1
|
Veličković M, Wu R, Gao Y, Thairu MW, Veličković D, Munoz N, Clendinen CS, Bilbao A, Chu RK, Lalli PM, Zemaitis K, Nicora CD, Kyle JE, Orton D, Williams S, Zhu Y, Zhao R, Monroe ME, Moore RJ, Webb-Robertson BJM, Bramer LM, Currie CR, Piehowski PD, Burnum-Johnson KE. Mapping microhabitats of lignocellulose decomposition by a microbial consortium. Nat Chem Biol 2024; 20:1033-1043. [PMID: 38302607 PMCID: PMC11288888 DOI: 10.1038/s41589-023-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.
Collapse
Affiliation(s)
- Marija Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margaret W Thairu
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dušan Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chaevien S Clendinen
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Aivett Bilbao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rosalie K Chu
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kevin Zemaitis
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarai Williams
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ying Zhu
- Department of Microchemistry, Proteomics, Lipidomics, and Next Generation Sequencing, Genentech, San Francisco, CA, USA
| | - Rui Zhao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Paul D Piehowski
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Guo W, Song Y, Chen H, Li X. Dietary potential of the symbiotic fungus Penicillium herquei for the larvae of a nonsocial fungus-cultivating weevil Euops chinensis. Appl Environ Microbiol 2024; 90:e0153723. [PMID: 38445862 PMCID: PMC11022562 DOI: 10.1128/aem.01537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Many insect taxa cultivate fungi for food. Compared to well-known fungus cultivation in social insects, our knowledge on fungus cultivation in nonsocial insects is still limited. Here, we studied the nutritional potentials of the fungal cultivar, Penicillium herquei, for the larvae of its nonsocial insect farmer, Euops chinensis, a specialist on Japanese knotweed Reynoutria japonica. Overall, fungal hyphae and leaf rolls contained significantly higher carbon (C), stable isotopes of C (δ13C), and nitrogen (δ15N) but significantly lower C/N ratios compared to unrolled leaves, whereas insect bodies contained significantly higher N contents but lower C and C/N ratios compared to other types of samples. The MixSIAR model indicated that fungal hyphae contributed a larger proportion (0.626-0.797) to the diet of E. chinensis larvae than leaf materials. The levels of ergosterol, six essential amino acids, seven nonessential amino acids, and three B vitamins tested in fungal hyphae and/or leaf rolls were significantly higher than in unrolled leaves and/or larvae. The P. herquei genome contains the complete set of genes required for the biosynthesis of ergosterol, the essential amino acids valine and threonine, nine nonessential amino acids, and vitamins B2 and B3, whereas some genes associated with five essential and one nonessential amino acid were lost in the P. herquei genome. These suggest that P. herquei is capable of providing the E. chinensis larvae food with ergosterol, amino acids, and B vitamins. P. herquei appears to be able to synthesize or concentrate these nutrients considering that they were specifically concentrated in fungal hyphae. IMPORTANCE The cultivation of fungi for food has occurred across divergent insect lineages such as social ants, termites, and ambrosia beetles, as well as some seldom-reported solitary insects. Although the fungal cultivars of these insects have been studied for decades, the dietary potential of fungal cultivars for their hosts (especially for those nonsocial insects) is largely unknown. Our research on the mutualistic system Euops chinensis-Penicillium herquei represents an example of the diverse nutritional potentials of the fungal cultivar P. herquei in the diet of the larvae of its solitary host, E. chinensis. These results demonstrate that P. herquei has the potential to synthesize or concentrate ergosterol, amino acids, and B vitamins and benefits the larvae of E. chinensis. Our findings would shed light on poorly understood fungal cultivation mutualisms in nonsocial insects and underscore the nutritional importance of fungal cultivars in fungal cultivation mutualisms.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yu Song
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Hu Chen
