1
|
Dong CM, Rolón BA, Sullivan JK, Tataru D, Deleon M, Dennis R, Dutton S, Machado Perez FJ, Montano L, Ferris KG. Short-term fluctuating and long-term divergent selection on sympatric Monkeyflowers: insights from decade-spanning reciprocal transplants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600870. [PMID: 38979251 PMCID: PMC11230446 DOI: 10.1101/2024.06.26.600870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sympatric species are often locally adapted to distinct microhabitats. However, temporal variation may cause local maladaptation and species boundary breakdown, especially during extreme climatic events leading to episodic selection. Repeated reciprocal transplants can reveal the interplay between short and long-term patterns of natural selection. To examine evolutionary trajectories of sympatric Monkeyflowers adapted to different niches, Mimulus guttatus and M. laciniatus, we performed three replicated transplants and combined them with previous experiments to leverage a dataset of five transplants spanning 10 years. We performed phenotypic selection analyses on parents and hybrids in parental habitats in Yosemite NP, CA during years of drastically differing snowpack. If there is ecological isolation, then we predicted divergent phenotypic selection between habitats in line with species' differences and local adaptation. We found interannual fluctuations in phenotypic selection, often in unpredicted directions. However, a combined-year analysis detected longer-term divergent selection on flowering time, a key temporally isolating and adaptative trait, suggesting that selection may reinforce species boundaries despite short-term fluctuations. Finally, we found temporal variation in local adaptation with M. laciniatus locally adapted in low snowpack years, while an extremely high snowpack year contributed to average local maladaptation of M. guttatus.
Collapse
Affiliation(s)
- Caroline M Dong
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
- Grinnell College, Department of Biology, Grinnell, IA
| | - Bolívar Aponte Rolón
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Juj K Sullivan
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Diana Tataru
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Max Deleon
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Rachael Dennis
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Spencer Dutton
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Fidel J Machado Perez
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
- University of California Merced, Life and Environmental Sciences Department, Merced, CA
| | - Lissette Montano
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Kathleen G Ferris
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| |
Collapse
|
2
|
Martin PR, Ghalambor CK. A Case for the "Competitive Exclusion-Tolerance Rule" as a General Cause of Species Turnover along Environmental Gradients. Am Nat 2023; 202:1-17. [PMID: 37384767 DOI: 10.1086/724683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractClosely related, ecologically similar species often segregate their distributions along environmental gradients of time, space, and resources, but previous research suggests diverse underlying causes. Here, we review reciprocal removal studies in nature that experimentally test the role of interactions among species in determining their turnover along environmental gradients. We find consistent evidence for asymmetric exclusion coupled with differences in environmental tolerance causing the segregation of species pairs, where a dominant species excludes a subordinate from benign regions of the gradient but is unable to tolerate challenging regions to which the subordinate species is adapted. Subordinate species were consistently smaller and performed better in regions of the gradient typically occupied by the dominant species compared with their native distribution. These results extend previous ideas contrasting competitive ability with adaptation to abiotic stress to include a broader diversity of species interactions (intraguild predation, reproductive interference) and environmental gradients, including gradients of biotic challenge. Collectively, these findings suggest that adaptation to environmental challenge compromises performance in antagonistic interactions with ecologically similar species. The consistency of this pattern across diverse organisms, environments, and biomes suggests generalizable processes structuring the segregation of ecologically similar species along disparate environmental gradients, a phenomenon that we propose should be named the competitive exclusion-tolerance rule.
