates and their movement behaviors play a central role in the ecosystem functions of fire-prone ecosystems around the world. Previous work has shown behavioral plasticity is an important mechanism underlying whether large ungulates are able to adjust to recent changes in their environments effectively. Ungulates may respond to the immediate effects of megafire by adjusting their movement and behavior, but how these responses persist or change over time following disturbance is poorly understood. METHODS We examined how an ecologically dominant ungulate with strong site fidelity, Columbian black-tailed deer (Odocoileus hemionus columbianus), adjusted its movement and behavior in response to an altered landscape following a megafire. To do so, we collected GPS data from 21 individual female deer over the course of a year to compare changes in home range size over time and used resource selection functions (RSFs) and hidden Markov movement models (HMMs) to assess changes in behavior and habitat selection. RESULTS We found compelling evidence of adaptive capacity across individual deer in response to megafire. Deer avoided exposed and severely burned areas that lack forage and could be riskier for predation immediately following megafire, but they later altered these behaviors to select areas that burned at higher severities, potentially to take advantage of enhanced forage. CONCLUSIONS These results suggest that despite their high site fidelity, deer can navigate altered landscapes to track rapid shifts in encounter risk with predators and resource availability. This successful adjustment of movement and behavior following extreme disturbance could help facilitate resilience at broader ecological scales.
Collapse
Affiliation(s)
- Kendall L Calhoun
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA.
- , 210 Wellman Hall, Berkeley, CA, 94720, USA.
| | - Thomas Connor
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| | - Kaitlyn M Gaynor
- Departments of Zoology & Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Amy Van Scoyoc
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| | - Alex McInturff
- Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences, U.S. Geological Survey, University of Washington, Seattle, WA, USA
| | - Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, University of Washington, Anderson Hall, Box 352100, Seattle, WA, 98195, USA
| | - Justin S Brashares
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Krull M. Mercury Exposure and Habitat Fragmentation Affect the Movement, Foraging Behavior, and Search Efficiency of the Marsh Periwinkle (Littorina irrorata). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1971-1981. [PMID: 36524861 DOI: 10.1002/etc.5545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The interactions between habitat fragmentation and other stressors are considered a key knowledge gap. The present study tested the hypotheses that mercury enhances the effects of fragmentation by (1) reducing the cumulative daily movement of organisms, (2) shifting their foraging behavior, and (3) altering the vertical movement of the marsh periwinkle (Littoraria irrorata) in a field experiment. Random walk simulations were used to access how changes in movement affect the search efficiency of organisms in the long term. Eighteen 1.5 m2 plots were constructed in a salt marsh where landscapes characteristics were manipulated to reach three different levels of habitat cover. Daily movement of 12 marked control and mercury-exposed snails were measured in each plot. Bayesian models were used to analyze the data and evidence ratios were used to test the hypotheses. The results showed that the effects of fragmentation were consistent in both control and exposed treatments, with an increase in the cumulative displacement of organisms. However, mercury significantly reduced the movement of organisms in all levels of fragmentation, shifting their foraging behavior (evidence ratio > 1000). Exposed snails were more likely to be found inactive in comparison with the control treatment (evidence ratio > 1000). Fragmentation also reduced the vertical movement of organisms in both treatments. In contrast, mercury increased the vertical movement of organisms (evidence ratio > 1000). The search efficiency of organisms also increased in a highly fragmentated landscape, suggesting that changes in foraging behavior are likely due to reduced resources and consequently increase in foraging effort. The present study shows that mercury exposure can enhance the effects of habitat fragmentation by changing organisms' movement, foraging behavior, and search efficiency. Environ Toxicol Chem 2023;42:1971-1981. © 2022 SETAC.
Collapse
Affiliation(s)
- Marcos Krull
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
3
|
The influence of prey availability on behavioral decisions and reproductive success of a central-place forager during lactation. J Theor Biol 2023; 560:111392. [PMID: 36572092 DOI: 10.1016/j.jtbi.2022.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Marine central-place foragers are increasingly faced with altered prey landscapes, necessitating predictions of the impact of such changes on behavior, reproductive success, and population dynamics. We used state-dependent behavioral life history theory implemented via Stochastic Dynamic Programming (SDP) to explore the influence of changes in prey distribution and energy gain from foraging on the behavior and reproductive success of a central place forager during lactation. Our work is motivated by northern fur seals (Callorhinus ursinus) because of the ongoing population decline of the Eastern Pacific stock and projected declines in biomass of walleye pollock (Gadus chalcogrammus), a key fur seal prey species in the eastern Bering Sea. We also explored how changes in female and pup metabolic rates, body size, and lactation duration affected model output to provide insight into traits that might experience selective pressure in response to reductions in prey availability. Simulated females adopted a central-place foraging strategy after an initial extended period spent on land (4.7-8.3 days). Trip durations increased as the high energy prey patch moved farther from land or when the energy gain from foraging decreased. Increases in trip duration adversely affected pup growth rates and wean mass despite attempts to compensate by increasing land durations. Metabolic rate changes had the largest impacts on pup wean mass, with reductions in a pup's metabolic rate allowing females to successfully forage at distances of 600+ km from land for up to 15+ days. Our results indicate that without physiological adaptations, a rookery is unlikely to be viable if the primary foraging grounds are 400 km or farther from the rookery. To achieve pup growth rates characteristic of a population experiencing rapid growth, model results indicate the primary foraging grounds need to be <150 km from the rookery.