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Leal-Dutra CA, Yuen LM, Guedes BAM, Contreras-Serrano M, Marques PE, Shik JZ. Evidence that the domesticated fungus Leucoagaricus gongylophorus recycles its cytoplasmic contents as nutritional rewards to feed its leafcutter ant farmers. IMA Fungus 2023; 14:19. [PMID: 37715276 PMCID: PMC10503033 DOI: 10.1186/s43008-023-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Leafcutter ants farm a fungal cultivar (Leucoagaricus gongylophorus) that converts inedible vegetation into food that sustains colonies with up to millions of workers. Analogous to edible fruits of crops domesticated by humans, L. gongylophorus has evolved specialized nutritional rewards-swollen hyphal cells called gongylidia that package metabolites and are consumed by ant farmers. Yet, little is known about how gongylidia form, and thus how fungal physiology and ant provisioning collectively govern farming performance. We explored the process of gongylidium formation using advanced microscopy to image the cultivar at scales of nanometers, and both in vitro experiments and in silico analyses to examine the mechanisms of gongylidia formation when isolated from ant farmers. We first used transmission electron, fluorescence, and confocal microscopy imaging to see inside hyphal cells. This imaging showed that the cultivar uses a process called autophagy to recycle its own cellular material (e.g. cytosol, mitochondria) and then shuttles the resulting metabolites into a vacuole whose continual expansion displaces other organelles and causes the gongylidium cell's bulging bulb-like appearance. We next used scanning electron microscopy and light microscopy to link this intracellular rearrangement to the external branching patterns of gongylidium cells as they clump together into edible bundles called staphyla. We next confirmed that autophagy plays a critical role in gongylidium formation both: (1) in vitro as gongylidium suppression occurred when isolated fungal cultures were grown on media with autophagy inhibitors, and (2) in silico as differential transcript expression (RNA-seq) analyses showed upregulation of multiple autophagy gene isoforms in gongylidia relative to undifferentiated hyphae. While autophagy is a ubiquitous and often highly derived process across the tree of life, our study reveals a new role for autophagy as a mechanism of functional integration between ant farmers and their fungal crop, and potentially as a signifier of higher-level homeostasis between uniquely life-time committed ectosymbionts.
Collapse
Affiliation(s)
- Caio Ambrosio Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Lok Man Yuen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Department of Biology, ETH Zürich, Universitätsstrasse 16, Zürich, 8092, Switzerland
| | - Bruno Augusto Maciel Guedes
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares, MG, 35020-360, Brazil
| | - Marta Contreras-Serrano
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
4
|
Production of Escovopsis weberi (Ascomycota: Hypocreales) Mycelial Pellets and Their Effects on Leaf-Cutting Ant Fungal Gardens. Pathogens 2023; 12:pathogens12020330. [PMID: 36839602 PMCID: PMC9965205 DOI: 10.3390/pathogens12020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The maintenance of the symbiosis between leaf-cutting ants and their mutualistic fungus Leucoagaricus gongylophorus Singer (Moller) is vital for the survival of both species. The specialist fungal parasite Escovopsis weberi Muchovej & Della Lucia is a threat to this symbiosis, causing severe damage to the fungal garden. Mycelial pellets are resistant fungal structures that can be produced under laboratory conditions. These structures were studied for use in biological pest control, but the production of mycelial pellets has not previously been documented in Escovopsis. One of the aims of this study was to induce Escovopsis weberi to produce mycelial pellets and investigate the potential of these pellets for the control of leaf-cutting ants. We compared the pathogenicity of Escovopsis weberi mycelial pellets and conidia against mini-colonies of Acromyrmex subterraneus subterraneus Forel when applied in the form of baits. Worker ants were able to distinguish mycelial pellets from conidia, as baits with mycelial pellets were more attractive to workers than those with conidia, causing a greater negative impact on colony health. All types of baits containing Escovopsis weberi influenced the foraging activity but only treatments with viable fungal propagules resulted in an increase in the quantity of waste material, with a significant negative impact on the fungal garden biomass. The results provided novel information regarding Escovopsis recognition by worker ants and differences between conidia and mycelial pellet dynamics in leaf-cutting ant colonies, with new perspectives for the biological control of these important pests.