Collapse
|
3
|
Toll K. An evolutionary framework for understanding habitat partitioning in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16119. [PMID: 36585942 PMCID: PMC10107657 DOI: 10.1002/ajb2.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Many plant species with overlapping geographic ranges segregate at smaller spatial scales. This spatial segregation-zonation when it follows an abiotic gradient and habitat partitioning when it does not-has been experimentally investigated for over a century often using distantly related taxa, such as different genera of algae or barnacles. In those foundational studies, trade-offs between stress tolerance and competitive ability were found to be the major driving factors of habitat partitioning for both animals and plants. Yet, the evolutionary relationships among segregating species are usually not taken into account. Since close relatives are hypothesized to compete more intensely and are more likely to interact during mating compared to distant relatives, the mechanisms underlying habitat partitioning may differ depending on the relatedness of the species in question. Here, I propose an integration of ecological and evolutionary factors contributing to habitat partitioning in plants, specifically how the relative contributions of factors predictably change with relatedness of taxa. Interspecific reproductive interactions in particular are understudied, yet important drivers of habitat partitioning. In spatially segregated species, interspecific mating can reduce the fitness of rare immigrants, preventing their establishment and maintaining patterns of spatial segregation. In this synthesis, I review the literature on mechanisms of habitat partitioning in plants within an evolutionary framework, identifying knowledge gaps and detailing future directions for this rapidly growing field of study.
Collapse
Affiliation(s)
- Katherine Toll
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
4
|
Coughlan JM. Indirect Effects of Parental Conflict on Conspecific Offspring Development. Am Nat 2023; 201:154-162. [PMID: 36524928 DOI: 10.1086/721919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHybrid seed inviability is a common reproductive barrier in angiosperms. Recent work suggests that the rapid evolution of hybrid seed inviability may, in part, be due to conflict between maternal and paternal optima for resource allocation to developing offspring (i.e., parental conflict). However, parental conflict requires that paternally derived resource-acquiring alleles impose a maternal cost. I test this requirement using three closely related species in the Mimulus guttatus species complex that exhibit significant hybrid seed inviability and differ in their inferred histories of parental conflict. I show that the presence of hybrid seeds significantly affects conspecific seed size for almost all crosses, such that conspecific seeds are smaller after developing with hybrids sired by fathers with a stronger history of conflict and are larger after developing with hybrids sired by fathers with a weaker history of conflict. This work demonstrates a potential maternal cost of paternally derived alleles and also has implications for species fitness in secondary contact.
Collapse
|
5
|
Toll K. Perfoliate leaves reduce herbivory in the shield-bracted monkeyflower (Mimulus glaucescens). Ecology 2023; 104:e3876. [PMID: 36178028 PMCID: PMC10078401 DOI: 10.1002/ecy.3876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Katherine Toll
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Toll K, Lowry DB. Frequency-dependent hybridization contributes to habitat segregation in monkeyflowers. Am Nat 2022; 199:743-757. [DOI: 10.1086/719381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Christie K, Doan JP, Mcbride WC, Strauss SY. Asymmetrical reproductive barriers in sympatric jewelflowers: are floral isolation, genetic incompatibilities and floral trait displacement connected? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Floral visitors influence reproductive interactions among sympatric plant species, either by facilitating assortative mating and contributing to reproductive isolation, or by promoting heterospecific pollen transfer, potentially leading to reproductive interference or hybridization. We assessed preference and constancy of floral visitors on two co-occurring jewelflowers [Streptanthus breweri and Streptanthus hesperidis (Brassicaceae)] using field arrays, and quantified two floral rewards potentially important to foraging choice – pollen production and nectar sugar concentration – in a greenhouse common garden. Floral visitors made an abundance of conspecific transitions between S. breweri individuals, which thus experienced minimal opportunities for heterospecific pollen transfer from S. hesperidis. In contrast, behavioural isolation for S. hesperidis was essentially absent due to pollinator inconstancy. This pattern emerged across multiple biotic environments and was unrelated to local density dependence. S. breweri populations that were sympatric with S. hesperidis had higher nectar sugar concentrations than their sympatric congeners, as well as allopatric conspecifics. Previous work shows that S. breweri suffers a greater cost to hybridization than S. hesperidis, and here we find that it also shows asymmetrical floral isolation and floral trait displacement in sympatry. These findings suggest that trait divergence may reduce negative reproductive interactions between sympatric but genetically incompatible relatives.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