Collapse
|
4
|
Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Jonsen ID, Grecian WJ, Phillips L, Carroll G, McMahon C, Harcourt RG, Hindell MA, Patterson TA. aniMotum, an R package for animal movement data: Rapid quality control, behavioural estimation and simulation. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ian D. Jonsen
- School of Natural Sciences Macquarie University Sydney New South Wales Australia
| | - W. James Grecian
- Sea Mammal Research Unit, Scottish Oceans Institute University of St Andrews St Andrews UK
| | - Lachlan Phillips
- School of Natural Sciences Macquarie University Sydney New South Wales Australia
| | | | - Clive McMahon
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Robert G. Harcourt
- School of Natural Sciences Macquarie University Sydney New South Wales Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | | |
Collapse
|
6
|
Li BW, Li WB, Xia DP, Zhang T, Yang PP, Li JH. Sleeping sites provide new insight into multiple central place foraging strategies of Tibetan macaques (Macaca thibetana). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1067923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Food resources, including food types, quantity, and quality, are the key factors that determine the survival and reproduction of wild animals. However, the most basic requirement is access to food. The choice of sleeping sites plays a crucial role in efficiently acquiring food and provides a useful starting point for studying foraging strategies. We collected data on sleeping site and foraging patch uses of wild Tibetan macaques (Macaca thibetana) in Huangshan, Anhui, China, from September 2020 to August 2021. We found that Tibetan macaques used 50 different sleeping sites, mostly located on cliffs, some of which they reused. Sleeping site altitude differed significantly according to season, with higher altitudes recorded in summer and winter. Tibetan macaques did not sleep as much as expected in the peripheral regions of their home range. The sleeping sites were often distributed in proximity to foraging patches, and there was a positive correlation between the use of sleeping sites and surrounding foraging patches. The utilization of foraging patches by Tibetan macaques is inclined towards the multiple central place foraging strategy. Our results provide supportive evidence for the proximity to food resource hypothesis and indicate the important role of sleeping sites in food resource utilization in Tibetan macaques.
Collapse
|
7
|
Seasonal variation and group size affect movement patterns of two pelagic dolphin species (Lagenorhynchus obscurus and Delphinus delphis). PLoS One 2022; 17:e0276623. [DOI: 10.1371/journal.pone.0276623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Movement is a key factor in the survival and reproduction of most organisms with important links to bioenergetics and population dynamics. Animals use movement strategies that minimize the costs of locating resources, maximizing energy gains. Effectiveness of these strategies depends on the spatial distribution, variability and predictability of resources. The study of fine-scale movement of small cetaceans in the pelagic domain is limited, in part because of the logistical difficulties associated with tagging and tracking them. Here we describe and model the fine-scale movement patterns of two pelagic dolphin species using georeferenced movement and behavioral data obtained by tracking dolphin groups on board small vessels. Movement patterns differed by species, group sizes and seasons. Dusky dolphin groups moved shorter distances when feeding and longer distances when traveling whereas the common dolphin did the same only when they moved in large groups. In summer, both dolphins cover longer distances in a more linear path, while in winter the movement is more erratic and moving shorter distances. Both species of dolphins prey on small pelagic fishes, which are patchily distributed and show seasonal variability in school sizes and distribution. However, dusky dolphins rely on anchovy to a larger extent than common dolphins. In Nuevo Gulf, anchovy shoals are smaller and separated by shorter distances in winter and dusky dolphins´ movement pattern is consistent with this. Dusky and common dolphins are impacted by tourism and fisheries. Further modelling of movement could be inform spatial based management tools.