Collapse
|
5
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
6
|
Conlon BH, O'Tuama D, Michelsen A, Crumière AJJ, Shik JZ. A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers. Biol Lett 2022; 18:20220022. [PMID: 35440234 PMCID: PMC9019514 DOI: 10.1098/rsbl.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
While ants are dominant consumers in terrestrial habitats, only the leafcutters practice herbivory. Leafcutters do this by provisioning a fungal cultivar (Leucoagaricus gongylophorus) with freshly cut plant fragments and harnessing its metabolic machinery to convert plant mulch into edible fungal tissue (hyphae and swollen hyphal cells called gongylidia). The cultivar is known to degrade cellulose, but whether it assimilates this ubiquitous but recalcitrant molecule into its nutritional reward structures is unknown. We use in vitro experiments with isotopically labelled cellulose to show that fungal cultures from an Atta colombica leafcutter colony convert cellulose-derived carbon into gongylidia, even when potential bacterial symbionts are excluded. A laboratory feeding experiment showed that cellulose assimilation also occurs in vivo in A. colombica colonies. Analyses of publicly available transcriptomic data further identified a complete, constitutively expressed, cellulose-degradation pathway in the fungal cultivar. Confirming leafcutters use cellulose as a food source sheds light on the eco-evolutionary success of these important herbivores.
Collapse
Affiliation(s)
- Benjamin H Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - David O'Tuama
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Anders Michelsen
- Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Antonin J J Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
7
|
Lesne P, Dussutour A, Behmer ST. Effect of queen number on colony-level nutrient regulation, food collection and performance in two polygynous ant species. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104365. [PMID: 35121008 DOI: 10.1016/j.jinsphys.2022.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
There is growing appreciation for how social interactions influence animal foraging behavior, especially with respect to key nutrients. Ants, given their eusocial nature and ability to be reared and manipulated in the laboratory, offer unique opportunities to explore how social interactions influence nutrient regulation and related processes. At the colony-level, ants simultaneously regulate their protein and carbohydrate intake; a regulation tied to the presence of larvae. However, even though 45% of the approximately 10,000 ant species are polygynous, we know little about the influence of queen number on colony-level foraging behavior and performance. Here we explored the direct effects of queen number on colony-level protein-carbohydrate regulation, food collection, survival, and brood production in two polygynous ant species (Nylanderia fulva and Solenopsis invicta). For both species we conducted choice and no-choice experiments using small experimental colonoids (20 workers) with 0, 1, or 2 queens. Both species regulated their relative intake of protein and carbohydrate around a P1:C2 mark. However, only N. fulva responded to the addition of queens, increasing overall food collection, biasing intake towards carbohydrates, and over-collecting imbalanced foods. N. fulva also exhibited reduced survival and reproduction on protein-biased foods. In contrast, S. invicta showed no response to queen number and reduced food collection on the protein-biased diet while maintaining high survival and reproduction. Our results demonstrate the potential for queens of some ant species to impact colony-level foraging and performance, with interspecific variation likely being shaped by differences in life history traits.
Collapse
Affiliation(s)
- Pierre Lesne
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Bruneaux M, López‐Sepulcre A. isotracer: An R package for the analysis of tracer addition experiments. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthieu Bruneaux
- Department of Biological and Environmental Sciences University of Jyväskyläs Finland
| | - Andrés López‐Sepulcre
- Department of Biological and Environmental Sciences University of Jyväskyläs Finland
- Department of Biology Washington University in St. Louis MO USA
- CNRS UMR 7618 Institute of Ecology and Environmental Sciences of Paris (iEES) Sorbonne Université Francess
| |
Collapse
|
9
|
Caraballo-Rodríguez AM, Puckett SP, Kyle KE, Petras D, da Silva R, Nothias LF, Ernst M, van der Hooft JJJ, Tripathi A, Wang M, Balunas MJ, Klassen JL, Dorrestein PC. Chemical Gradients of Plant Substrates in an Atta texana Fungus Garden. mSystems 2021; 6:e0060121. [PMID: 34342533 PMCID: PMC8409729 DOI: 10.1128/msystems.00601-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Many ant species grow fungus gardens that predigest food as an essential step of the ants' nutrient uptake. These symbiotic fungus gardens have long been studied and feature a gradient of increasing substrate degradation from top to bottom. To further facilitate the study of fungus gardens and enable the understanding of the predigestion process in more detail than currently known, we applied recent mass spectrometry-based approaches and generated a three-dimensional (3D) molecular map of an Atta texana fungus garden to reveal chemical modifications as plant substrates pass through it. The metabolomics approach presented in this study can be applied to study similar processes in natural environments to compare with lab-maintained ecosystems. IMPORTANCE The study of complex ecosystems requires an understanding of the chemical processes involving molecules from several sources. Some of the molecules present in fungus-growing ants' symbiotic system originate from plants. To facilitate the study of fungus gardens from a chemical perspective, we provide a molecular map of an Atta texana fungus garden to reveal chemical modifications as plant substrates pass through it. The metabolomics approach presented in this study can be applied to study similar processes in natural environments.