- Center for Population Biology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Jonathan P Doan
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Wendy C Mcbride
- Deaver Herbarium, Northern Arizona University, Flagstaff, AZ, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
- Center for Population Biology, University of California Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
8
|
Olofsson JK, Curran EV, Nyirenda F, Bianconi ME, Dunning LT, Milenkovic V, Sotelo G, Hidalgo O, Powell RF, Lundgren MR, Leitch IJ, Nosil P, Osborne CP, Christin PA. Low dispersal and ploidy differences in a grass maintain photosynthetic diversity despite gene flow and habitat overlap. Mol Ecol 2021; 30:2116-2130. [PMID: 33682242 DOI: 10.1111/mec.15871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Geographical isolation facilitates the emergence of distinct phenotypes within a single species, but reproductive barriers or selection are needed to maintain the polymorphism after secondary contact. Here, we explore the processes that maintain intraspecific variation of C4 photosynthesis, a complex trait that results from the combined action of multiple genes. The grass Alloteropsis semialata includes C4 and non-C4 populations, which have coexisted as a polyploid series for more than 1 million years in the miombo woodlands of Africa. Using population genomics, we show that there is genome-wide divergence for the photosynthetic types, but the current geographical distribution does not reflect a simple habitat displacement scenario as the genetic clusters overlap, being occasionally mixed within a given habitat. Despite evidence of recurrent introgression between non-C4 and C4 groups, in both diploids and polyploids, the distinct genetic lineages retain their identity, potentially because of selection against hybrids. Coupled with strong isolation by distance within each genetic group, this selection created a geographical mosaic of photosynthetic types. Diploid C4 and non-C4 types never grew together, and the C4 type from mixed populations constantly belonged to the hexaploid lineage. By limiting reproductive interactions between photosynthetic types, the ploidy difference probably allows their co-occurrence, reinforcing the functional diversity within this species. Together, these factors enabled the persistence of divergent physiological traits of ecological importance within a single species despite gene flow and habitat overlap.
Collapse
Affiliation(s)
- Jill K Olofsson
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Emma V Curran
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Matheus E Bianconi
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Luke T Dunning
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Vanja Milenkovic
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Graciela Sotelo
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | | | | | - Marjorie R Lundgren
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | | | - Patrik Nosil
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
9
|
Toll K, LoPresti EF, Lowry DB. Inbreeding depression contributes to the maintenance of habitat segregation between closely related monkeyflower species. Evolution 2021; 75:832-846. [PMID: 33590496 DOI: 10.1111/evo.14192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 11/30/2022]
Abstract
Incompletely reproductively isolated species often segregate into different microhabitats, even when they are able to survive and reproduce in both habitats. Longer term evolutionary factors may contribute to this lack of cross-habitat persistence. When reproductive interference reduces immigrant fitness, assortative mating, including self-fertilization, increases immigrants' fitness in a single generation, but longer term, inbreeding depression may reduce the chance of population persistence. Two California monkeyflower species repeatedly segregate into drier and wetter areas in their zone of sympatry. To test whether inbreeding depression may contribute to the maintenance of this segregation pattern, we transplanted outbred and successively inbred Mimulus guttatus and Mimulus nudatus into their native habitats and heterospecific habitats. We measured germination, survival, and seed set and found that recurrent selfing reduced all aspects of fitness in both species, most strongly in foreign habitats. A simulation model, parameterized from the transplant experiment, found that inbreeding reduced fitness to such an extent that sequentially inbred populations of either species would be unable to persist in heterospecific-occupied habitats in the absence of continued gene flow. These results demonstrate that individual immigrants are unlikely to form persistent populations and thus, inbreeding depression contributes to the absence of fine-scale coexistence in this species pair.