Collapse
|
8
|
Mastrantonio G. The modelling of movement of multiple animals that share behavioural features. J R Stat Soc Ser C Appl Stat 2022. [DOI: 10.1111/rssc.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Roy A, Bertrand SL, Fablet R. Using Generative Adversarial Networks (
GAN
) to simulate central‐place foraging trajectories. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amédée Roy
- Institut de Recherche pour le Développement (IRD), MARBEC (Univ. Montpellier, Ifremer, CNRS, IRD), Avenue Jean Monnet, 34200 Sète France
| | - Sophie Lanco Bertrand
- Institut de Recherche pour le Développement (IRD), MARBEC (Univ. Montpellier, Ifremer, CNRS, IRD), Avenue Jean Monnet, 34200 Sète France
| | | |
Collapse
|
10
|
Milles A, Dammhahn M, Jeltsch F, Schlägel U, Grimm V. Fluctuations in density-dependent selection drive the evolution of a pace-of-life-syndrome within and between populations. Am Nat 2021; 199:E124-E139. [DOI: 10.1086/718473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Riaz J, Bestley S, Wotherspoon S, Emmerson L. Horizontal-vertical movement relationships: Adélie penguins forage continuously throughout provisioning trips. MOVEMENT ECOLOGY 2021; 9:43. [PMID: 34446104 PMCID: PMC8393751 DOI: 10.1186/s40462-021-00280-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/17/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diving marine predators forage in a three-dimensional environment, adjusting their horizontal and vertical movement behaviour in response to environmental conditions and the spatial distribution of prey. Expectations regarding horizontal-vertical movements are derived from optimal foraging theories, however, inconsistent empirical findings across a range of taxa suggests these behavioural assumptions are not universally applicable. METHODS Here, we examined how changes in horizontal movement trajectories corresponded with diving behaviour and marine environmental conditions for a ubiquitous Southern Ocean predator, the Adélie penguin. Integrating extensive telemetry-based movement and environmental datasets for chick-rearing Adélie penguins at Béchervaise Island, we tested the relationships between horizontal move persistence (continuous scale indicating low ['resident'] to high ['directed'] movement autocorrelation), vertical dive effort and environmental variables. RESULTS Penguins dived continuously over the course of their foraging trips and lower horizontal move persistence corresponded with less intense foraging activity, likely indicative of resting behaviour. This challenges the traditional interpretation of horizontal-vertical movement relationships based on optimal foraging models, which assumes increased residency within an area translates to increased foraging activity. Movement was also influenced by different environmental conditions during the two stages of chick-rearing: guard and crèche. These differences highlight the strong seasonality of foraging habitat for chick-rearing Adélie penguins at Béchervaise Island. CONCLUSIONS Our findings advance our understanding of the foraging behaviour for this marine predator and demonstrates the importance of integrating spatial location and behavioural data before inferring habitat use.
Collapse
Affiliation(s)
- Javed Riaz
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia.
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS, 7050, Australia.
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia
| | - Simon Wotherspoon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS, 7050, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS, 7050, Australia
| |
Collapse
|
12
|
Togunov RR, Derocher AE, Lunn NJ, Auger‐Méthé M. Characterising menotactic behaviours in movement data using hidden Markov models. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ron R. Togunov
- Institute for the Oceans and Fisheries The University of British Columbia Vancouver BC Canada
- Department of Zoology The University of British Columbia Vancouver BC Canada
| | - Andrew E. Derocher
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Nicholas J. Lunn
- Department of Biological Sciences University of Alberta Edmonton AB Canada
- Wildlife Research Division, Science and Technology Branch Environment and Climate Change Canada Edmonton AB Canada
| | - Marie Auger‐Méthé
- Institute for the Oceans and Fisheries The University of British Columbia Vancouver BC Canada
- Department of Statistics University of British Columbia Vancouver BC Canada
| |
Collapse
|
13
|
Buderman FE, Gingery TM, Diefenbach DR, Gigliotti LC, Begley-Miller D, McDill MM, Wallingford BD, Rosenberry CS, Drohan PJ. Caution is warranted when using animal space-use and movement to infer behavioral states. MOVEMENT ECOLOGY 2021; 9:30. [PMID: 34116712 PMCID: PMC8196457 DOI: 10.1186/s40462-021-00264-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/04/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Identifying the behavioral state for wild animals that can't be directly observed is of growing interest to the ecological community. Advances in telemetry technology and statistical methodologies allow researchers to use space-use and movement metrics to infer the underlying, latent, behavioral state of an animal without direct observations. For example, researchers studying ungulate ecology have started using these methods to quantify behaviors related to mating strategies. However, little work has been done to determine if assumed behaviors inferred from movement and space-use patterns correspond to actual behaviors of individuals. METHODS Using a dataset with male and female white-tailed deer location data, we evaluated the ability of these two methods to correctly identify male-female interaction events (MFIEs). We identified MFIEs using the proximity of their locations in space as indicators of when mating could have occurred. We then tested the ability of utilization distributions (UDs) and hidden Markov models (HMMs) rendered with single sex location data to identify these events. RESULTS For white-tailed deer, male and female space-use and movement behavior did not vary consistently when with a potential mate. There was no evidence that a probability contour threshold based on UD volume applied to an individual's UD could be used to identify MFIEs. Additionally, HMMs were unable to identify MFIEs, as single MFIEs were often split across multiple states and the primary state of each MFIE was not consistent across events. CONCLUSIONS Caution is warranted when interpreting behavioral insights rendered from statistical models applied to location data, particularly when there is no form of validation data. For these models to detect latent behaviors, the individual needs to exhibit a consistently different type of space-use and movement when engaged in the behavior. Unvalidated assumptions about that relationship may lead to incorrect inference about mating strategies or other behaviors.