Collapse
Affiliation(s)
- Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Sara P. Puckett
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Kathleen E. Kyle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Ricardo da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Anupriya Tripathi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marcy J. Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Jonathan L. Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Crumière AJJ, James A, Lannes P, Mallett S, Michelsen A, Rinnan R, Shik JZ. The multidimensional nutritional niche of fungus-cultivar provisioning in free-ranging colonies of a neotropical leafcutter ant. Ecol Lett 2021; 24:2439-2451. [PMID: 34418263 PMCID: PMC9292433 DOI: 10.1111/ele.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Foraging trails of leafcutter colonies are iconic scenes in the Neotropics, with ants collecting freshly cut plant fragments to provision a fungal food crop. We hypothesised that the fungus‐cultivar's requirements for macronutrients and minerals govern the foraging niche breadth of Atta colombica leafcutter ants. Analyses of plant fragments carried by foragers showed how nutrients from fruits, flowers and leaves combine to maximise cultivar performance. While the most commonly foraged leaves delivered excess protein relative to the cultivar's needs, in vitro experiments showed that the minerals P, Al and Fe may expand the leafcutter foraging niche by enhancing the cultivar's tolerance to protein‐biased substrates. A suite of other minerals reduces cultivar performance in ways that may render plant fragments with optimal macronutrient blends unsuitable for provisioning. Our approach highlights how the nutritional challenges of provisioning a mutualist can govern the multidimensional realised niche available to a generalist insect herbivore.
Collapse
Affiliation(s)
- Antonin J J Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aidan James
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pol Lannes
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Mallett
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| |
Collapse
|
11
|
Baltiansky L, Sarafian‐Tamam E, Greenwald E, Feinerman O. Dual‐fluorescence imaging and automated trophallaxis detection for studying multi‐nutrient regulation in superorganisms. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lior Baltiansky
- Department of Physics of Complex Systems Weizmann Institute of Science Rehovot Israel
| | - Einav Sarafian‐Tamam
- Department of Physics of Complex Systems Weizmann Institute of Science Rehovot Israel
| | - Efrat Greenwald
- Department of Physics of Complex Systems Weizmann Institute of Science Rehovot Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
12
|
Souza MLO, Oliveira RJ, Souza DJ, Samuels RI, Bragança MAL. Differential parasitism by four species of phorid flies when attacking three worker castes of the leaf-cutting ant Atta laevigata (Smith, 1858). PLoS One 2021; 16:e0250973. [PMID: 33951103 PMCID: PMC8099092 DOI: 10.1371/journal.pone.0250973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Certain species of parasitic flies belonging to the Phoridae are known to attack Atta spp. workers foraging along trails, near nest openings used by the ants to supply the colony with plant material, and in the areas where the ants are actively cutting plant material. However, there have been no previous studies of phorid parasitism of non-foraging worker ants, for example excavators and soldiers. Excavators can be found on the surface around specialized nest openings, carrying and dumping soil on characteristic mounds. Soldiers can be found on the trails protecting foragers or guarding the different types of nest openings. The current study was performed to investigate the differential parasitism rates of Atta laevigata (Smith, 1858) worker castes by four species of phorids. Ants of all castes on trails and at nest entrances were collect from 18 mature colonies in the field. A total of 21,254 ants were collected from trails and 14,649 collected from the mounds of loose soil near nest openings. The captured workers were maintained under controlled laboratory conditions to evaluate the rate of parasitism. Of the ants collected from trails, 1,112 (5.23%) were found to have been