Collapse
Affiliation(s)
- Katherine Toll
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Eric F LoPresti
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
10
|
Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190533. [PMID: 32654642 DOI: 10.1098/rstb.2019.0533] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Christie K, Strauss SY. Frequency-dependent fitness and reproductive dynamics contribute to habitat segregation in sympatric jewelflowers. Proc Biol Sci 2020; 287:20200559. [PMID: 32396796 DOI: 10.1098/rspb.2020.0559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coexistence results from a complex suite of past and contemporary processes including biogeographic history, adaptation, ecological interactions and reproductive dynamics. Here we explore drivers of local micro-parapatry in which two closely related and reproductively isolated Streptanthus species (jewelflower, Brassicaceae) inhabit continuous or adjacent habitat patches and occur within seed dispersal range, yet rarely overlap in fine-scale distribution. We find some evidence for abiotic niche partitioning and local adaptation, however differential survival across habitats cannot fully explain the scarcity of coexistence. Competition may also reduce the fitness of individuals migrating into occupied habitats, yet its effects are insufficient to drive competitive exclusion. Experimental migrants suffered reduced seed production and seed viability at sites occupied by heterospecifics, and we infer that heterospecific pollen transfer by shared pollinators contributes to wasted gametes when the two congeners come into contact. A minority disadvantage may reduce effective colonization of patches already occupied by heterospecifics, even when habitat patches are environmentally suitable. Differential adaptation and resource competition have often been evoked as primary drivers of habitat segregation in plants, yet negative reproductive interactions-including reproductive interference and decreased fecundity among low-frequency migrants-may also contribute to non-overlapping distributions of related species along local tension zones.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Evolution and Ecology, and Center for Population Biology, University of California Davis, One Shields Avenue, Davis CA 95616-5270, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, and Center for Population Biology, University of California Davis, One Shields Avenue, Davis CA 95616-5270, USA
| |
Collapse
|
12
|
Coughlan JM, Wilson Brown M, Willis JH. Patterns of Hybrid Seed Inviability in the Mimulus guttatus sp. Complex Reveal a Potential Role of Parental Conflict in Reproductive Isolation. Curr Biol 2020; 30:83-93.e5. [PMID: 31883810 PMCID: PMC7017923 DOI: 10.1016/j.cub.2019.11.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 11/19/2022]
Abstract
Genomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here, we describe M. decorus: a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus, conform to the predictions of parental conflict: first, reciprocal F1s exhibit size differences and parent-of-origin-specific endosperm defects; second, the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI; and third, inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others' closest relative. Lastly, although all populations appear largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than transitions to self-fertilization may influence the rate of parental-conflict-driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin-specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA; Biology Department, University of North Carolina, Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA.
| | - Maya Wilson Brown
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| | - John H Willis
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
13
|
Christie K, Strauss SY. Reproductive isolation and the maintenance of species boundaries in two serpentine endemic Jewelflowers. Evolution 2019; 73:1375-1391. [PMID: 31152435 DOI: 10.1111/evo.13767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Speciation occurs when reproductive barriers substantially reduce gene flow between lineages. Understanding how specific barriers contribute to reproductive isolation offers insight into the initial forces driving divergence and the evolutionary and ecological processes responsible for maintaining diversity. Here, we quantified multiple pre- and post-pollination isolating barriers in a pair of closely related California Jewelflowers (Streptanthus, Brassicaceae) living in an area of sympatry. S. breweri and S. hesperidis are restricted to similar serpentine habitats; however, populations are spatially isolated at fine-scales and rarely co-occur in intermixed stands. Several intrinsic postzygotic barriers were among the strongest we quantified, yet, postzygotic barriers currently contribute little to overall reproductive isolation due to the cumulative strength of earlier-acting extrinsic barriers, including spatial isolation, and flowering time and pollinator differences. Data from multiple years suggest that pre-pollination barriers may have different strengths depending on annual environmental conditions. Similarly, crossing data suggest that the strength of intrinsic isolation may vary among different population pairs. Estimates of total reproductive isolation in S. breweri and S. hesperidis are robust to uncertainty and variability in individual barrier strength estimates, demonstrating how multiple barriers can act redundantly to prevent gene flow between close relatives living in sympatry.
Collapse
Affiliation(s)
- Kyle Christie
- UC Davis Department of Evolution and Ecology, and Center for Population Biology, University of California, One Shields Avenue, Davis, California, 95616
| | - Sharon Y Strauss
- UC Davis Department of Evolution and Ecology, and Center for Population Biology, University of California, One Shields Avenue, Davis, California, 95616
| |
Collapse
|