Collapse
Affiliation(s)
- Frances E Buderman
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tess M Gingery
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, 16802, USA
| | - Duane R Diefenbach
- U. S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, 16802, USA
| | - Laura C Gigliotti
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Marc M McDill
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | - Patrick J Drohan
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
McClintock BT. Worth the effort? A practical examination of random effects in hidden Markov models for animal telemetry data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brett T. McClintock
- Marine Mammal Laboratory Alaska Fisheries Science Center NOAA National Marine Fisheries Service Seattle WA USA
| |
Collapse
|
15
|
Evens R, Conway G, Franklin K, Henderson I, Stockdale J, Beenaerts N, Smeets K, Neyens T, Ulenaers E, Artois T. DNA diet profiles with high-resolution animal tracking data reveal levels of prey selection relative to habitat choice in a crepuscular insectivorous bird. Ecol Evol 2020; 10:13044-13056. [PMID: 33304515 PMCID: PMC7713983 DOI: 10.1002/ece3.6893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/04/2022] Open
Abstract
Given the global decline of many invertebrate food resources, it is fundamental to understand the dietary requirements of insectivores. We give new insights into the functional relationship between the spatial habitat use, food availability, and diet of a crepuscular aerial insectivore, the European Nightjar (Caprimulgus europaeus) by relating spatial use data with high-throughput sequencing (HTS) combined with DNA metabarcoding. Our study supports the predictions that nightjars collect a substantial part of their daily nourishment from foraging locations, sometimes at considerable distance from nesting sites. Lepidopterans comprise 65% of nightjars' food source. Nightjars tend to select larger species of Lepidoptera (>19 mm) which suggests that nightjars optimize the efficiency of foraging trips by selecting the most energetically favorable-larger-prey items. We anticipate that our findings may shed additional light on the interactions between invertebrate communities and higher trophic levels, which is required to understand the repercussions of changing food resources on individual- and population-level processes.
Collapse
Affiliation(s)
- Ruben Evens
- Max Planck Institute for OrnithologyEberhard‐Gwinner‐StraßeStarnbergGermany
- Centre for Environmental SciencesResearch Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| | | | - Kirsty Franklin
- Cardiff School of BiosciencesCardiffUK
- Norwich Research ParkUniversity of East AngliaNorwichUK
| | | | - Jennifer Stockdale
- Cardiff School of BiosciencesCardiffUK
- Faculty of Medicine & Health SciencesUniversity of NottinghamNottinghamUK
| | - Natalie Beenaerts
- Centre for Environmental SciencesResearch Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| | - Karen Smeets
- Centre for Environmental SciencesResearch Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| | - Thomas Neyens
- Centre for Environmental SciencesResearch Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| | - Eddy Ulenaers
- Agentschap Natuur en BosRegio Noord‐LimburgBrusselsBelgium
| | - Tom Artois
- Centre for Environmental SciencesResearch Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| |
Collapse
|
16
|
Ylitalo A, Heikkinen J, Kojola I. Analysis of central place foraging behaviour of wolves using hidden Markov models. Ethology 2020. [DOI: 10.1111/eth.13106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Juha Heikkinen
- Natural Resources Institute Finland (Luke) Helsinki Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland (Luke) Rovaniemi Finland
| |
Collapse
|
17
|
Photopoulou T, Heerah K, Pohle J, Boehme L. Sex-specific variation in the use of vertical habitat by a resident Antarctic top predator. Proc Biol Sci 2020; 287:20201447. [PMID: 33081623 PMCID: PMC7661299 DOI: 10.1098/rspb.2020.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patterns of habitat use are commonly studied in horizontal space, but this does not capture the four-dimensional nature of ocean habitats (space, depth, and time). Deep-diving marine animals encounter varying oceanographic conditions, particularly at the poles, where there is strong seasonal variation in vertical ocean structuring. This dimension of space use is hidden if we only consider horizontal movement. To identify different diving behaviours and usage patterns of vertically distributed habitat, we use hidden Markov models fitted to telemetry data from an air-breathing top predator, the Weddell seal, in the Weddell Sea, Antarctica. We present evidence of overlapping use of high-density, continental shelf water masses by both sexes, as well as important differences in their preferences for oceanographic conditions. Males spend more time in the unique high-salinity shelf water masses found at depth, while females also venture off the continental shelf and visit warmer, shallower water masses. Both sexes exhibit a diurnal pattern in diving behaviour (deep in the day, shallow at night) that persists from austral autumn into winter. The differences in habitat use in this resident, sexually monomorphic Antarctic top predator suggest a different set of needs and constraints operating at the intraspecific level, not driven by body size.