parasitized, of which 1,102 were foragers and only 10 were soldiers. Of the ants collected from the soil mounds near the nest openings, only 27 (0.18%) were found to have been parasitized, of those 25 were excavators and 2 were soldiers. When evaluating parasitism of ants on the trails, 46.2% were attacked by Apocephalus attophilus Borgmeier, 1928, 22.6% by Myrmosicarius grandicornis Borgmeier, 1928, 16.6% by Eibesfeldtphora erthali (Brown, 2001) and 14.6% by Apocephalus vicosae Disney, 2000. Only two species of phorid, M. grandicornis and E. erthali, were observed parasitizing excavators, whilst only E. erthali parasitized soldiers. This is the first time that Atta spp. excavators and soldiers have been shown to be parasitized by phorids. The low rates of parasitism and specificity of certain phorid species for excavators and soldiers is discussed in relation to the behavioral interactions of hosts and their parasitoids, as well as the relationship between host and parasitoid size.
Collapse
Affiliation(s)
- Maria Lucimar O. Souza
- Instituto Federal de Educação, Ciências e Tecnologia do Tocantins, Curso de Gestão em Agronegócio, Palmas, Tocantins, Brazil
| | - Rafael J. Oliveira
- Universidade Federal do Tocantins, Curso de Ciências Biológicas, Porto Nacional, Tocantins, Brazil
| | - Danival J. Souza
- Universidade Federal do Tocantins, Curso de Engenharia Florestal, Gurupi, Tocantins, Brazil
| | - Richard I. Samuels
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Marcos A. L. Bragança
- Universidade Federal do Tocantins, Curso de Ciências Biológicas, Porto Nacional, Tocantins, Brazil
| |
Collapse
|
13
|
From Plants to Ants: Fungal Modification of Leaf Lipids for Nutrition and Communication in the Leaf-Cutter Ant Fungal Garden Ecosystem. mSystems 2021; 6:6/2/e01307-20. [PMID: 33758033 PMCID: PMC8547007 DOI: 10.1128/msystems.01307-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipids are essential to all living organisms, as an energy source, as an important cellular structural component, and as a communication tool. In this study, we used global lipidomic methods to evaluate the lipids in leaf-cutter ant fungal gardens. Leaf-cutter ants and their coevolved fungal cultivar, Leucoagaricus gongylophorus, are a model mutualistic system. The fungus enzymatically digests fresh plant material that the ants cut and deliver, converting energy and nutrients from plants and providing them to the ants through specialized hyphal swellings called gongylidia. Using combined liquid chromatography, ion mobility spectrometry, and tandem mass spectrometry, we evaluated differences between the molecular species of lipids in the leaf-cutter ant fungal garden ecosystem. This lipidomic study characterized leaves that are fed to the gardens, gongylidia that are produced by the fungus to feed the ants, and spatially resolved regions of the fungal garden through stages of leaf degradation. Lipids containing alpha-linolenic acid (18:3) were enriched in leaves and the top of the gardens but not dominant in the middle or bottom regions. Gongylidia were dominated by lipids containing linoleic acid (18:2). To evaluate the communicative potential of the lipids in fungal gardens, we conducted a behavioral experiment that showed Atta leaf-cutter ants responded differently to 18:3 and 18:2 fatty acids, with aggression toward 18:3 and attraction for 18:2. This work demonstrates the role of lipids in both the transfer of energy and as an interkingdom communication tool in leaf-cutter ant fungal gardens. IMPORTANCE In this work, we examined the role of lipids in the mutualism between leaf-cutter ants and fungus. These ants cut fresh leaf material, which they provide to their fungal cultivar, that converts energy and nutrients from the plants and provides it to the ants in specialized hyphal swellings called gongylidia. This work constitutes the first example of a global lipidomics study of a symbiotic system and provides insights as to how the fungus modifies plant lipids into a usable source for the ants. Through a behavioral experiment, this work also demonstrates how lipids can be used as an interkingdom communication tool, in this case, as an attractant rather than as a repellant, which is more often seen. Author Video: An author video summary of this article is available.
Collapse
|
14
|
Merritt M. Dances with dogs: interspecies play and a case for sympoietic enactivism. Anim Cogn 2021; 24:353-369. [PMID: 33433823 DOI: 10.1007/s10071-020-01468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Abstract
I argue that an enactivist framework has more explanatory power than traditional philosophical theories of cognition when it comes to understanding the mechanisms underlying human-animal relationships. In both intraspecies and interspecies exchanges, what we often find are novel forms of cognition emerging from such transactions, but these "co-cognitive" processes cannot be understood apart from the interaction itself. I focus on a specific form of human-animal interaction-play, as it occurs between humans and domestic dogs-and argue that the best theory suited to the task of explaining how these two species create unique thought processes is a "sympoietic enactivism." Rather than the more common "autopoietic" arguments defended by many enactivists, I argue that what is more accurately occurring during bouts of human-dog play is sympoietic, or "collectively producing." Drawing on several different disciplines that converge on similar conclusions about creativity and collaboration, I show that human-dog play is a quintessential case of cognition that cannot be readily understood by appealing to the inner workings of either individual among the dyad. Thinking, on this view, is a form of play, and in playful interaction what gets created are wholly intersubjective modes of thought.
Collapse
Affiliation(s)
- Michele Merritt
- Department of English, Philosophy, and World Languages, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
15
|
Li H, Young SE, Poulsen M, Currie CR. Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:297-316. [PMID: 32926791 DOI: 10.1146/annurev-ento-040920-061140] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Feeding on living or dead plant material is widespread in insects. Seminal work on termites and aphids has provided profound insights into the critical nutritional role that microbes play in plant-feeding insects. Some ants, beetles, and termites, among others, have evolved the ability to use microbes to gain indirect access to plant substrate through the farming of a fungus on which they feed. Recent genomic studies, including studies of insect hosts and fungal and bacterial symbionts, as well as metagenomics and proteomics, have provided important insights into plant biomass digestion across insect-fungal mutualisms. Not only do advances in understanding of the divergent and complementary functions of complex symbionts reveal the mechanism of how these herbivorous insects catabolize plant biomass, but these symbionts also represent a promising reservoir for novel carbohydrate-active enzyme discovery, which is of considerable biotechnological interest.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Soleil E Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark;
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| |
Collapse
|
16
|
Gutiérrez Y, Phung T, Mumma H, Ambrose‐Winters A, Scherber C, Smith CR. Growth and survival of the superorganism: Ant colony macronutrient intake and investment. Ecol Evol 2020; 10:7901-7915. [PMID: 32760573 PMCID: PMC7391535 DOI: 10.1002/ece3.6520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, we used two common ant species (Lasius niger and Lasius neoniger) to assay how they translate variation in the diet (both in composition and frequency) into growth. We measured colony development for over 8 months and measured several phenotypic traits of the worker caste, and examined whether forager preference corresponded with diet quality. Optimal colony growth was a balance between survival and growth, and each of these was maximized with different nutrient regimes. Interestingly, forager preference was not totally aligned with the diet that maximized colony growth. Our results highlight that: (a) organism and superorganism size are controlled by the same nutrients, and this may reflect a common molecular basis for size across life's organizational levels, (b) there are nutrient trade-offs that are associated with life-history trade-offs, likely leading to selection for a balanced diet, and (c) the connection between the preference of foragers for different nutrients and how nutrient combinations affect colony success and demographics are complex and only beginning to be understood.