Collapse
Affiliation(s)
- Theoni Photopoulou
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.,Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Karine Heerah
- Marine Bioacoustics Lab, Zoophysiology, Dept. Biology, Aarhus University, Aarhus, Denmark
| | - Jennifer Pohle
- Department of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Lars Boehme
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Hückstädt LA, Schwarz LK, Friedlaender AS, Mate BR, Zerbini AN, Kennedy A, Robbins J, Gales NJ, Costa DP. A dynamic approach to estimate the probability of exposure of marine predators to oil exploration seismic surveys over continental shelf waters. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ever-increasing human demand for fossil fuels has resulted in the expansion of oil exploration efforts to waters over the continental shelf. These waters are largely utilized by a complex biological community. Large baleen whales, in particular, utilize continental shelf waters as breeding and calving grounds, foraging grounds, and also as migration corridors. We developed a dynamic approach to estimate the likelihood that individuals from different populations of blue whales Balaenoptera musculus and humpback whales Megaptera novaeangliae could be exposed to idealized, simulated seismic surveys as they move over the continental shelf. Animal tracking data for the different populations were filtered, and behaviors (transit and foraging) were inferred from the tracks using hidden Markov models. We simulated a range of conditions of exposure by having the source of noise affecting a circular area of different radii (5, 25, 50 and 100 km), moving along a gridded transect of 270 and 2500 km2 at a constant speed of 9 km h-1, and starting the simulated surveys every week of the year. Our approach allowed us to identify the temporal variability in the susceptibility of the different populations under study, as we ran the simulations for an entire year, allowing us to identify periods when the surveys would have an intensified effect on whales. Our results highlight the importance of understanding the behavior and ecology of individuals in a site-specific context when considering the likelihood of exposure to anthropogenic disturbances, as the habitat utilization patterns of each population are highly variable.
Collapse
Affiliation(s)
- LA Hückstädt
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - LK Schwarz
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - AS Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - BR Mate
- Marine Mammal Institute, Oregon State University, Newport, OR 97365, USA
| | - AN Zerbini
- Joint Institute for the Study of Atmosphere and Ocean (JISAO), University of Washington & Marine Mammal Laboratory, NOAA, Seattle, WA 98112, USA
- Marine Ecology and Telemetry Research, Seabeck, WA, 98380, USA
- Instituto Aqualie, Juiz de Fora, MG, Brazil
| | - A Kennedy
- Joint Institute for the Study of Atmosphere and Ocean (JISAO), University of Washington & Marine Mammal Laboratory, NOAA, Seattle, WA 98112, USA
| | - J Robbins
- Center for Coastal Studies, Provincetown, MA 02657, USA
| | - NJ Gales
- Australian Antarctic Division, Kingston, Tasmania 7050, Australia
| | - DP Costa
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
19
|
Schafer TLJ, Wikle CK, VonBank JA, Ballard BM, Weegman MD. A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2020. [DOI: 10.1007/s13253-020-00399-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
New insights into prime Southern Ocean forage grounds for thriving Western Australian humpback whales. Sci Rep 2019; 9:13988. [PMID: 31562374 PMCID: PMC6764985 DOI: 10.1038/s41598-019-50497-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Humpback whale populations migrate extensively between winter breeding grounds and summer feeding grounds, however known links to remote Antarctic feeding grounds remain limited in many cases. New satellite tracks detail humpback whale migration pathways from Western Australia into the Southern Ocean. These highlight a focal feeding area during austral spring and early summer at the southern Kerguelen plateau, in a western boundary current where a sharp northward turn and retroflection of ocean fronts occurs along the eastern plateau edge. The topographic steering of oceanographic features here likely supports a predictable, productive and persistent forage ground. The spatial distribution of whaling catches and Discovery era mark-recaptures confirms the importance of this region to Western Australian humpback whales since at least historical times. Movement modelling discriminates sex-related behaviours, with females moving faster during both transit and resident periods, which may be a consequence of size or indicate differential energetic requirements. Relatively short and directed migratory pathways overall, together with high-quality, reliable forage resources may provide a partial explanation for the ongoing strong recovery demonstrated by this population. The combination of new oceanographic information and movement data provides enhanced understanding of important biological processes, which are relevant within the context of the current spatial management and conservation efforts in the Southern Ocean.
Collapse
|
21
|
Cloyed CS, Dell AI. Resource distribution and internal factors interact to govern movement of a freshwater snail. Proc Biol Sci 2019; 286:20191610. [PMID: 31551058 DOI: 10.1098/rspb.2019.1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement enables mobile organisms to respond to local environmental conditions and is driven by a combination of external and internal factors operating at multiple scales. Here, we explored how resource distribution interacted with the internal state of organisms to drive patterns of movement. Specifically, we tracked snail movements on experimental landscapes where resource (algal biofilm) distribution varied from 0 to 100% coverage and quantified how that movement changed over a 24 h period. Resource distribution strongly affected snail movement. Trajectories were tortuous (i.e. Brownian-like) within resource patches but straighter (i.e. Lévy) in resource-free (bare) patches. The average snail speed was slower in resource patches, where snails spent most of their time. Different patterns of movement between resource and bare patches explained movement at larger spatial scales; movement was ballistic-like Lévy in resource-free landscapes, Lévy in landscapes with intermediate resource coverage and approximated Brownian in landscapes covered in resources. Our temporal analysis revealed that movement patterns changed predictably for snails that satiated their hunger and then performed other behaviours. These changes in movement patterns through time were similar across all treatments that contained resources. Thus, external and internal factors interacted to shape the inherently flexible movement of these snails.
Collapse
Affiliation(s)
- Carl S Cloyed
- National Great Rivers Research and Education Center, East Alton, IL 62024, USA.,Department of Biology, Washington University of St Louis, St Louis, MO 63130, USA.,Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| | - Anthony I Dell
- National Great Rivers Research and Education Center, East Alton, IL 62024, USA.,Department of Biology, Washington University of St Louis, St Louis, MO 63130, USA
| |
Collapse
|
22
|
Adam T, Griffiths CA, Leos‐Barajas V, Meese EN, Lowe CG, Blackwell PG, Righton D, Langrock R. Joint modelling of multi‐scale animal movement data using hierarchical hidden Markov models. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13241] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timo Adam
- Bielefeld University Bielefeld Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wensveen PJ, Isojunno S, Hansen RR, von Benda-Beckmann AM, Kleivane L, van IJsselmuide S, Lam FPA, Kvadsheim PH, DeRuiter SL, Curé C, Narazaki T, Tyack PL, Miller PJO. Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals. Proc Biol Sci 2019; 286:20182592. [PMID: 30890101 PMCID: PMC6452067 DOI: 10.1098/rspb.2018.2592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 11/12/2022] Open
Abstract
Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments ( n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway. Animals were tagged with high-resolution archival tags ( n = 1 per experiment) or medium-resolution satellite tags ( n = 9 in total) and subsequently exposed to sonar. We also deployed bottom-moored recorders to acoustically monitor for whales in the exposed area. Tagged whales initiated avoidance of the sound source over a wide range of distances (0.8-28 km), with responses characteristic of beaked whales. Both onset and intensity of response were better predicted by received sound pressure level (SPL) than by source distance. Avoidance threshold SPLs estimated for each whale ranged from 117-126 dB re 1 µPa, comparable to those of other tagged beaked whales. In this pristine underwater acoustic environment, we found no indication that the source distances tested in our experiments modulated the behavioural effects of sonar, as has been suggested for locations where whales are frequently exposed to sonar.
Collapse
Affiliation(s)
- Paul J. Wensveen
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Saana Isojunno
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Rune R. Hansen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alexander M. von Benda-Beckmann
- Acoustics and Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | | | - Sander van IJsselmuide
- Acoustics and Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | - Frans-Peter A. Lam
- Acoustics and Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | | | - Stacy L. DeRuiter
- Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI, USA
| | - Charlotte Curé
- Cerema—Ifsttar, UMRAE, Laboratoire de Strasbourg, Strasbourg, France
| | - Tomoko Narazaki
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Peter L. Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Patrick J. O. Miller
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
24
|
Ngô MC, Heide-Jørgensen MP, Ditlevsen S. Understanding narwhal diving behaviour using Hidden Markov Models with dependent state distributions and long range dependence. PLoS Comput Biol 2019; 15:e1006425. [PMID: 30870414 PMCID: PMC6417660 DOI: 10.1371/journal.pcbi.1006425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Diving behaviour of narwhals is still largely unknown. We use Hidden Markov models (HMMs) to describe the diving behaviour of a narwhal and fit the models to a three-dimensional response vector of maximum dive depth, duration of dives and post-dive surface time of 8,609 dives measured in East Greenland over 83 days, an extraordinarily long and rich data set. Narwhal diving patterns have not been analysed like this before, but in studies of other whale species, response variables have been assumed independent. We extend the existing models to allow for dependence between state distributions, and show that the dependence has an impact on the conclusions drawn about the diving behaviour. We try several HMMs with 2, 3 or 4 states, and with independent and dependent log-normal and gamma distributions, respectively, and different covariates to characterize dive patterns. In particular, diurnal patterns in diving behaviour is inferred, by using periodic B-splines with boundary knots in 0 and 24 hours. Narwhals live in pristine environments. However, the increase in average temperatures in the Arctic and the concomitant loss of summer sea ice, as well as increased human activities, such as ship traffic and mineral exploration leading to increased noise pollution, are changing the environment, and therefore probably also the behavior and well-being of the narwhal. Here, we use probabilistic models to unravel the diving and feeding behavior of a male narwhal, tagged in East Greenland in 2013, and followed for more than two months. The goal is to gain knowledge of the whales’ normal behavior, to be able to later detect possible changes in behavior due to climatic changes and human influences. We find that the narwhal uses around two thirds of its time searching for food, it typically feeds during deep dives (more than 350m), and it can have extended periods, up to 3 days, without feeding activity.