Collapse
Affiliation(s)
| | - Tung Phung
- Department of BiologyEarlham CollegeRichmondINUSA
| | - Harald Mumma
- Department of BiologyEarlham CollegeRichmondINUSA
| | | | | | | |
Collapse
|
17
|
Forti LC, Andrade APP, Sousa KKA, Camargo RS, Matos CAO, Caldato N, Catalani GC, Ramos VM. Do Workers from Subspecies Acromyrmex subterraneus Prepare Leaves and Toxic Baits in Similar Ways for Their Fungus Garden? NEOTROPICAL ENTOMOLOGY 2020; 49:12-23. [PMID: 31441022 DOI: 10.1007/s13744-019-00708-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Toxic baits are the most efficient method to control leaf-cutter ants in eucalyptus forests for paper and cellulose production. For the proper use of these baits, insecticide compounds must reach workers and contaminate them. Thus, understanding how these baits are processed inside the nests is vital for a successful control, especially when it comes to genus Acromyrmex. Lack of information on toxic baits and on contamination of Acromyrmex workers raises the question: do workers from subspecies Acromyrmex subterraneus (Forel) prepare leaves and toxic baits in similar ways for their fungus garden? To answer it, this study described and analyzed the behavioral repertoire executed by A. subterraneus workers during the preparation of leaf disks and baits and their incorporation into the fungus garden. Results show that the act of licking the substrate was the most frequently executed behavior, regardless of subspecies or size categories. Moreover, additional behaviors have been observed when workers processed the baits, such as licking and scraping their jaws on the surface of the bait pellet, as well as licking and biting fragments of bait pellets, moistening them. Thus, it is concluded that the preparation of baits is different from that of leaves; baits are more processed and can therefore contribute to contaminating workers via insecticides.
Collapse
Affiliation(s)
- L C Forti
- Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural Sciences, São Paulo State Univ, Botucatu, SP, Brasil
| | - A P P Andrade
- Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural Sciences, São Paulo State Univ, Botucatu, SP, Brasil
| | - K K A Sousa
- Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural Sciences, São Paulo State Univ, Botucatu, SP, Brasil
| | - R S Camargo
- Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural Sciences, São Paulo State Univ, Botucatu, SP, Brasil.
| | - C A O Matos
- São Paulo State Univ, Experimental Campus of Itapeva, São Paulo, SP, Brasil
| | - N Caldato
- Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural Sciences, São Paulo State Univ, Botucatu, SP, Brasil
| | - G C Catalani
- Lab of Social Insects-Pests, Vegetal Protection Dept, School of Agricultural Sciences, São Paulo State Univ, Botucatu, SP, Brasil
| | - V M Ramos
- Lab of Agricultural Entomology, Agronomy Dept, College of Agricultural Sciences, Univ of Western São Paulo, Presidente Prudente, SP, Brasil
| |
Collapse
|
18
|
Crumière AJJ, Stephenson CJ, Nagel M, Shik JZ. Using Nutritional Geometry to Explore How Social Insects Navigate Nutritional Landscapes. INSECTS 2020; 11:E53. [PMID: 31952303 PMCID: PMC7022258 DOI: 10.3390/insects11010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/15/2022]
Abstract
Insects face many cognitive challenges as they navigate nutritional landscapes that comprise their foraging environments with potential food items. The emerging field of nutritional geometry (NG) can help visualize these challenges, as well as the foraging solutions exhibited by insects. Social insect species must also make these decisions while integrating social information (e.g., provisioning kin) and/or offsetting nutrients provisioned to, or received from unrelated mutualists. In this review, we extend the logic of NG to make predictions about how cognitive challenges ramify across these social dimensions. Focusing on ants, we outline NG predictions in terms of fundamental and realized nutritional niches, considering when ants interact with related nestmates and unrelated bacterial, fungal, plant, and insect mutualists. The nutritional landscape framework we propose provides new avenues for hypothesis testing and for integrating cognition research with broader eco-evolutionary principles.
Collapse
Affiliation(s)
- Antonin J. J. Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Calum J. Stephenson
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Manuel Nagel
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonathan Z. Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
19
|
Sapountzis P, Zhukova M, Shik JZ, Schiott M, Boomsma JJ. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 2018; 7:e39209. [PMID: 30454555 PMCID: PMC6245734 DOI: 10.7554/elife.39209] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Mariya Zhukova
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Z Shik
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schiott
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|