Collapse
Affiliation(s)
- Manh Cuong Ngô
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Peter Heide-Jørgensen
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Greenland Institute of Natural Resources, c/o Greenland Representation, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
25
|
Affiliation(s)
- Théo Michelot
- School of Mathematics and StatisticsUniversity of Sheffield Sheffield UK
| | - Paul G. Blackwell
- School of Mathematics and StatisticsUniversity of Sheffield Sheffield UK
| |
Collapse
|
26
|
Jonsen ID, McMahon CR, Patterson TA, Auger‐Méthé M, Harcourt R, Hindell MA, Bestley S. Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model. Ecology 2018; 100:e02566. [DOI: 10.1002/ecy.2566] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023]
Affiliation(s)
- I. D. Jonsen
- Department of Biological Sciences Macquarie University North Ryde, Sydney New South Wales 2109 Australia
| | - C. R. McMahon
- Sydney Institute of Marine Science Mosman New South Wales 2088 Australia
| | - T. A. Patterson
- CSIRO Marine and Atmospheric Research Hobart Tasmania 7004 Australia
| | - M. Auger‐Méthé
- Department of Statistics and Institute for the Oceans & Fisheries University of British Columbia Vancouver British Columbia V1V 1V7 Canada
| | - R. Harcourt
- Department of Biological Sciences Macquarie University North Ryde, Sydney New South Wales 2109 Australia
| | - M. A. Hindell
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania 7004 Australia
| | - S. Bestley
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania 7004 Australia
| |
Collapse
|
27
|
Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci Rep 2018; 8:12333. [PMID: 30120303 PMCID: PMC6098068 DOI: 10.1038/s41598-018-30748-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/31/2018] [Indexed: 02/05/2023] Open
Abstract
Humpback whale (Megaptera novaeangliae) populations typically undertake seasonal migrations, spending winters in low latitude breeding grounds and summers foraging in high latitude feeding grounds. Until recently, a broad scale understanding of whale movement has been derived from whaling records, Discovery marks, photo identification and genetic analyses. However, with advances in satellite tagging technology and concurrent development of analytical methodologies we can now detail finer scale humpback whale movement, infer behavioural context and examine how these animals interact with their physical environment. Here we describe the temporal and spatial characteristics of migration along the east Australian seaboard and into the Southern Ocean by 30 humpback whales satellite tagged over three consecutive austral summers. We characterise the putative Antarctic feeding grounds and identify supplemental foraging within temperate, migratory corridors. We demonstrate that Antarctic foraging habitat is associated with the marginal ice zone, with key predictors of inferred foraging behaviour including distance from the ice edge, ice melt rate and variability in ice concentration two months prior to arrival. We discuss the highly variable ice season within the putative foraging habitat and the implications that this and other environmental factors may have on the continued strong recovery of this humpback whale population.
Collapse
|
28
|
Pirotta E, Katzner T, Miller TA, Duerr AE, Braham MA, New L. State‐space modelling of the flight behaviour of a soaring bird provides new insights to migratory strategies. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Enrico Pirotta
- Department of Mathematics and Statistics Washington State University Vancouver Washington
- School of Biological Earth & Environmental Sciences University College Cork Distillery Fields North Mall Cork Ireland
| | - Todd Katzner
- U.S. Geological Survey, Forest & Rangeland Ecosystem Science Center Boise Idaho
| | | | | | - Melissa A. Braham
- Division of Forestry & Natural Resources West Virginia University Morgantown West Virginia
| | - Leslie New
- Department of Mathematics and Statistics Washington State University Vancouver Washington
| |
Collapse
|
29
|
Griffiths CA, Patterson TA, Blanchard JL, Righton DA, Wright SR, Pitchford JW, Blackwell PG. Scaling marine fish movement behavior from individuals to populations. Ecol Evol 2018; 8:7031-7043. [PMID: 30073065 PMCID: PMC6065275 DOI: 10.1002/ece3.4223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
Understanding how, where, and when animals move is a central problem in marine ecology and conservation. Key to improving our knowledge about what drives animal movement is the rising deployment of telemetry devices on a range of free-roaming species. An increasingly popular way of gaining meaningful inference from an animal's recorded movements is the application of hidden Markov models (HMMs), which allow for the identification of latent behavioral states in the movement paths of individuals. However, the use of HMMs to explore the population-level consequences of movement is often limited by model complexity and insufficient sample sizes. Here, we introduce an alternative approach to current practices and provide evidence of how the inclusion of prior information in model structure can simplify the application of HMMs to multiple animal movement paths with two clear benefits: (a) consistent state allocation and (b) increases in effective sample size. To demonstrate the utility of our approach, we apply HMMs and adapted HMMs to over 100 multivariate movement paths consisting of conditionally dependent daily horizontal and vertical movements in two species of demersal fish: Atlantic cod (Gadus morhua; n = 46) and European plaice (Pleuronectes platessa; n = 61). We identify latent states corresponding to two main underlying behaviors: resident and migrating. As our analysis considers a relatively large sample size and states are allocated consistently, we use collective model output to investigate state-dependent spatiotemporal trends at the individual and population levels. In particular, we show how both species shift their movement behaviors on a seasonal basis and demonstrate population space use patterns that are consistent with previous individual-level studies. Tagging studies are increasingly being used to inform stock assessment models, spatial management strategies, and monitoring of marine fish populations. Our approach provides a promising way of adding value to tagging studies because inferences about movement behavior can be gained from a larger proportion of datasets, making tagging studies more relevant to management and more cost-effective.
Collapse
Affiliation(s)
- Christopher A. Griffiths
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
- Centre for EnvironmentFisheries and Aquaculture ScienceLowestoft LaboratoryLowestoftUK
| | | | - Julia L. Blanchard
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - David A. Righton
- Centre for EnvironmentFisheries and Aquaculture ScienceLowestoft LaboratoryLowestoftUK
| | - Serena R. Wright
- Centre for EnvironmentFisheries and Aquaculture ScienceLowestoft LaboratoryLowestoftUK
| | | | - Paul G. Blackwell
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
| |
Collapse
|
30
|
Pirotta E, Edwards EWJ, New L, Thompson PM. Central place foragers and moving stimuli: A hidden-state model to discriminate the processes affecting movement. J Anim Ecol 2018; 87:1116-1125. [PMID: 29577275 DOI: 10.1111/1365-2656.12830] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
Abstract
Human activities can influence the movement of organisms, either repelling or attracting individuals depending on whether they interfere with natural behavioural patterns or enhance access to food. To discern the processes affecting such interactions, an appropriate analytical approach must reflect the motivations driving behavioural decisions at multiple scales. In this study, we developed a modelling framework for the analysis of foraging trips by central place foragers. By recognising the distinction between movement phases at a larger scale and movement steps at a finer scale, our model can identify periods when animals are actively following moving attractors in their landscape. We applied the framework to GPS tracking data of northern fulmars Fulmarus glacialis, paired with contemporaneous fishing boat locations, to quantify the putative scavenging activity of these seabirds on discarded fish and offal. We estimated the rate and scale of interaction between individual birds and fishing boats and the interplay with other aspects of a foraging trip. The model classified periods when birds were heading out to sea, returning towards the colony or following the closest boat. The probability of switching towards a boat declined with distance and varied depending on the phase of the trip. The maximum distance at which a bird switched towards the closest boat was estimated around 35 km, suggesting the use of olfactory information to locate food. Individuals spent a quarter of a foraging trip, on average, following fishing boats, with marked heterogeneity among trips and individuals. Our approach can be used to characterise interactions between central place foragers and different anthropogenic or natural stimuli. The model identifies the processes influencing central place foraging at multiple scales, which can improve our understanding of the mechanisms underlying movement behaviour and characterise individual variation in interactions with a range of human activities that may attract or repel these species. Therefore, it can be adapted to explore the movement of other species that are subject to multiple dynamic drivers.
Collapse
Affiliation(s)
- Enrico Pirotta
- Department of Mathematics and Statistics, Washington State University, Vancouver, WA, USA
| | - Ewan W J Edwards
- Lighthouse Field Station, University of Aberdeen, Cromarty, UK.,Marine Scotland Science, The Scottish Government, Aberdeen, UK
| | - Leslie New
- Department of Mathematics and Statistics, Washington State University, Vancouver, WA, USA
| | - Paul M Thompson
- Lighthouse Field Station, University of Aberdeen, Cromarty, UK
| |
Collapse
|
31
|
McClintock BT, Michelot T. momentuHMM:
R
package for generalized hidden Markov models of animal movement. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.12995] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brett T. McClintock
- Marine Mammal LaboratoryAlaska Fisheries Science Center NOAA National Marine Fisheries Service Seattle WA USA
| | - Théo Michelot
- School of Mathematics and StatisticsUniversity of Sheffield Sheffield UK
| |
Collapse
|
32
|
Damiani ML, Hachem F, Issa H, Ranc N, Moorcroft P, Cagnacci F. Cluster-based trajectory segmentation with local noise. Data Min Knowl Discov 2018. [DOI: 10.1007/s10618-018-0561-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Incorporating Telemetry Error into Hidden Markov Models of Animal Movement Using Multiple Imputation. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2017. [DOI: 10.1007/s13253-017-0285-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2017. [DOI: 10.1007/s13253-017-0282-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|